

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Tornado 4.5.dev1 documentation

[image: Tornado Web Server]

Tornado [http://www.tornadoweb.org] is a Python web framework and
asynchronous networking library, originally developed at FriendFeed [http://friendfeed.com]. By using non-blocking network I/O, Tornado
can scale to tens of thousands of open connections, making it ideal for
long polling [http://en.wikipedia.org/wiki/Push_technology#Long_polling],
WebSockets [http://en.wikipedia.org/wiki/WebSocket], and other
applications that require a long-lived connection to each user.

Quick links

	Download version 4.5.dev1: tornado-4.5.dev1.tar.gz [https://pypi.python.org/packages/source/t/tornado/tornado-4.5.dev1.tar.gz] (release notes)

	Source (github) [https://github.com/tornadoweb/tornado]

	Mailing lists: discussion [http://groups.google.com/group/python-tornado] and announcements [http://groups.google.com/group/python-tornado-announce]

	Stack Overflow [http://stackoverflow.com/questions/tagged/tornado]

	Wiki [https://github.com/tornadoweb/tornado/wiki/Links]

Hello, world

Here is a simple “Hello, world” example web app for Tornado:

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

def make_app():
 return tornado.web.Application([
 (r"/", MainHandler),
])

if __name__ == "__main__":
 app = make_app()
 app.listen(8888)
 tornado.ioloop.IOLoop.current().start()

This example does not use any of Tornado’s asynchronous features; for
that see this simple chat room [https://github.com/tornadoweb/tornado/tree/stable/demos/chat].

Installation

Automatic installation:

pip install tornado

Tornado is listed in PyPI [http://pypi.python.org/pypi/tornado] and
can be installed with pip or easy_install. Note that the
source distribution includes demo applications that are not present
when Tornado is installed in this way, so you may wish to download a
copy of the source tarball as well.

Manual installation: Download tornado-4.5.dev1.tar.gz [https://pypi.python.org/packages/source/t/tornado/tornado-4.5.dev1.tar.gz]:

tar xvzf tornado-4.5.dev1.tar.gz
cd tornado-4.5.dev1
python setup.py build
sudo python setup.py install

The Tornado source code is hosted on GitHub [https://github.com/tornadoweb/tornado].

Prerequisites: Tornado 4.3 runs on Python 2.7, and 3.3+
For Python 2, version 2.7.9 or newer is strongly
recommended for the improved SSL support. In addition to the requirements
which will be installed automatically by pip or setup.py install,
the following optional packages may be useful:

	concurrent.futures [https://pypi.python.org/pypi/futures] is the
recommended thread pool for use with Tornado and enables the use of
ThreadedResolver. It is needed only on Python 2;
Python 3 includes this package in the standard library.

	pycurl [http://pycurl.sourceforge.net] is used by the optional
tornado.curl_httpclient. Libcurl version 7.19.3.1 or higher is required;
version 7.21.1 or higher is recommended.

	Twisted [http://www.twistedmatrix.com] may be used with the classes in
tornado.platform.twisted.

	pycares [https://pypi.python.org/pypi/pycares] is an alternative
non-blocking DNS resolver that can be used when threads are not
appropriate.

	monotonic [https://pypi.python.org/pypi/monotonic] or Monotime [https://pypi.python.org/pypi/Monotime] add support for a
monotonic clock, which improves reliability in environments where
clock adjustements are frequent. No longer needed in Python 3.3.

Platforms: Tornado should run on any Unix-like platform, although
for the best performance and scalability only Linux (with epoll)
and BSD (with kqueue) are recommended for production deployment
(even though Mac OS X is derived from BSD and supports kqueue, its
networking performance is generally poor so it is recommended only for
development use). Tornado will also run on Windows, although this
configuration is not officially supported and is recommended only for
development use.

Documentation

This documentation is also available in PDF and Epub formats [https://readthedocs.org/projects/tornado/downloads/].

	User’s guide
	Introduction

	Asynchronous and non-Blocking I/O

	Coroutines

	Queue example - a concurrent web spider

	Structure of a Tornado web application

	Templates and UI

	Authentication and security

	Running and deploying

	Web framework
	tornado.web — RequestHandler and Application classes

	tornado.template — Flexible output generation

	tornado.escape — Escaping and string manipulation

	tornado.locale — Internationalization support

	tornado.websocket — Bidirectional communication to the browser

	HTTP servers and clients
	tornado.httpserver — Non-blocking HTTP server

	tornado.httpclient — Asynchronous HTTP client

	tornado.httputil — Manipulate HTTP headers and URLs

	tornado.http1connection – HTTP/1.x client/server implementation

	Asynchronous networking
	tornado.ioloop — Main event loop

	tornado.iostream — Convenient wrappers for non-blocking sockets

	tornado.netutil — Miscellaneous network utilities

	tornado.tcpclient — IOStream connection factory

	tornado.tcpserver — Basic IOStream-based TCP server

	Coroutines and concurrency
	tornado.gen — Simplify asynchronous code

	tornado.concurrent — Work with threads and futures

	tornado.locks – Synchronization primitives

	tornado.queues – Queues for coroutines

	tornado.process — Utilities for multiple processes

	Integration with other services
	tornado.auth — Third-party login with OpenID and OAuth

	tornado.wsgi — Interoperability with other Python frameworks and servers

	tornado.platform.asyncio — Bridge between asyncio and Tornado

	tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares

	tornado.platform.twisted — Bridges between Twisted and Tornado

	Utilities
	tornado.autoreload — Automatically detect code changes in development

	tornado.log — Logging support

	tornado.options — Command-line parsing

	tornado.stack_context — Exception handling across asynchronous callbacks

	tornado.testing — Unit testing support for asynchronous code

	tornado.util — General-purpose utilities

	Frequently Asked Questions

	Release notes
	What’s new in Tornado 4.4.1

	What’s new in Tornado 4.4

	What’s new in Tornado 4.3

	What’s new in Tornado 4.2.1

	What’s new in Tornado 4.2

	What’s new in Tornado 4.1

	What’s new in Tornado 4.0.2

	What’s new in Tornado 4.0.1

	What’s new in Tornado 4.0

	What’s new in Tornado 3.2.2

	What’s new in Tornado 3.2.1

	What’s new in Tornado 3.2

	What’s new in Tornado 3.1.1

	What’s new in Tornado 3.1

	What’s new in Tornado 3.0.2

	What’s new in Tornado 3.0.1

	What’s new in Tornado 3.0

	What’s new in Tornado 2.4.1

	What’s new in Tornado 2.4

	What’s new in Tornado 2.3

	What’s new in Tornado 2.2.1

	What’s new in Tornado 2.2

	What’s new in Tornado 2.1.1

	What’s new in Tornado 2.1

	What’s new in Tornado 2.0

	What’s new in Tornado 1.2.1

	What’s new in Tornado 1.2

	What’s new in Tornado 1.1.1

	What’s new in Tornado 1.1

	What’s new in Tornado 1.0.1

	What’s new in Tornado 1.0

	Index

	Module Index

	Search Page

Discussion and support

You can discuss Tornado on the Tornado developer mailing list [http://groups.google.com/group/python-tornado], and report bugs on
the GitHub issue tracker [https://github.com/tornadoweb/tornado/issues]. Links to additional
resources can be found on the Tornado wiki [https://github.com/tornadoweb/tornado/wiki/Links]. New releases are
announced on the announcements mailing list [http://groups.google.com/group/python-tornado-announce].

Tornado is available under
the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html].

This web site and all documentation is licensed under Creative
Commons 3.0 [http://creativecommons.org/licenses/by/3.0/].

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

User’s guide

	Introduction

	Asynchronous and non-Blocking I/O
	Blocking

	Asynchronous

	Examples

	Coroutines
	Python 3.5: async and await

	How it works

	How to call a coroutine

	Coroutine patterns
	Interaction with callbacks

	Calling blocking functions

	Parallelism

	Interleaving

	Looping

	Running in the background

	Queue example - a concurrent web spider

	Structure of a Tornado web application
	The Application object

	Subclassing RequestHandler

	Handling request input

	Overriding RequestHandler methods

	Error Handling

	Redirection

	Asynchronous handlers

	Templates and UI
	Configuring templates

	Template syntax

	Internationalization

	UI modules

	Authentication and security
	Cookies and secure cookies

	User authentication

	Third party authentication

	Cross-site request forgery protection

	Running and deploying
	Processes and ports

	Running behind a load balancer

	Static files and aggressive file caching

	Debug mode and automatic reloading

	WSGI and Google App Engine

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Introduction

Tornado [http://www.tornadoweb.org] is a Python web framework and
asynchronous networking library, originally developed at FriendFeed [http://friendfeed.com]. By using non-blocking network I/O, Tornado
can scale to tens of thousands of open connections, making it ideal for
long polling [http://en.wikipedia.org/wiki/Push_technology#Long_polling],
WebSockets [http://en.wikipedia.org/wiki/WebSocket], and other
applications that require a long-lived connection to each user.

Tornado can be roughly divided into four major components:

	A web framework (including RequestHandler which is subclassed to
create web applications, and various supporting classes).

	Client- and server-side implementions of HTTP (HTTPServer and
AsyncHTTPClient).

	An asynchronous networking library including the classes IOLoop
and IOStream, which serve as the building blocks for the HTTP
components and can also be used to implement other protocols.

	A coroutine library (tornado.gen) which allows asynchronous
code to be written in a more straightforward way than chaining
callbacks.

The Tornado web framework and HTTP server together offer a full-stack
alternative to WSGI [http://www.python.org/dev/peps/pep-3333/].
While it is possible to use the Tornado web framework in a WSGI
container (WSGIAdapter), or use the Tornado HTTP server as a
container for other WSGI frameworks (WSGIContainer), each of these
combinations has limitations and to take full advantage of Tornado you
will need to use the Tornado’s web framework and HTTP server together.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Asynchronous and non-Blocking I/O

Real-time web features require a long-lived mostly-idle connection per
user. In a traditional synchronous web server, this implies devoting
one thread to each user, which can be very expensive.

To minimize the cost of concurrent connections, Tornado uses a
single-threaded event loop. This means that all application code
should aim to be asynchronous and non-blocking because only one
operation can be active at a time.

The terms asynchronous and non-blocking are closely related and are
often used interchangeably, but they are not quite the same thing.

Blocking

A function blocks when it waits for something to happen before
returning. A function may block for many reasons: network I/O, disk
I/O, mutexes, etc. In fact, every function blocks, at least a
little bit, while it is running and using the CPU (for an extreme
example that demonstrates why CPU blocking must be taken as seriously
as other kinds of blocking, consider password hashing functions like
bcrypt [http://bcrypt.sourceforge.net/], which by design use
hundreds of milliseconds of CPU time, far more than a typical network
or disk access).

A function can be blocking in some respects and non-blocking in
others. For example, tornado.httpclient in the default
configuration blocks on DNS resolution but not on other network access
(to mitigate this use ThreadedResolver or a
tornado.curl_httpclient with a properly-configured build of
libcurl). In the context of Tornado we generally talk about
blocking in the context of network I/O, although all kinds of blocking
are to be minimized.

Asynchronous

An asynchronous function returns before it is finished, and
generally causes some work to happen in the background before
triggering some future action in the application (as opposed to normal
synchronous functions, which do everything they are going to do
before returning). There are many styles of asynchronous interfaces:

	Callback argument

	Return a placeholder (Future, Promise, Deferred)

	Deliver to a queue

	Callback registry (e.g. POSIX signals)

Regardless of which type of interface is used, asynchronous functions
by definition interact differently with their callers; there is no
free way to make a synchronous function asynchronous in a way that is
transparent to its callers (systems like gevent [http://www.gevent.org] use lightweight threads to offer performance
comparable to asynchronous systems, but they do not actually make
things asynchronous).

Examples

Here is a sample synchronous function:

from tornado.httpclient import HTTPClient

def synchronous_fetch(url):
 http_client = HTTPClient()
 response = http_client.fetch(url)
 return response.body

And here is the same function rewritten to be asynchronous with a
callback argument:

from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch(url, callback):
 http_client = AsyncHTTPClient()
 def handle_response(response):
 callback(response.body)
 http_client.fetch(url, callback=handle_response)

And again with a Future instead of a callback:

from tornado.concurrent import Future

def async_fetch_future(url):
 http_client = AsyncHTTPClient()
 my_future = Future()
 fetch_future = http_client.fetch(url)
 fetch_future.add_done_callback(
 lambda f: my_future.set_result(f.result()))
 return my_future

The raw Future version is more complex, but Futures are
nonetheless recommended practice in Tornado because they have two
major advantages. Error handling is more consistent since the
Future.result method can simply raise an exception (as opposed to
the ad-hoc error handling common in callback-oriented interfaces), and
Futures lend themselves well to use with coroutines. Coroutines
will be discussed in depth in the next section of this guide. Here is
the coroutine version of our sample function, which is very similar to
the original synchronous version:

from tornado import gen

@gen.coroutine
def fetch_coroutine(url):
 http_client = AsyncHTTPClient()
 response = yield http_client.fetch(url)
 raise gen.Return(response.body)

The statement raise gen.Return(response.body) is an artifact of
Python 2, in which generators aren’t allowed to return
values. To overcome this, Tornado coroutines raise a special kind of
exception called a Return. The coroutine catches this exception and
treats it like a returned value. In Python 3.3 and later, a return
response.body achieves the same result.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Coroutines

Coroutines are the recommended way to write asynchronous code in
Tornado. Coroutines use the Python yield keyword to suspend and
resume execution instead of a chain of callbacks (cooperative
lightweight threads as seen in frameworks like gevent [http://www.gevent.org] are sometimes called coroutines as well, but
in Tornado all coroutines use explicit context switches and are called
as asynchronous functions).

Coroutines are almost as simple as synchronous code, but without the
expense of a thread. They also make concurrency easier [https://glyph.twistedmatrix.com/2014/02/unyielding.html] to reason
about by reducing the number of places where a context switch can
happen.

Example:

from tornado import gen

@gen.coroutine
def fetch_coroutine(url):
 http_client = AsyncHTTPClient()
 response = yield http_client.fetch(url)
 # In Python versions prior to 3.3, returning a value from
 # a generator is not allowed and you must use
 # raise gen.Return(response.body)
 # instead.
 return response.body

Python 3.5: async and await

Python 3.5 introduces the async and await keywords (functions
using these keywords are also called “native coroutines”). Starting in
Tornado 4.3, you can use them in place of yield-based coroutines.
Simply use async def foo() in place of a function definition with
the @gen.coroutine decorator, and await in place of yield. The
rest of this document still uses the yield style for compatibility
with older versions of Python, but async and await will run
faster when they are available:

async def fetch_coroutine(url):
 http_client = AsyncHTTPClient()
 response = await http_client.fetch(url)
 return response.body

The await keyword is less versatile than the yield keyword.
For example, in a yield-based coroutine you can yield a list of
Futures, while in a native coroutine you must wrap the list in
tornado.gen.multi. You can also use tornado.gen.convert_yielded
to convert anything that would work with yield into a form that
will work with await.

While native coroutines are not visibly tied to a particular framework
(i.e. they do not use a decorator like tornado.gen.coroutine or
asyncio.coroutine [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.coroutine]), not all coroutines are compatible with each
other. There is a coroutine runner which is selected by the first
coroutine to be called, and then shared by all coroutines which are
called directly with await. The Tornado coroutine runner is
designed to be versatile and accept awaitable objects from any
framework; other coroutine runners may be more limited (for example,
the asyncio coroutine runner does not accept coroutines from other
frameworks). For this reason, it is recommended to use the Tornado
coroutine runner for any application which combines multiple
frameworks. To call a coroutine using the Tornado runner from within a
coroutine that is already using the asyncio runner, use the
tornado.platform.asyncio.to_asyncio_future adapter.

How it works

A function containing yield is a generator. All generators
are asynchronous; when called they return a generator object instead
of running to completion. The @gen.coroutine decorator
communicates with the generator via the yield expressions, and
with the coroutine’s caller by returning a Future.

Here is a simplified version of the coroutine decorator’s inner loop:

Simplified inner loop of tornado.gen.Runner
def run(self):
 # send(x) makes the current yield return x.
 # It returns when the next yield is reached
 future = self.gen.send(self.next)
 def callback(f):
 self.next = f.result()
 self.run()
 future.add_done_callback(callback)

The decorator receives a Future from the generator, waits (without
blocking) for that Future to complete, then “unwraps” the Future
and sends the result back into the generator as the result of the
yield expression. Most asynchronous code never touches the Future
class directly except to immediately pass the Future returned by
an asynchronous function to a yield expression.

How to call a coroutine

Coroutines do not raise exceptions in the normal way: any exception
they raise will be trapped in the Future until it is yielded. This
means it is important to call coroutines in the right way, or you may
have errors that go unnoticed:

@gen.coroutine
def divide(x, y):
 return x / y

def bad_call():
 # This should raise a ZeroDivisionError, but it won't because
 # the coroutine is called incorrectly.
 divide(1, 0)

In nearly all cases, any function that calls a coroutine must be a
coroutine itself, and use the yield keyword in the call. When you
are overriding a method defined in a superclass, consult the
documentation to see if coroutines are allowed (the documentation
should say that the method “may be a coroutine” or “may return a
Future”):

@gen.coroutine
def good_call():
 # yield will unwrap the Future returned by divide() and raise
 # the exception.
 yield divide(1, 0)

Sometimes you may want to “fire and forget” a coroutine without waiting
for its result. In this case it is recommended to use IOLoop.spawn_callback,
which makes the IOLoop responsible for the call. If it fails,
the IOLoop will log a stack trace:

The IOLoop will catch the exception and print a stack trace in
the logs. Note that this doesn't look like a normal call, since
we pass the function object to be called by the IOLoop.
IOLoop.current().spawn_callback(divide, 1, 0)

Using IOLoop.spawn_callback in this way is recommended for
functions using @gen.coroutine, but it is required for functions
using async def (otherwise the coroutine runner will not start).

Finally, at the top level of a program, if the IOLoop is not yet
running, you can start the IOLoop, run the coroutine, and then
stop the IOLoop with the IOLoop.run_sync method. This is often
used to start the main function of a batch-oriented program:

run_sync() doesn't take arguments, so we must wrap the
call in a lambda.
IOLoop.current().run_sync(lambda: divide(1, 0))

Coroutine patterns

Interaction with callbacks

To interact with asynchronous code that uses callbacks instead of
Future, wrap the call in a Task. This will add the callback
argument for you and return a Future which you can yield:

@gen.coroutine
def call_task():
 # Note that there are no parens on some_function.
 # This will be translated by Task into
 # some_function(other_args, callback=callback)
 yield gen.Task(some_function, other_args)

Calling blocking functions

The simplest way to call a blocking function from a coroutine is to
use a ThreadPoolExecutor [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor], which returns
Futures that are compatible with coroutines:

thread_pool = ThreadPoolExecutor(4)

@gen.coroutine
def call_blocking():
 yield thread_pool.submit(blocking_func, args)

Parallelism

The coroutine decorator recognizes lists and dicts whose values are
Futures, and waits for all of those Futures in parallel:

@gen.coroutine
def parallel_fetch(url1, url2):
 resp1, resp2 = yield [http_client.fetch(url1),
 http_client.fetch(url2)]

@gen.coroutine
def parallel_fetch_many(urls):
 responses = yield [http_client.fetch(url) for url in urls]
 # responses is a list of HTTPResponses in the same order

@gen.coroutine
def parallel_fetch_dict(urls):
 responses = yield {url: http_client.fetch(url)
 for url in urls}
 # responses is a dict {url: HTTPResponse}

Interleaving

Sometimes it is useful to save a Future instead of yielding it
immediately, so you can start another operation before waiting:

@gen.coroutine
def get(self):
 fetch_future = self.fetch_next_chunk()
 while True:
 chunk = yield fetch_future
 if chunk is None: break
 self.write(chunk)
 fetch_future = self.fetch_next_chunk()
 yield self.flush()

This pattern is most usable with @gen.coroutine. If
fetch_next_chunk() uses async def, then it must be called as
fetch_future =
tornado.gen.convert_yielded(self.fetch_next_chunk()) to start the
background processing.

Looping

Looping is tricky with coroutines since there is no way in Python
to yield on every iteration of a for or while loop and
capture the result of the yield. Instead, you’ll need to separate
the loop condition from accessing the results, as in this example
from Motor [https://motor.readthedocs.io/en/stable/]:

import motor
db = motor.MotorClient().test

@gen.coroutine
def loop_example(collection):
 cursor = db.collection.find()
 while (yield cursor.fetch_next):
 doc = cursor.next_object()

Running in the background

PeriodicCallback is not normally used with coroutines. Instead, a
coroutine can contain a while True: loop and use
tornado.gen.sleep:

@gen.coroutine
def minute_loop():
 while True:
 yield do_something()
 yield gen.sleep(60)

Coroutines that loop forever are generally started with
spawn_callback().
IOLoop.current().spawn_callback(minute_loop)

Sometimes a more complicated loop may be desirable. For example, the
previous loop runs every 60+N seconds, where N is the running
time of do_something(). To run exactly every 60 seconds, use the
interleaving pattern from above:

@gen.coroutine
def minute_loop2():
 while True:
 nxt = gen.sleep(60) # Start the clock.
 yield do_something() # Run while the clock is ticking.
 yield nxt # Wait for the timer to run out.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Queue example - a concurrent web spider

Tornado’s tornado.queues module implements an asynchronous producer /
consumer pattern for coroutines, analogous to the pattern implemented for
threads by the Python standard library’s queue [https://docs.python.org/3.5/library/queue.html#module-queue] module.

A coroutine that yields Queue.get pauses until there is an item in the queue.
If the queue has a maximum size set, a coroutine that yields Queue.put pauses
until there is room for another item.

A Queue maintains a count of unfinished tasks, which begins at zero.
put increments the count; task_done decrements it.

In the web-spider example here, the queue begins containing only base_url. When
a worker fetches a page it parses the links and puts new ones in the queue,
then calls task_done to decrement the counter once. Eventually, a
worker fetches a page whose URLs have all been seen before, and there is also
no work left in the queue. Thus that worker’s call to task_done
decrements the counter to zero. The main coroutine, which is waiting for
join, is unpaused and finishes.

#!/usr/bin/env python

import time
from datetime import timedelta

try:
 from HTMLParser import HTMLParser
 from urlparse import urljoin, urldefrag
except ImportError:
 from html.parser import HTMLParser
 from urllib.parse import urljoin, urldefrag

from tornado import httpclient, gen, ioloop, queues

base_url = 'http://www.tornadoweb.org/en/stable/'
concurrency = 10

@gen.coroutine
def get_links_from_url(url):
 """Download the page at `url` and parse it for links.

 Returned links have had the fragment after `#` removed, and have been made
 absolute so, e.g. the URL 'gen.html#tornado.gen.coroutine' becomes
 'http://www.tornadoweb.org/en/stable/gen.html'.
 """
 try:
 response = yield httpclient.AsyncHTTPClient().fetch(url)
 print('fetched %s' % url)

 html = response.body if isinstance(response.body, str) \
 else response.body.decode()
 urls = [urljoin(url, remove_fragment(new_url))
 for new_url in get_links(html)]
 except Exception as e:
 print('Exception: %s %s' % (e, url))
 raise gen.Return([])

 raise gen.Return(urls)

def remove_fragment(url):
 pure_url, frag = urldefrag(url)
 return pure_url

def get_links(html):
 class URLSeeker(HTMLParser):
 def __init__(self):
 HTMLParser.__init__(self)
 self.urls = []

 def handle_starttag(self, tag, attrs):
 href = dict(attrs).get('href')
 if href and tag == 'a':
 self.urls.append(href)

 url_seeker = URLSeeker()
 url_seeker.feed(html)
 return url_seeker.urls

@gen.coroutine
def main():
 q = queues.Queue()
 start = time.time()
 fetching, fetched = set(), set()

 @gen.coroutine
 def fetch_url():
 current_url = yield q.get()
 try:
 if current_url in fetching:
 return

 print('fetching %s' % current_url)
 fetching.add(current_url)
 urls = yield get_links_from_url(current_url)
 fetched.add(current_url)

 for new_url in urls:
 # Only follow links beneath the base URL
 if new_url.startswith(base_url):
 yield q.put(new_url)

 finally:
 q.task_done()

 @gen.coroutine
 def worker():
 while True:
 yield fetch_url()

 q.put(base_url)

 # Start workers, then wait for the work queue to be empty.
 for _ in range(concurrency):
 worker()
 yield q.join(timeout=timedelta(seconds=300))
 assert fetching == fetched
 print('Done in %d seconds, fetched %s URLs.' % (
 time.time() - start, len(fetched)))

if __name__ == '__main__':
 import logging
 logging.basicConfig()
 io_loop = ioloop.IOLoop.current()
 io_loop.run_sync(main)

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Structure of a Tornado web application

A Tornado web application generally consists of one or more
RequestHandler subclasses, an Application object which
routes incoming requests to handlers, and a main() function
to start the server.

A minimal “hello world” example looks something like this:

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

def make_app():
 return tornado.web.Application([
 (r"/", MainHandler),
])

if __name__ == "__main__":
 app = make_app()
 app.listen(8888)
 tornado.ioloop.IOLoop.current().start()

The Application object

The Application object is responsible for global configuration, including
the routing table that maps requests to handlers.

The routing table is a list of URLSpec objects (or tuples), each of
which contains (at least) a regular expression and a handler class.
Order matters; the first matching rule is used. If the regular
expression contains capturing groups, these groups are the path
arguments and will be passed to the handler’s HTTP method. If a
dictionary is passed as the third element of the URLSpec, it
supplies the initialization arguments which will be passed to
RequestHandler.initialize. Finally, the URLSpec may have a
name, which will allow it to be used with
RequestHandler.reverse_url.

For example, in this fragment the root URL / is mapped to
MainHandler and URLs of the form /story/ followed by a number
are mapped to StoryHandler. That number is passed (as a string) to
StoryHandler.get.

class MainHandler(RequestHandler):
 def get(self):
 self.write('link to story 1' %
 self.reverse_url("story", "1"))

class StoryHandler(RequestHandler):
 def initialize(self, db):
 self.db = db

 def get(self, story_id):
 self.write("this is story %s" % story_id)

app = Application([
 url(r"/", MainHandler),
 url(r"/story/([0-9]+)", StoryHandler, dict(db=db), name="story")
])

The Application constructor takes many keyword arguments that
can be used to customize the behavior of the application and enable
optional features; see Application.settings for the complete list.

Subclassing RequestHandler

Most of the work of a Tornado web application is done in subclasses
of RequestHandler. The main entry point for a handler subclass
is a method named after the HTTP method being handled: get(),
post(), etc. Each handler may define one or more of these methods
to handle different HTTP actions. As described above, these methods
will be called with arguments corresponding to the capturing groups
of the routing rule that matched.

Within a handler, call methods such as RequestHandler.render or
RequestHandler.write to produce a response. render() loads a
Template by name and renders it with the given
arguments. write() is used for non-template-based output; it
accepts strings, bytes, and dictionaries (dicts will be encoded as
JSON).

Many methods in RequestHandler are designed to be overridden in
subclasses and be used throughout the application. It is common
to define a BaseHandler class that overrides methods such as
write_error and get_current_user
and then subclass your own BaseHandler instead of RequestHandler
for all your specific handlers.

Handling request input

The request handler can access the object representing the current
request with self.request. See the class definition for
HTTPServerRequest for a complete list of
attributes.

Request data in the formats used by HTML forms will be parsed for you
and is made available in methods like get_query_argument
and get_body_argument.

class MyFormHandler(tornado.web.RequestHandler):
 def get(self):
 self.write('<html><body><form action="/myform" method="POST">'
 '<input type="text" name="message">'
 '<input type="submit" value="Submit">'
 '</form></body></html>')

 def post(self):
 self.set_header("Content-Type", "text/plain")
 self.write("You wrote " + self.get_body_argument("message"))

Since the HTML form encoding is ambiguous as to whether an argument is
a single value or a list with one element, RequestHandler has
distinct methods to allow the application to indicate whether or not
it expects a list. For lists, use
get_query_arguments and
get_body_arguments instead of their singular
counterparts.

Files uploaded via a form are available in self.request.files,
which maps names (the name of the HTML <input type="file">
element) to a list of files. Each file is a dictionary of the form
{"filename":..., "content_type":..., "body":...}. The files
object is only present if the files were uploaded with a form wrapper
(i.e. a multipart/form-data Content-Type); if this format was not used
the raw uploaded data is available in self.request.body.
By default uploaded files are fully buffered in memory; if you need to
handle files that are too large to comfortably keep in memory see the
stream_request_body class decorator.

Due to the quirks of the HTML form encoding (e.g. the ambiguity around
singular versus plural arguments), Tornado does not attempt to unify
form arguments with other types of input. In particular, we do not
parse JSON request bodies. Applications that wish to use JSON instead
of form-encoding may override prepare to parse their
requests:

def prepare(self):
 if self.request.headers["Content-Type"].startswith("application/json"):
 self.json_args = json.loads(self.request.body)
 else:
 self.json_args = None

Overriding RequestHandler methods

In addition to get()/post()/etc, certain other methods in
RequestHandler are designed to be overridden by subclasses when
necessary. On every request, the following sequence of calls takes
place:

	A new RequestHandler object is created on each request

	initialize() is called with the initialization
arguments from the Application configuration. initialize
should typically just save the arguments passed into member
variables; it may not produce any output or call methods like
send_error.

	prepare() is called. This is most useful in a
base class shared by all of your handler subclasses, as prepare
is called no matter which HTTP method is used. prepare may
produce output; if it calls finish (or
redirect, etc), processing stops here.

	One of the HTTP methods is called: get(), post(), put(),
etc. If the URL regular expression contains capturing groups, they
are passed as arguments to this method.

	When the request is finished, on_finish() is
called. For synchronous handlers this is immediately after
get() (etc) return; for asynchronous handlers it is after the
call to finish().

All methods designed to be overridden are noted as such in the
RequestHandler documentation. Some of the most commonly
overridden methods include:

	write_error -
outputs HTML for use on error pages.

	on_connection_close - called when the client
disconnects; applications may choose to detect this case and halt
further processing. Note that there is no guarantee that a closed
connection can be detected promptly.

	get_current_user - see User authentication

	get_user_locale - returns Locale object to use
for the current user

	set_default_headers - may be used to set
additional headers on the response (such as a custom Server
header)

Error Handling

If a handler raises an exception, Tornado will call
RequestHandler.write_error to generate an error page.
tornado.web.HTTPError can be used to generate a specified status
code; all other exceptions return a 500 status.

The default error page includes a stack trace in debug mode and a
one-line description of the error (e.g. “500: Internal Server Error”)
otherwise. To produce a custom error page, override
RequestHandler.write_error (probably in a base class shared by all
your handlers). This method may produce output normally via
methods such as write and render.
If the error was caused by an exception, an exc_info triple will
be passed as a keyword argument (note that this exception is not
guaranteed to be the current exception in sys.exc_info [https://docs.python.org/3.5/library/sys.html#sys.exc_info], so
write_error must use e.g. traceback.format_exception [https://docs.python.org/3.5/library/traceback.html#traceback.format_exception] instead of
traceback.format_exc [https://docs.python.org/3.5/library/traceback.html#traceback.format_exc]).

It is also possible to generate an error page from regular handler
methods instead of write_error by calling
set_status, writing a response, and returning.
The special exception tornado.web.Finish may be raised to terminate
the handler without calling write_error in situations where simply
returning is not convenient.

For 404 errors, use the default_handler_class Application setting. This handler should override
prepare instead of a more specific method like
get() so it works with any HTTP method. It should produce its
error page as described above: either by raising a HTTPError(404)
and overriding write_error, or calling self.set_status(404)
and producing the response directly in prepare().

Redirection

There are two main ways you can redirect requests in Tornado:
RequestHandler.redirect and with the RedirectHandler.

You can use self.redirect() within a RequestHandler method to
redirect users elsewhere. There is also an optional parameter
permanent which you can use to indicate that the redirection is
considered permanent. The default value of permanent is
False, which generates a 302 Found HTTP response code and is
appropriate for things like redirecting users after successful
POST requests. If permanent is true, the 301 Moved
Permanently HTTP response code is used, which is useful for
e.g. redirecting to a canonical URL for a page in an SEO-friendly
manner.

RedirectHandler lets you configure redirects directly in your
Application routing table. For example, to configure a single
static redirect:

app = tornado.web.Application([
 url(r"/app", tornado.web.RedirectHandler,
 dict(url="http://itunes.apple.com/my-app-id")),
])

RedirectHandler also supports regular expression substitutions.
The following rule redirects all requests beginning with /pictures/
to the prefix /photos/ instead:

app = tornado.web.Application([
 url(r"/photos/(.*)", MyPhotoHandler),
 url(r"/pictures/(.*)", tornado.web.RedirectHandler,
 dict(url=r"/photos/\1")),
])

Unlike RequestHandler.redirect, RedirectHandler uses permanent
redirects by default. This is because the routing table does not change
at runtime and is presumed to be permanent, while redirects found in
handlers are likely to be the result of other logic that may change.
To send a temporary redirect with a RedirectHandler, add
permanent=False to the RedirectHandler initialization arguments.

Asynchronous handlers

Tornado handlers are synchronous by default: when the
get()/post() method returns, the request is considered
finished and the response is sent. Since all other requests are
blocked while one handler is running, any long-running handler should
be made asynchronous so it can call its slow operations in a
non-blocking way. This topic is covered in more detail in
Asynchronous and non-Blocking I/O; this section is about the particulars of
asynchronous techniques in RequestHandler subclasses.

The simplest way to make a handler asynchronous is to use the
coroutine decorator. This allows you to perform non-blocking I/O
with the yield keyword, and no response will be sent until the
coroutine has returned. See Coroutines for more details.

In some cases, coroutines may be less convenient than a
callback-oriented style, in which case the tornado.web.asynchronous
decorator can be used instead. When this decorator is used the response
is not automatically sent; instead the request will be kept open until
some callback calls RequestHandler.finish. It is up to the application
to ensure that this method is called, or else the user’s browser will
simply hang.

Here is an example that makes a call to the FriendFeed API using
Tornado’s built-in AsyncHTTPClient:

class MainHandler(tornado.web.RequestHandler):
 @tornado.web.asynchronous
 def get(self):
 http = tornado.httpclient.AsyncHTTPClient()
 http.fetch("http://friendfeed-api.com/v2/feed/bret",
 callback=self.on_response)

 def on_response(self, response):
 if response.error: raise tornado.web.HTTPError(500)
 json = tornado.escape.json_decode(response.body)
 self.write("Fetched " + str(len(json["entries"])) + " entries "
 "from the FriendFeed API")
 self.finish()

When get() returns, the request has not finished. When the HTTP
client eventually calls on_response(), the request is still open,
and the response is finally flushed to the client with the call to
self.finish().

For comparison, here is the same example using a coroutine:

class MainHandler(tornado.web.RequestHandler):
 @tornado.gen.coroutine
 def get(self):
 http = tornado.httpclient.AsyncHTTPClient()
 response = yield http.fetch("http://friendfeed-api.com/v2/feed/bret")
 json = tornado.escape.json_decode(response.body)
 self.write("Fetched " + str(len(json["entries"])) + " entries "
 "from the FriendFeed API")

For a more advanced asynchronous example, take a look at the chat
example application [https://github.com/tornadoweb/tornado/tree/stable/demos/chat], which
implements an AJAX chat room using long polling [http://en.wikipedia.org/wiki/Push_technology#Long_polling]. Users
of long polling may want to override on_connection_close() to
clean up after the client closes the connection (but see that method’s
docstring for caveats).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Templates and UI

Tornado includes a simple, fast, and flexible templating language.
This section describes that language as well as related issues
such as internationalization.

Tornado can also be used with any other Python template language,
although there is no provision for integrating these systems into
RequestHandler.render. Simply render the template to a string
and pass it to RequestHandler.write

Configuring templates

By default, Tornado looks for template files in the same directory as
the .py files that refer to them. To put your template files in a
different directory, use the template_path Application setting (or override RequestHandler.get_template_path
if you have different template paths for different handlers).

To load templates from a non-filesystem location, subclass
tornado.template.BaseLoader and pass an instance as the
template_loader application setting.

Compiled templates are cached by default; to turn off this caching
and reload templates so changes to the underlying files are always
visible, use the application settings compiled_template_cache=False
or debug=True.

Template syntax

A Tornado template is just HTML (or any other text-based format) with
Python control sequences and expressions embedded within the markup:

<html>
 <head>
 <title>{{ title }}</title>
 </head>
 <body>

 {% for item in items %}
 {{ escape(item) }}
 {% end %}

 </body>
 </html>

If you saved this template as “template.html” and put it in the same
directory as your Python file, you could render this template with:

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 items = ["Item 1", "Item 2", "Item 3"]
 self.render("template.html", title="My title", items=items)

Tornado templates support control statements and expressions.
Control statements are surrounded by {% and %}, e.g.,
{% if len(items) > 2 %}. Expressions are surrounded by {{ and
}}, e.g., {{ items[0] }}.

Control statements more or less map exactly to Python statements. We
support if, for, while, and try, all of which are
terminated with {% end %}. We also support template inheritance
using the extends and block statements, which are described in
detail in the documentation for the tornado.template.

Expressions can be any Python expression, including function calls.
Template code is executed in a namespace that includes the following
objects and functions (Note that this list applies to templates
rendered using RequestHandler.render and
render_string. If you’re using the
tornado.template module directly outside of a RequestHandler many
of these entries are not present).

	escape: alias for tornado.escape.xhtml_escape

	xhtml_escape: alias for tornado.escape.xhtml_escape

	url_escape: alias for tornado.escape.url_escape

	json_encode: alias for tornado.escape.json_encode

	squeeze: alias for tornado.escape.squeeze

	linkify: alias for tornado.escape.linkify

	datetime: the Python datetime [https://docs.python.org/3.5/library/datetime.html#module-datetime] module

	handler: the current RequestHandler object

	request: alias for handler.request

	current_user: alias for handler.current_user

	locale: alias for handler.locale

	_: alias for handler.locale.translate

	static_url: alias for handler.static_url

	xsrf_form_html: alias for handler.xsrf_form_html

	reverse_url: alias for Application.reverse_url

	All entries from the ui_methods and ui_modules
Application settings

	Any keyword arguments passed to render or
render_string

When you are building a real application, you are going to want to use
all of the features of Tornado templates, especially template
inheritance. Read all about those features in the tornado.template
section (some features, including UIModules are implemented in the
tornado.web module)

Under the hood, Tornado templates are translated directly to Python. The
expressions you include in your template are copied verbatim into a
Python function representing your template. We don’t try to prevent
anything in the template language; we created it explicitly to provide
the flexibility that other, stricter templating systems prevent.
Consequently, if you write random stuff inside of your template
expressions, you will get random Python errors when you execute the
template.

All template output is escaped by default, using the
tornado.escape.xhtml_escape function. This behavior can be changed
globally by passing autoescape=None to the Application or
tornado.template.Loader constructors, for a template file with the
{% autoescape None %} directive, or for a single expression by
replacing {{ ... }} with {% raw ...%}. Additionally, in each of
these places the name of an alternative escaping function may be used
instead of None.

Note that while Tornado’s automatic escaping is helpful in avoiding
XSS vulnerabilities, it is not sufficient in all cases. Expressions
that appear in certain locations, such as in Javascript or CSS, may need
additional escaping. Additionally, either care must be taken to always
use double quotes and xhtml_escape in HTML attributes that may contain
untrusted content, or a separate escaping function must be used for
attributes (see e.g. http://wonko.com/post/html-escaping)

Internationalization

The locale of the current user (whether they are logged in or not) is
always available as self.locale in the request handler and as
locale in templates. The name of the locale (e.g., en_US) is
available as locale.name, and you can translate strings with the
Locale.translate method. Templates also have the global function
call _() available for string translation. The translate function
has two forms:

_("Translate this string")

which translates the string directly based on the current locale, and:

_("A person liked this", "%(num)d people liked this",
 len(people)) % {"num": len(people)}

which translates a string that can be singular or plural based on the
value of the third argument. In the example above, a translation of the
first string will be returned if len(people) is 1, or a
translation of the second string will be returned otherwise.

The most common pattern for translations is to use Python named
placeholders for variables (the %(num)d in the example above) since
placeholders can move around on translation.

Here is a properly internationalized template:

<html>
 <head>
 <title>FriendFeed - {{ _("Sign in") }}</title>
 </head>
 <body>
 <form action="{{ request.path }}" method="post">
 <div>{{ _("Username") }} <input type="text" name="username"/></div>
 <div>{{ _("Password") }} <input type="password" name="password"/></div>
 <div><input type="submit" value="{{ _("Sign in") }}"/></div>
 {% module xsrf_form_html() %}
 </form>
 </body>
 </html>

By default, we detect the user’s locale using the Accept-Language
header sent by the user’s browser. We choose en_US if we can’t find
an appropriate Accept-Language value. If you let user’s set their
locale as a preference, you can override this default locale selection
by overriding RequestHandler.get_user_locale:

class BaseHandler(tornado.web.RequestHandler):
 def get_current_user(self):
 user_id = self.get_secure_cookie("user")
 if not user_id: return None
 return self.backend.get_user_by_id(user_id)

 def get_user_locale(self):
 if "locale" not in self.current_user.prefs:
 # Use the Accept-Language header
 return None
 return self.current_user.prefs["locale"]

If get_user_locale returns None, we fall back on the
Accept-Language header.

The tornado.locale module supports loading translations in two
formats: the .mo format used by gettext [https://docs.python.org/3.5/library/gettext.html#module-gettext] and related tools, and a
simple .csv format. An application will generally call either
tornado.locale.load_translations or
tornado.locale.load_gettext_translations once at startup; see those
methods for more details on the supported formats..

You can get the list of supported locales in your application with
tornado.locale.get_supported_locales(). The user’s locale is chosen
to be the closest match based on the supported locales. For example, if
the user’s locale is es_GT, and the es locale is supported,
self.locale will be es for that request. We fall back on
en_US if no close match can be found.

UI modules

Tornado supports UI modules to make it easy to support standard,
reusable UI widgets across your application. UI modules are like special
function calls to render components of your page, and they can come
packaged with their own CSS and JavaScript.

For example, if you are implementing a blog, and you want to have blog
entries appear on both the blog home page and on each blog entry page,
you can make an Entry module to render them on both pages. First,
create a Python module for your UI modules, e.g., uimodules.py:

class Entry(tornado.web.UIModule):
 def render(self, entry, show_comments=False):
 return self.render_string(
 "module-entry.html", entry=entry, show_comments=show_comments)

Tell Tornado to use uimodules.py using the ui_modules setting in
your application:

from . import uimodules

class HomeHandler(tornado.web.RequestHandler):
 def get(self):
 entries = self.db.query("SELECT * FROM entries ORDER BY date DESC")
 self.render("home.html", entries=entries)

class EntryHandler(tornado.web.RequestHandler):
 def get(self, entry_id):
 entry = self.db.get("SELECT * FROM entries WHERE id = %s", entry_id)
 if not entry: raise tornado.web.HTTPError(404)
 self.render("entry.html", entry=entry)

settings = {
 "ui_modules": uimodules,
}
application = tornado.web.Application([
 (r"/", HomeHandler),
 (r"/entry/([0-9]+)", EntryHandler),
], **settings)

Within a template, you can call a module with the {% module %}
statement. For example, you could call the Entry module from both
home.html:

{% for entry in entries %}
 {% module Entry(entry) %}
{% end %}

and entry.html:

{% module Entry(entry, show_comments=True) %}

Modules can include custom CSS and JavaScript functions by overriding
the embedded_css, embedded_javascript, javascript_files, or
css_files methods:

class Entry(tornado.web.UIModule):
 def embedded_css(self):
 return ".entry { margin-bottom: 1em; }"

 def render(self, entry, show_comments=False):
 return self.render_string(
 "module-entry.html", show_comments=show_comments)

Module CSS and JavaScript will be included once no matter how many times
a module is used on a page. CSS is always included in the <head> of
the page, and JavaScript is always included just before the </body>
tag at the end of the page.

When additional Python code is not required, a template file itself may
be used as a module. For example, the preceding example could be
rewritten to put the following in module-entry.html:

{{ set_resources(embedded_css=".entry { margin-bottom: 1em; }") }}
<!-- more template html... -->

This revised template module would be invoked with:

{% module Template("module-entry.html", show_comments=True) %}

The set_resources function is only available in templates invoked
via {% module Template(...) %}. Unlike the {% include ... %}
directive, template modules have a distinct namespace from their
containing template - they can only see the global template namespace
and their own keyword arguments.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Authentication and security

Cookies and secure cookies

You can set cookies in the user’s browser with the set_cookie
method:

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 if not self.get_cookie("mycookie"):
 self.set_cookie("mycookie", "myvalue")
 self.write("Your cookie was not set yet!")
 else:
 self.write("Your cookie was set!")

Cookies are not secure and can easily be modified by clients. If you
need to set cookies to, e.g., identify the currently logged in user,
you need to sign your cookies to prevent forgery. Tornado supports
signed cookies with the set_secure_cookie and
get_secure_cookie methods. To use these methods,
you need to specify a secret key named cookie_secret when you
create your application. You can pass in application settings as
keyword arguments to your application:

application = tornado.web.Application([
 (r"/", MainHandler),
], cookie_secret="__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__")

Signed cookies contain the encoded value of the cookie in addition to a
timestamp and an HMAC [http://en.wikipedia.org/wiki/HMAC] signature.
If the cookie is old or if the signature doesn’t match,
get_secure_cookie will return None just as if the cookie isn’t
set. The secure version of the example above:

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 if not self.get_secure_cookie("mycookie"):
 self.set_secure_cookie("mycookie", "myvalue")
 self.write("Your cookie was not set yet!")
 else:
 self.write("Your cookie was set!")

Tornado’s secure cookies guarantee integrity but not confidentiality.
That is, the cookie cannot be modified but its contents can be seen by the
user. The cookie_secret is a symmetric key and must be kept secret –
anyone who obtains the value of this key could produce their own signed
cookies.

By default, Tornado’s secure cookies expire after 30 days. To change this,
use the expires_days keyword argument to set_secure_cookie and the
max_age_days argument to get_secure_cookie. These two values are
passed separately so that you may e.g. have a cookie that is valid for 30 days
for most purposes, but for certain sensitive actions (such as changing billing
information) you use a smaller max_age_days when reading the cookie.

Tornado also supports multiple signing keys to enable signing key
rotation. cookie_secret then must be a dict with integer key versions
as keys and the corresponding secrets as values. The currently used
signing key must then be set as key_version application setting
but all other keys in the dict are allowed for cookie signature validation,
if the correct key version is set in the cookie.
To implement cookie updates, the current signing key version can be
queried via get_secure_cookie_key_version.

User authentication

The currently authenticated user is available in every request handler
as self.current_user, and in every
template as current_user. By default, current_user is
None.

To implement user authentication in your application, you need to
override the get_current_user() method in your request handlers to
determine the current user based on, e.g., the value of a cookie. Here
is an example that lets users log into the application simply by
specifying a nickname, which is then saved in a cookie:

class BaseHandler(tornado.web.RequestHandler):
 def get_current_user(self):
 return self.get_secure_cookie("user")

class MainHandler(BaseHandler):
 def get(self):
 if not self.current_user:
 self.redirect("/login")
 return
 name = tornado.escape.xhtml_escape(self.current_user)
 self.write("Hello, " + name)

class LoginHandler(BaseHandler):
 def get(self):
 self.write('<html><body><form action="/login" method="post">'
 'Name: <input type="text" name="name">'
 '<input type="submit" value="Sign in">'
 '</form></body></html>')

 def post(self):
 self.set_secure_cookie("user", self.get_argument("name"))
 self.redirect("/")

application = tornado.web.Application([
 (r"/", MainHandler),
 (r"/login", LoginHandler),
], cookie_secret="__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__")

You can require that the user be logged in using the Python
decorator [http://www.python.org/dev/peps/pep-0318/]
tornado.web.authenticated. If a request goes to a method with this
decorator, and the user is not logged in, they will be redirected to
login_url (another application setting). The example above could be
rewritten:

class MainHandler(BaseHandler):
 @tornado.web.authenticated
 def get(self):
 name = tornado.escape.xhtml_escape(self.current_user)
 self.write("Hello, " + name)

settings = {
 "cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
 "login_url": "/login",
}
application = tornado.web.Application([
 (r"/", MainHandler),
 (r"/login", LoginHandler),
], **settings)

If you decorate post() methods with the authenticated
decorator, and the user is not logged in, the server will send a
403 response. The @authenticated decorator is simply
shorthand for if not self.current_user: self.redirect() and may
not be appropriate for non-browser-based login schemes.

Check out the Tornado Blog example application [https://github.com/tornadoweb/tornado/tree/stable/demos/blog] for a
complete example that uses authentication (and stores user data in a
MySQL database).

Third party authentication

The tornado.auth module implements the authentication and
authorization protocols for a number of the most popular sites on the
web, including Google/Gmail, Facebook, Twitter, and FriendFeed.
The module includes methods to log users in via these sites and, where
applicable, methods to authorize access to the service so you can, e.g.,
download a user’s address book or publish a Twitter message on their
behalf.

Here is an example handler that uses Google for authentication, saving
the Google credentials in a cookie for later access:

class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
 tornado.auth.GoogleOAuth2Mixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument('code', False):
 user = yield self.get_authenticated_user(
 redirect_uri='http://your.site.com/auth/google',
 code=self.get_argument('code'))
 # Save the user with e.g. set_secure_cookie
 else:
 yield self.authorize_redirect(
 redirect_uri='http://your.site.com/auth/google',
 client_id=self.settings['google_oauth']['key'],
 scope=['profile', 'email'],
 response_type='code',
 extra_params={'approval_prompt': 'auto'})

See the tornado.auth module documentation for more details.

Cross-site request forgery protection

Cross-site request
forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery], or
XSRF, is a common problem for personalized web applications. See the
Wikipedia
article [http://en.wikipedia.org/wiki/Cross-site_request_forgery] for
more information on how XSRF works.

The generally accepted solution to prevent XSRF is to cookie every user
with an unpredictable value and include that value as an additional
argument with every form submission on your site. If the cookie and the
value in the form submission do not match, then the request is likely
forged.

Tornado comes with built-in XSRF protection. To include it in your site,
include the application setting xsrf_cookies:

settings = {
 "cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
 "login_url": "/login",
 "xsrf_cookies": True,
}
application = tornado.web.Application([
 (r"/", MainHandler),
 (r"/login", LoginHandler),
], **settings)

If xsrf_cookies is set, the Tornado web application will set the
_xsrf cookie for all users and reject all POST, PUT, and
DELETE requests that do not contain a correct _xsrf value. If
you turn this setting on, you need to instrument all forms that submit
via POST to contain this field. You can do this with the special
UIModule xsrf_form_html(), available in all templates:

<form action="/new_message" method="post">
 {% module xsrf_form_html() %}
 <input type="text" name="message"/>
 <input type="submit" value="Post"/>
</form>

If you submit AJAX POST requests, you will also need to instrument
your JavaScript to include the _xsrf value with each request. This
is the jQuery [http://jquery.com/] function we use at FriendFeed for
AJAX POST requests that automatically adds the _xsrf value to
all requests:

function getCookie(name) {
 var r = document.cookie.match("\\b" + name + "=([^;]*)\\b");
 return r ? r[1] : undefined;
}

jQuery.postJSON = function(url, args, callback) {
 args._xsrf = getCookie("_xsrf");
 $.ajax({url: url, data: $.param(args), dataType: "text", type: "POST",
 success: function(response) {
 callback(eval("(" + response + ")"));
 }});
};

For PUT and DELETE requests (as well as POST requests that
do not use form-encoded arguments), the XSRF token may also be passed
via an HTTP header named X-XSRFToken. The XSRF cookie is normally
set when xsrf_form_html is used, but in a pure-Javascript application
that does not use any regular forms you may need to access
self.xsrf_token manually (just reading the property is enough to
set the cookie as a side effect).

If you need to customize XSRF behavior on a per-handler basis, you can
override RequestHandler.check_xsrf_cookie(). For example, if you
have an API whose authentication does not use cookies, you may want to
disable XSRF protection by making check_xsrf_cookie() do nothing.
However, if you support both cookie and non-cookie-based authentication,
it is important that XSRF protection be used whenever the current
request is authenticated with a cookie.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	User’s guide

Running and deploying

Since Tornado supplies its own HTTPServer, running and deploying it is
a little different from other Python web frameworks. Instead of
configuring a WSGI container to find your application, you write a
main() function that starts the server:

def main():
 app = make_app()
 app.listen(8888)
 IOLoop.current().start()

if __name__ == '__main__':
 main()

Configure your operating system or process manager to run this program to
start the server. Please note that it may be necessary to increase the number
of open files per process (to avoid “Too many open files”-Error).
To raise this limit (setting it to 50000 for example) you can use the ulimit command,
modify /etc/security/limits.conf or setting minfds in your supervisord config.

Processes and ports

Due to the Python GIL (Global Interpreter Lock), it is necessary to run
multiple Python processes to take full advantage of multi-CPU machines.
Typically it is best to run one process per CPU.

Tornado includes a built-in multi-process mode to start several
processes at once. This requires a slight alteration to the standard
main function:

def main():
 app = make_app()
 server = tornado.httpserver.HTTPServer(app)
 server.bind(8888)
 server.start(0) # forks one process per cpu
 IOLoop.current().start()

This is the easiest way to start multiple processes and have them all
share the same port, although it has some limitations. First, each
child process will have its own IOLoop, so it is important that
nothing touch the global IOLoop instance (even indirectly) before the
fork. Second, it is difficult to do zero-downtime updates in this model.
Finally, since all the processes share the same port it is more difficult
to monitor them individually.

For more sophisticated deployments, it is recommended to start the processes
independently, and have each one listen on a different port.
The “process groups” feature of supervisord [http://www.supervisord.org]
is one good way to arrange this. When each process uses a different port,
an external load balancer such as HAProxy or nginx is usually needed
to present a single address to outside visitors.

Running behind a load balancer

When running behind a load balancer like nginx, it is recommended to
pass xheaders=True to the HTTPServer constructor. This will tell
Tornado to use headers like X-Real-IP to get the user’s IP address
instead of attributing all traffic to the balancer’s IP address.

This is a barebones nginx config file that is structurally similar to
the one we use at FriendFeed. It assumes nginx and the Tornado servers
are running on the same machine, and the four Tornado servers are
running on ports 8000 - 8003:

user nginx;
worker_processes 1;

error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 worker_connections 1024;
 use epoll;
}

http {
 # Enumerate all the Tornado servers here
 upstream frontends {
 server 127.0.0.1:8000;
 server 127.0.0.1:8001;
 server 127.0.0.1:8002;
 server 127.0.0.1:8003;
 }

 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 access_log /var/log/nginx/access.log;

 keepalive_timeout 65;
 proxy_read_timeout 200;
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 gzip on;
 gzip_min_length 1000;
 gzip_proxied any;
 gzip_types text/plain text/html text/css text/xml
 application/x-javascript application/xml
 application/atom+xml text/javascript;

 # Only retry if there was a communication error, not a timeout
 # on the Tornado server (to avoid propagating "queries of death"
 # to all frontends)
 proxy_next_upstream error;

 server {
 listen 80;

 # Allow file uploads
 client_max_body_size 50M;

 location ^~ /static/ {
 root /var/www;
 if ($query_string) {
 expires max;
 }
 }
 location = /favicon.ico {
 rewrite (.*) /static/favicon.ico;
 }
 location = /robots.txt {
 rewrite (.*) /static/robots.txt;
 }

 location / {
 proxy_pass_header Server;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Scheme $scheme;
 proxy_pass http://frontends;
 }
 }
}

Static files and aggressive file caching

You can serve static files from Tornado by specifying the
static_path setting in your application:

settings = {
 "static_path": os.path.join(os.path.dirname(__file__), "static"),
 "cookie_secret": "__TODO:_GENERATE_YOUR_OWN_RANDOM_VALUE_HERE__",
 "login_url": "/login",
 "xsrf_cookies": True,
}
application = tornado.web.Application([
 (r"/", MainHandler),
 (r"/login", LoginHandler),
 (r"/(apple-touch-icon\.png)", tornado.web.StaticFileHandler,
 dict(path=settings['static_path'])),
], **settings)

This setting will automatically make all requests that start with
/static/ serve from that static directory, e.g.,
http://localhost:8888/static/foo.png will serve the file
foo.png from the specified static directory. We also automatically
serve /robots.txt and /favicon.ico from the static directory
(even though they don’t start with the /static/ prefix).

In the above settings, we have explicitly configured Tornado to serve
apple-touch-icon.png from the root with the StaticFileHandler,
though it is physically in the static file directory. (The capturing
group in that regular expression is necessary to tell
StaticFileHandler the requested filename; recall that capturing
groups are passed to handlers as method arguments.) You could do the
same thing to serve e.g. sitemap.xml from the site root. Of
course, you can also avoid faking a root apple-touch-icon.png by
using the appropriate <link /> tag in your HTML.

To improve performance, it is generally a good idea for browsers to
cache static resources aggressively so browsers won’t send unnecessary
If-Modified-Since or Etag requests that might block the
rendering of the page. Tornado supports this out of the box with static
content versioning.

To use this feature, use the static_url method in
your templates rather than typing the URL of the static file directly
in your HTML:

<html>
 <head>
 <title>FriendFeed - {{ _("Home") }}</title>
 </head>
 <body>
 <div></div>
 </body>
 </html>

The static_url() function will translate that relative path to a URI
that looks like /static/images/logo.png?v=aae54. The v argument
is a hash of the content in logo.png, and its presence makes the
Tornado server send cache headers to the user’s browser that will make
the browser cache the content indefinitely.

Since the v argument is based on the content of the file, if you
update a file and restart your server, it will start sending a new v
value, so the user’s browser will automatically fetch the new file. If
the file’s contents don’t change, the browser will continue to use a
locally cached copy without ever checking for updates on the server,
significantly improving rendering performance.

In production, you probably want to serve static files from a more
optimized static file server like nginx [http://nginx.net/]. You
can configure most any web server to recognize the version tags used
by static_url() and set caching headers accordingly. Here is the
relevant portion of the nginx configuration we use at FriendFeed:

location /static/ {
 root /var/friendfeed/static;
 if ($query_string) {
 expires max;
 }
 }

Debug mode and automatic reloading

If you pass debug=True to the Application constructor, the app
will be run in debug/development mode. In this mode, several features
intended for convenience while developing will be enabled (each of which
is also available as an individual flag; if both are specified the
individual flag takes precedence):

	autoreload=True: The app will watch for changes to its source
files and reload itself when anything changes. This reduces the need
to manually restart the server during development. However, certain
failures (such as syntax errors at import time) can still take the
server down in a way that debug mode cannot currently recover from.

	compiled_template_cache=False: Templates will not be cached.

	static_hash_cache=False: Static file hashes (used by the
static_url function) will not be cached

	serve_traceback=True: When an exception in a RequestHandler
is not caught, an error page including a stack trace will be
generated.

Autoreload mode is not compatible with the multi-process mode of HTTPServer.
You must not give HTTPServer.start an argument other than 1 (or
call tornado.process.fork_processes) if you are using autoreload mode.

The automatic reloading feature of debug mode is available as a
standalone module in tornado.autoreload. The two can be used in
combination to provide extra robustness against syntax errors: set
autoreload=True within the app to detect changes while it is running,
and start it with python -m tornado.autoreload myserver.py to catch
any syntax errors or other errors at startup.

Reloading loses any Python interpreter command-line arguments (e.g. -u)
because it re-executes Python using sys.executable [https://docs.python.org/3.5/library/sys.html#sys.executable] and sys.argv [https://docs.python.org/3.5/library/sys.html#sys.argv].
Additionally, modifying these variables will cause reloading to behave
incorrectly.

On some platforms (including Windows and Mac OSX prior to 10.6), the
process cannot be updated “in-place”, so when a code change is
detected the old server exits and a new one starts. This has been
known to confuse some IDEs.

WSGI and Google App Engine

Tornado is normally intended to be run on its own, without a WSGI
container. However, in some environments (such as Google App Engine),
only WSGI is allowed and applications cannot run their own servers.
In this case Tornado supports a limited mode of operation that does
not support asynchronous operation but allows a subset of Tornado’s
functionality in a WSGI-only environment. The features that are
not allowed in WSGI mode include coroutines, the @asynchronous
decorator, AsyncHTTPClient, the auth module, and WebSockets.

You can convert a Tornado Application to a WSGI application
with tornado.wsgi.WSGIAdapter. In this example, configure
your WSGI container to find the application object:

import tornado.web
import tornado.wsgi

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

tornado_app = tornado.web.Application([
 (r"/", MainHandler),
])
application = tornado.wsgi.WSGIAdapter(tornado_app)

See the appengine example application [https://github.com/tornadoweb/tornado/tree/stable/demos/appengine] for a
full-featured AppEngine app built on Tornado.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Web framework

	tornado.web — RequestHandler and Application classes
	Thread-safety notes

	Request handlers
	Entry points

	Input

	Output

	Cookies

	Other

	Application configuration

	Decorators

	Everything else

	tornado.template — Flexible output generation
	Syntax Reference

	Class reference

	tornado.escape — Escaping and string manipulation
	Escaping functions

	Byte/unicode conversions

	Miscellaneous functions

	tornado.locale — Internationalization support

	tornado.websocket — Bidirectional communication to the browser
	Event handlers

	Output

	Configuration

	Other

	Client-side support

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Web framework

tornado.web — RequestHandler and Application classes

tornado.web provides a simple web framework with asynchronous
features that allow it to scale to large numbers of open connections,
making it ideal for long polling [http://en.wikipedia.org/wiki/Push_technology#Long_polling].

Here is a simple “Hello, world” example app:

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

if __name__ == "__main__":
 application = tornado.web.Application([
 (r"/", MainHandler),
])
 application.listen(8888)
 tornado.ioloop.IOLoop.current().start()

See the User’s guide for additional information.

Thread-safety notes

In general, methods on RequestHandler and elsewhere in Tornado are
not thread-safe. In particular, methods such as
write(), finish(), and
flush() must only be called from the main thread. If
you use multiple threads it is important to use IOLoop.add_callback
to transfer control back to the main thread before finishing the
request.

Request handlers

	
class tornado.web.RequestHandler(application, request, **kwargs)[source]

	Base class for HTTP request handlers.

Subclasses must define at least one of the methods defined in the
“Entry points” section below.

Entry points

	
RequestHandler.initialize()[source]

	Hook for subclass initialization. Called for each request.

A dictionary passed as the third argument of a url spec will be
supplied as keyword arguments to initialize().

Example:

class ProfileHandler(RequestHandler):
 def initialize(self, database):
 self.database = database

 def get(self, username):
 ...

app = Application([
 (r'/user/(.*)', ProfileHandler, dict(database=database)),
])

	
RequestHandler.prepare()[source]

	Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless
of the request method.

Asynchronous support: Decorate this method with gen.coroutine
or return_future to make it asynchronous (the
asynchronous decorator cannot be used on prepare).
If this method returns a Future execution will not proceed
until the Future is done.

New in version 3.1: Asynchronous support.

	
RequestHandler.on_finish()[source]

	Called after the end of a request.

Override this method to perform cleanup, logging, etc.
This method is a counterpart to prepare. on_finish may
not produce any output, as it is called after the response
has been sent to the client.

Implement any of the following methods (collectively known as the
HTTP verb methods) to handle the corresponding HTTP method.
These methods can be made asynchronous with one of the following
decorators: gen.coroutine, return_future, or asynchronous.

The arguments to these methods come from the URLSpec: Any
capturing groups in the regular expression become arguments to the
HTTP verb methods (keyword arguments if the group is named,
positional arguments if its unnamed).

To support a method not on this list, override the class variable
SUPPORTED_METHODS:

class WebDAVHandler(RequestHandler):
 SUPPORTED_METHODS = RequestHandler.SUPPORTED_METHODS + ('PROPFIND',)

 def propfind(self):
 pass

	
RequestHandler.get(*args, **kwargs)[source]

	

	
RequestHandler.head(*args, **kwargs)[source]

	

	
RequestHandler.post(*args, **kwargs)[source]

	

	
RequestHandler.delete(*args, **kwargs)[source]

	

	
RequestHandler.patch(*args, **kwargs)[source]

	

	
RequestHandler.put(*args, **kwargs)[source]

	

	
RequestHandler.options(*args, **kwargs)[source]

	

Input

	
RequestHandler.get_argument(name, default=<object object>, strip=True)[source]

	Returns the value of the argument with the given name.

If default is not provided, the argument is considered to be
required, and we raise a MissingArgumentError if it is missing.

If the argument appears in the url more than once, we return the
last value.

The returned value is always unicode.

	
RequestHandler.get_arguments(name, strip=True)[source]

	Returns a list of the arguments with the given name.

If the argument is not present, returns an empty list.

The returned values are always unicode.

	
RequestHandler.get_query_argument(name, default=<object object>, strip=True)[source]

	Returns the value of the argument with the given name
from the request query string.

If default is not provided, the argument is considered to be
required, and we raise a MissingArgumentError if it is missing.

If the argument appears in the url more than once, we return the
last value.

The returned value is always unicode.

New in version 3.2.

	
RequestHandler.get_query_arguments(name, strip=True)[source]

	Returns a list of the query arguments with the given name.

If the argument is not present, returns an empty list.

The returned values are always unicode.

New in version 3.2.

	
RequestHandler.get_body_argument(name, default=<object object>, strip=True)[source]

	Returns the value of the argument with the given name
from the request body.

If default is not provided, the argument is considered to be
required, and we raise a MissingArgumentError if it is missing.

If the argument appears in the url more than once, we return the
last value.

The returned value is always unicode.

New in version 3.2.

	
RequestHandler.get_body_arguments(name, strip=True)[source]

	Returns a list of the body arguments with the given name.

If the argument is not present, returns an empty list.

The returned values are always unicode.

New in version 3.2.

	
RequestHandler.decode_argument(value, name=None)[source]

	Decodes an argument from the request.

The argument has been percent-decoded and is now a byte string.
By default, this method decodes the argument as utf-8 and returns
a unicode string, but this may be overridden in subclasses.

This method is used as a filter for both get_argument() and for
values extracted from the url and passed to get()/post()/etc.

The name of the argument is provided if known, but may be None
(e.g. for unnamed groups in the url regex).

	
RequestHandler.request

	The tornado.httputil.HTTPServerRequest object containing additional
request parameters including e.g. headers and body data.

	
RequestHandler.path_args

	

	
RequestHandler.path_kwargs

	The path_args and path_kwargs attributes contain the
positional and keyword arguments that are passed to the
HTTP verb methods. These attributes are set
before those methods are called, so the values are available
during prepare.

Output

	
RequestHandler.set_status(status_code, reason=None)[source]

	Sets the status code for our response.

	Parameters:	
	status_code (int [https://docs.python.org/3.5/library/functions.html#int]) – Response status code. If reason is None,
it must be present in httplib.responses [https://docs.python.org/3.5/library/http.client.html#http.client.responses].

	reason (string [https://docs.python.org/3.5/library/string.html#module-string]) – Human-readable reason phrase describing the status
code. If None, it will be filled in from
httplib.responses [https://docs.python.org/3.5/library/http.client.html#http.client.responses].

	
RequestHandler.set_header(name, value)[source]

	Sets the given response header name and value.

If a datetime is given, we automatically format it according to the
HTTP specification. If the value is not a string, we convert it to
a string. All header values are then encoded as UTF-8.

	
RequestHandler.add_header(name, value)[source]

	Adds the given response header and value.

Unlike set_header, add_header may be called multiple times
to return multiple values for the same header.

	
RequestHandler.clear_header(name)[source]

	Clears an outgoing header, undoing a previous set_header call.

Note that this method does not apply to multi-valued headers
set by add_header.

	
RequestHandler.set_default_headers()[source]

	Override this to set HTTP headers at the beginning of the request.

For example, this is the place to set a custom Server header.
Note that setting such headers in the normal flow of request
processing may not do what you want, since headers may be reset
during error handling.

	
RequestHandler.write(chunk)[source]

	Writes the given chunk to the output buffer.

To write the output to the network, use the flush() method below.

If the given chunk is a dictionary, we write it as JSON and set
the Content-Type of the response to be application/json.
(if you want to send JSON as a different Content-Type, call
set_header after calling write()).

Note that lists are not converted to JSON because of a potential
cross-site security vulnerability. All JSON output should be
wrapped in a dictionary. More details at
http://haacked.com/archive/2009/06/25/json-hijacking.aspx/ and
https://github.com/facebook/tornado/issues/1009

	
RequestHandler.flush(include_footers=False, callback=None)[source]

	Flushes the current output buffer to the network.

The callback argument, if given, can be used for flow control:
it will be run when all flushed data has been written to the socket.
Note that only one flush callback can be outstanding at a time;
if another flush occurs before the previous flush’s callback
has been run, the previous callback will be discarded.

Changed in version 4.0: Now returns a Future if no callback is given.

	
RequestHandler.finish(chunk=None)[source]

	Finishes this response, ending the HTTP request.

	
RequestHandler.render(template_name, **kwargs)[source]

	Renders the template with the given arguments as the response.

	
RequestHandler.render_string(template_name, **kwargs)[source]

	Generate the given template with the given arguments.

We return the generated byte string (in utf8). To generate and
write a template as a response, use render() above.

	
RequestHandler.get_template_namespace()[source]

	Returns a dictionary to be used as the default template namespace.

May be overridden by subclasses to add or modify values.

The results of this method will be combined with additional
defaults in the tornado.template module and keyword arguments
to render or render_string.

	
RequestHandler.redirect(url, permanent=False, status=None)[source]

	Sends a redirect to the given (optionally relative) URL.

If the status argument is specified, that value is used as the
HTTP status code; otherwise either 301 (permanent) or 302
(temporary) is chosen based on the permanent argument.
The default is 302 (temporary).

	
RequestHandler.send_error(status_code=500, **kwargs)[source]

	Sends the given HTTP error code to the browser.

If flush() has already been called, it is not possible to send
an error, so this method will simply terminate the response.
If output has been written but not yet flushed, it will be discarded
and replaced with the error page.

Override write_error() to customize the error page that is returned.
Additional keyword arguments are passed through to write_error.

	
RequestHandler.write_error(status_code, **kwargs)[source]

	Override to implement custom error pages.

write_error may call write, render, set_header, etc
to produce output as usual.

If this error was caused by an uncaught exception (including
HTTPError), an exc_info triple will be available as
kwargs["exc_info"]. Note that this exception may not be
the “current” exception for purposes of methods like
sys.exc_info() or traceback.format_exc.

	
RequestHandler.clear()[source]

	Resets all headers and content for this response.

	
RequestHandler.data_received(chunk)[source]

	Implement this method to handle streamed request data.

Requires the stream_request_body decorator.

Cookies

	
RequestHandler.cookies

	An alias for
self.request.cookies.

	
RequestHandler.get_cookie(name, default=None)[source]

	Gets the value of the cookie with the given name, else default.

	
RequestHandler.set_cookie(name, value, domain=None, expires=None, path='/', expires_days=None, **kwargs)[source]

	Sets the given cookie name/value with the given options.

Additional keyword arguments are set on the Cookie.Morsel
directly.
See https://docs.python.org/2/library/cookie.html#Cookie.Morsel
for available attributes.

	
RequestHandler.clear_cookie(name, path='/', domain=None)[source]

	Deletes the cookie with the given name.

Due to limitations of the cookie protocol, you must pass the same
path and domain to clear a cookie as were used when that cookie
was set (but there is no way to find out on the server side
which values were used for a given cookie).

	
RequestHandler.clear_all_cookies(path='/', domain=None)[source]

	Deletes all the cookies the user sent with this request.

See clear_cookie for more information on the path and domain
parameters.

Changed in version 3.2: Added the path and domain parameters.

	
RequestHandler.get_secure_cookie(name, value=None, max_age_days=31, min_version=None)[source]

	Returns the given signed cookie if it validates, or None.

The decoded cookie value is returned as a byte string (unlike
get_cookie).

Changed in version 3.2.1: Added the min_version argument. Introduced cookie version 2;
both versions 1 and 2 are accepted by default.

	
RequestHandler.get_secure_cookie_key_version(name, value=None)[source]

	Returns the signing key version of the secure cookie.

The version is returned as int.

	
RequestHandler.set_secure_cookie(name, value, expires_days=30, version=None, **kwargs)[source]

	Signs and timestamps a cookie so it cannot be forged.

You must specify the cookie_secret setting in your Application
to use this method. It should be a long, random sequence of bytes
to be used as the HMAC secret for the signature.

To read a cookie set with this method, use get_secure_cookie().

Note that the expires_days parameter sets the lifetime of the
cookie in the browser, but is independent of the max_age_days
parameter to get_secure_cookie.

Secure cookies may contain arbitrary byte values, not just unicode
strings (unlike regular cookies)

Changed in version 3.2.1: Added the version argument. Introduced cookie version 2
and made it the default.

	
RequestHandler.create_signed_value(name, value, version=None)[source]

	Signs and timestamps a string so it cannot be forged.

Normally used via set_secure_cookie, but provided as a separate
method for non-cookie uses. To decode a value not stored
as a cookie use the optional value argument to get_secure_cookie.

Changed in version 3.2.1: Added the version argument. Introduced cookie version 2
and made it the default.

	
tornado.web.MIN_SUPPORTED_SIGNED_VALUE_VERSION = 1

	The oldest signed value version supported by this version of Tornado.

Signed values older than this version cannot be decoded.

New in version 3.2.1.

	
tornado.web.MAX_SUPPORTED_SIGNED_VALUE_VERSION = 2

	The newest signed value version supported by this version of Tornado.

Signed values newer than this version cannot be decoded.

New in version 3.2.1.

	
tornado.web.DEFAULT_SIGNED_VALUE_VERSION = 2

	The signed value version produced by RequestHandler.create_signed_value.

May be overridden by passing a version keyword argument.

New in version 3.2.1.

	
tornado.web.DEFAULT_SIGNED_VALUE_MIN_VERSION = 1

	The oldest signed value accepted by RequestHandler.get_secure_cookie.

May be overridden by passing a min_version keyword argument.

New in version 3.2.1.

Other

	
RequestHandler.application

	The Application object serving this request

	
RequestHandler.check_etag_header()[source]

	Checks the Etag header against requests’s If-None-Match.

Returns True if the request’s Etag matches and a 304 should be
returned. For example:

self.set_etag_header()
if self.check_etag_header():
 self.set_status(304)
 return

This method is called automatically when the request is finished,
but may be called earlier for applications that override
compute_etag and want to do an early check for If-None-Match
before completing the request. The Etag header should be set
(perhaps with set_etag_header) before calling this method.

	
RequestHandler.check_xsrf_cookie()[source]

	Verifies that the _xsrf cookie matches the _xsrf argument.

To prevent cross-site request forgery, we set an _xsrf
cookie and include the same value as a non-cookie
field with all POST requests. If the two do not match, we
reject the form submission as a potential forgery.

The _xsrf value may be set as either a form field named _xsrf
or in a custom HTTP header named X-XSRFToken or X-CSRFToken
(the latter is accepted for compatibility with Django).

See http://en.wikipedia.org/wiki/Cross-site_request_forgery

Prior to release 1.1.1, this check was ignored if the HTTP header
X-Requested-With: XMLHTTPRequest was present. This exception
has been shown to be insecure and has been removed. For more
information please see
http://www.djangoproject.com/weblog/2011/feb/08/security/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails

Changed in version 3.2.2: Added support for cookie version 2. Both versions 1 and 2 are
supported.

	
RequestHandler.compute_etag()[source]

	Computes the etag header to be used for this request.

By default uses a hash of the content written so far.

May be overridden to provide custom etag implementations,
or may return None to disable tornado’s default etag support.

	
RequestHandler.create_template_loader(template_path)[source]

	Returns a new template loader for the given path.

May be overridden by subclasses. By default returns a
directory-based loader on the given path, using the
autoescape and template_whitespace application
settings. If a template_loader application setting is
supplied, uses that instead.

	
RequestHandler.current_user

	The authenticated user for this request.

This is set in one of two ways:

	A subclass may override get_current_user(), which will be called
automatically the first time self.current_user is accessed.
get_current_user() will only be called once per request,
and is cached for future access:

def get_current_user(self):
 user_cookie = self.get_secure_cookie("user")
 if user_cookie:
 return json.loads(user_cookie)
 return None

	It may be set as a normal variable, typically from an overridden
prepare():

@gen.coroutine
def prepare(self):
 user_id_cookie = self.get_secure_cookie("user_id")
 if user_id_cookie:
 self.current_user = yield load_user(user_id_cookie)

Note that prepare() may be a coroutine while get_current_user()
may not, so the latter form is necessary if loading the user requires
asynchronous operations.

The user object may be any type of the application’s choosing.

	
RequestHandler.get_browser_locale(default='en_US')[source]

	Determines the user’s locale from Accept-Language header.

See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4

	
RequestHandler.get_current_user()[source]

	Override to determine the current user from, e.g., a cookie.

This method may not be a coroutine.

	
RequestHandler.get_login_url()[source]

	Override to customize the login URL based on the request.

By default, we use the login_url application setting.

	
RequestHandler.get_status()[source]

	Returns the status code for our response.

	
RequestHandler.get_template_path()[source]

	Override to customize template path for each handler.

By default, we use the template_path application setting.
Return None to load templates relative to the calling file.

	
RequestHandler.get_user_locale()[source]

	Override to determine the locale from the authenticated user.

If None is returned, we fall back to get_browser_locale().

This method should return a tornado.locale.Locale object,
most likely obtained via a call like tornado.locale.get("en")

	
RequestHandler.locale

	The locale for the current session.

Determined by either get_user_locale, which you can override to
set the locale based on, e.g., a user preference stored in a
database, or get_browser_locale, which uses the Accept-Language
header.

	
RequestHandler.log_exception(typ, value, tb)[source]

	Override to customize logging of uncaught exceptions.

By default logs instances of HTTPError as warnings without
stack traces (on the tornado.general logger), and all
other exceptions as errors with stack traces (on the
tornado.application logger).

New in version 3.1.

	
RequestHandler.on_connection_close()[source]

	Called in async handlers if the client closed the connection.

Override this to clean up resources associated with
long-lived connections. Note that this method is called only if
the connection was closed during asynchronous processing; if you
need to do cleanup after every request override on_finish
instead.

Proxies may keep a connection open for a time (perhaps
indefinitely) after the client has gone away, so this method
may not be called promptly after the end user closes their
connection.

	
RequestHandler.require_setting(name, feature='this feature')[source]

	Raises an exception if the given app setting is not defined.

	
RequestHandler.reverse_url(name, *args)[source]

	Alias for Application.reverse_url.

	
RequestHandler.set_etag_header()[source]

	Sets the response’s Etag header using self.compute_etag().

Note: no header will be set if compute_etag() returns None.

This method is called automatically when the request is finished.

	
RequestHandler.settings

	An alias for self.application.settings.

	
RequestHandler.static_url(path, include_host=None, **kwargs)[source]

	Returns a static URL for the given relative static file path.

This method requires you set the static_path setting in your
application (which specifies the root directory of your static
files).

This method returns a versioned url (by default appending
?v=<signature>), which allows the static files to be
cached indefinitely. This can be disabled by passing
include_version=False (in the default implementation;
other static file implementations are not required to support
this, but they may support other options).

By default this method returns URLs relative to the current
host, but if include_host is true the URL returned will be
absolute. If this handler has an include_host attribute,
that value will be used as the default for all static_url
calls that do not pass include_host as a keyword argument.

	
RequestHandler.xsrf_form_html()[source]

	An HTML <input/> element to be included with all POST forms.

It defines the _xsrf input value, which we check on all POST
requests to prevent cross-site request forgery. If you have set
the xsrf_cookies application setting, you must include this
HTML within all of your HTML forms.

In a template, this method should be called with {% module
xsrf_form_html() %}

See check_xsrf_cookie() above for more information.

	
RequestHandler.xsrf_token

	The XSRF-prevention token for the current user/session.

To prevent cross-site request forgery, we set an ‘_xsrf’ cookie
and include the same ‘_xsrf’ value as an argument with all POST
requests. If the two do not match, we reject the form submission
as a potential forgery.

See http://en.wikipedia.org/wiki/Cross-site_request_forgery

Changed in version 3.2.2: The xsrf token will now be have a random mask applied in every
request, which makes it safe to include the token in pages
that are compressed. See http://breachattack.com for more
information on the issue fixed by this change. Old (version 1)
cookies will be converted to version 2 when this method is called
unless the xsrf_cookie_version Application setting is
set to 1.

Changed in version 4.3: The xsrf_cookie_kwargs Application setting may be
used to supply additional cookie options (which will be
passed directly to set_cookie). For example,
xsrf_cookie_kwargs=dict(httponly=True, secure=True)
will set the secure and httponly flags on the
_xsrf cookie.

Application configuration

	
class tornado.web.Application(handlers=None, default_host='', transforms=None, **settings)[source]

	A collection of request handlers that make up a web application.

Instances of this class are callable and can be passed directly to
HTTPServer to serve the application:

application = web.Application([
 (r"/", MainPageHandler),
])
http_server = httpserver.HTTPServer(application)
http_server.listen(8080)
ioloop.IOLoop.current().start()

The constructor for this class takes in a list of URLSpec objects
or (regexp, request_class) tuples. When we receive requests, we
iterate over the list in order and instantiate an instance of the
first request class whose regexp matches the request path.
The request class can be specified as either a class object or a
(fully-qualified) name.

Each tuple can contain additional elements, which correspond to the
arguments to the URLSpec constructor. (Prior to Tornado 3.2,
only tuples of two or three elements were allowed).

A dictionary may be passed as the third element of the tuple,
which will be used as keyword arguments to the handler’s
constructor and initialize method. This pattern
is used for the StaticFileHandler in this example (note that a
StaticFileHandler can be installed automatically with the
static_path setting described below):

application = web.Application([
 (r"/static/(.*)", web.StaticFileHandler, {"path": "/var/www"}),
])

We support virtual hosts with the add_handlers method, which takes in
a host regular expression as the first argument:

application.add_handlers(r"www\.myhost\.com", [
 (r"/article/([0-9]+)", ArticleHandler),
])

You can serve static files by sending the static_path setting
as a keyword argument. We will serve those files from the
/static/ URI (this is configurable with the
static_url_prefix setting), and we will serve /favicon.ico
and /robots.txt from the same directory. A custom subclass of
StaticFileHandler can be specified with the
static_handler_class setting.

	
settings

	Additional keyword arguments passed to the constructor are
saved in the settings dictionary, and are often referred to
in documentation as “application settings”. Settings are
used to customize various aspects of Tornado (although in
some cases richer customization is possible by overriding
methods in a subclass of RequestHandler). Some
applications also like to use the settings dictionary as a
way to make application-specific settings available to
handlers without using global variables. Settings used in
Tornado are described below.

General settings:

	autoreload: If True, the server process will restart
when any source files change, as described in Debug mode and automatic reloading.
This option is new in Tornado 3.2; previously this functionality
was controlled by the debug setting.

	debug: Shorthand for several debug mode settings,
described in Debug mode and automatic reloading. Setting debug=True is
equivalent to autoreload=True, compiled_template_cache=False,
static_hash_cache=False, serve_traceback=True.

	default_handler_class and default_handler_args:
This handler will be used if no other match is found;
use this to implement custom 404 pages (new in Tornado 3.2).

	compress_response: If True, responses in textual formats
will be compressed automatically. New in Tornado 4.0.

	gzip: Deprecated alias for compress_response since
Tornado 4.0.

	log_function: This function will be called at the end
of every request to log the result (with one argument, the
RequestHandler object). The default implementation
writes to the logging [https://docs.python.org/3.5/library/logging.html#module-logging] module’s root logger. May also be
customized by overriding Application.log_request.

	serve_traceback: If true, the default error page
will include the traceback of the error. This option is new in
Tornado 3.2; previously this functionality was controlled by
the debug setting.

	ui_modules and ui_methods: May be set to a mapping
of UIModule or UI methods to be made available to templates.
May be set to a module, dictionary, or a list of modules
and/or dicts. See UI modules for more details.

Authentication and security settings:

	cookie_secret: Used by RequestHandler.get_secure_cookie
and set_secure_cookie to sign cookies.

	key_version: Used by requestHandler set_secure_cookie
to sign cookies with a specific key when cookie_secret
is a key dictionary.

	login_url: The authenticated decorator will redirect
to this url if the user is not logged in. Can be further
customized by overriding RequestHandler.get_login_url

	xsrf_cookies: If true, Cross-site request forgery protection will be enabled.

	xsrf_cookie_version: Controls the version of new XSRF
cookies produced by this server. Should generally be left
at the default (which will always be the highest supported
version), but may be set to a lower value temporarily
during version transitions. New in Tornado 3.2.2, which
introduced XSRF cookie version 2.

	xsrf_cookie_kwargs: May be set to a dictionary of
additional arguments to be passed to RequestHandler.set_cookie
for the XSRF cookie.

	twitter_consumer_key, twitter_consumer_secret,
friendfeed_consumer_key, friendfeed_consumer_secret,
google_consumer_key, google_consumer_secret,
facebook_api_key, facebook_secret: Used in the
tornado.auth module to authenticate to various APIs.

Template settings:

	autoescape: Controls automatic escaping for templates.
May be set to None to disable escaping, or to the name
of a function that all output should be passed through.
Defaults to "xhtml_escape". Can be changed on a per-template
basis with the {% autoescape %} directive.

	compiled_template_cache: Default is True; if False
templates will be recompiled on every request. This option
is new in Tornado 3.2; previously this functionality was controlled
by the debug setting.

	template_path: Directory containing template files. Can be
further customized by overriding RequestHandler.get_template_path

	template_loader: Assign to an instance of
tornado.template.BaseLoader to customize template loading.
If this setting is used the template_path and autoescape
settings are ignored. Can be further customized by overriding
RequestHandler.create_template_loader.

	template_whitespace: Controls handling of whitespace in
templates; see tornado.template.filter_whitespace for allowed
values. New in Tornado 4.3.

Static file settings:

	static_hash_cache: Default is True; if False
static urls will be recomputed on every request. This option
is new in Tornado 3.2; previously this functionality was controlled
by the debug setting.

	static_path: Directory from which static files will be
served.

	static_url_prefix: Url prefix for static files,
defaults to "/static/".

	static_handler_class, static_handler_args: May be set to
use a different handler for static files instead of the default
tornado.web.StaticFileHandler. static_handler_args, if set,
should be a dictionary of keyword arguments to be passed to the
handler’s initialize method.

	
listen(port, address='', **kwargs)[source]

	Starts an HTTP server for this application on the given port.

This is a convenience alias for creating an HTTPServer
object and calling its listen method. Keyword arguments not
supported by HTTPServer.listen are passed to the
HTTPServer constructor. For advanced uses
(e.g. multi-process mode), do not use this method; create an
HTTPServer and call its
TCPServer.bind/TCPServer.start methods directly.

Note that after calling this method you still need to call
IOLoop.current().start() to start the server.

Returns the HTTPServer object.

Changed in version 4.3: Now returns the HTTPServer object.

	
add_handlers(host_pattern, host_handlers)[source]

	Appends the given handlers to our handler list.

Host patterns are processed sequentially in the order they were
added. All matching patterns will be considered.

	
reverse_url(name, *args)[source]

	Returns a URL path for handler named name

The handler must be added to the application as a named URLSpec.

Args will be substituted for capturing groups in the URLSpec regex.
They will be converted to strings if necessary, encoded as utf8,
and url-escaped.

	
log_request(handler)[source]

	Writes a completed HTTP request to the logs.

By default writes to the python root logger. To change
this behavior either subclass Application and override this method,
or pass a function in the application settings dictionary as
log_function.

	
class tornado.web.URLSpec(pattern, handler, kwargs=None, name=None)[source]

	Specifies mappings between URLs and handlers.

Parameters:

	pattern: Regular expression to be matched. Any capturing
groups in the regex will be passed in to the handler’s
get/post/etc methods as arguments (by keyword if named, by
position if unnamed. Named and unnamed capturing groups may
may not be mixed in the same rule).

	handler: RequestHandler subclass to be invoked.

	kwargs (optional): A dictionary of additional arguments
to be passed to the handler’s constructor.

	name (optional): A name for this handler. Used by
Application.reverse_url.

The URLSpec class is also available under the name tornado.web.url.

Decorators

	
tornado.web.asynchronous(method)[source]

	Wrap request handler methods with this if they are asynchronous.

This decorator is for callback-style asynchronous methods; for
coroutines, use the @gen.coroutine decorator without
@asynchronous. (It is legal for legacy reasons to use the two
decorators together provided @asynchronous is first, but
@asynchronous will be ignored in this case)

This decorator should only be applied to the HTTP verb
methods; its behavior is undefined for any other method.
This decorator does not make a method asynchronous; it tells
the framework that the method is asynchronous. For this decorator
to be useful the method must (at least sometimes) do something
asynchronous.

If this decorator is given, the response is not finished when the
method returns. It is up to the request handler to call
self.finish() to finish the HTTP
request. Without this decorator, the request is automatically
finished when the get() or post() method returns. Example:

class MyRequestHandler(RequestHandler):
 @asynchronous
 def get(self):
 http = httpclient.AsyncHTTPClient()
 http.fetch("http://friendfeed.com/", self._on_download)

 def _on_download(self, response):
 self.write("Downloaded!")
 self.finish()

Changed in version 3.1: The ability to use @gen.coroutine without @asynchronous.

Changed in version 4.3: Returning anything but None or a
yieldable object from a method decorated with @asynchronous
is an error. Such return values were previously ignored silently.

	
tornado.web.authenticated(method)[source]

	Decorate methods with this to require that the user be logged in.

If the user is not logged in, they will be redirected to the configured
login url.

If you configure a login url with a query parameter, Tornado will
assume you know what you’re doing and use it as-is. If not, it
will add a next [https://docs.python.org/3.5/library/functions.html#next] parameter so the login page knows where to send
you once you’re logged in.

	
tornado.web.addslash(method)[source]

	Use this decorator to add a missing trailing slash to the request path.

For example, a request to /foo would redirect to /foo/ with this
decorator. Your request handler mapping should use a regular expression
like r'/foo/?' in conjunction with using the decorator.

	
tornado.web.removeslash(method)[source]

	Use this decorator to remove trailing slashes from the request path.

For example, a request to /foo/ would redirect to /foo with this
decorator. Your request handler mapping should use a regular expression
like r'/foo/*' in conjunction with using the decorator.

	
tornado.web.stream_request_body(cls)[source]

	Apply to RequestHandler subclasses to enable streaming body support.

This decorator implies the following changes:

	HTTPServerRequest.body is undefined, and body arguments will not
be included in RequestHandler.get_argument.

	RequestHandler.prepare is called when the request headers have been
read instead of after the entire body has been read.

	The subclass must define a method data_received(self, data):, which
will be called zero or more times as data is available. Note that
if the request has an empty body, data_received may not be called.

	prepare and data_received may return Futures (such as via
@gen.coroutine, in which case the next method will not be called
until those futures have completed.

	The regular HTTP method (post, put, etc) will be called after
the entire body has been read.

There is a subtle interaction between data_received and asynchronous
prepare: The first call to data_received may occur at any point
after the call to prepare has returned or yielded.

Everything else

	
exception tornado.web.HTTPError(status_code=500, log_message=None, *args, **kwargs)[source]

	An exception that will turn into an HTTP error response.

Raising an HTTPError is a convenient alternative to calling
RequestHandler.send_error since it automatically ends the
current function.

To customize the response sent with an HTTPError, override
RequestHandler.write_error.

	Parameters:	
	status_code (int [https://docs.python.org/3.5/library/functions.html#int]) – HTTP status code. Must be listed in
httplib.responses [https://docs.python.org/3.5/library/http.client.html#http.client.responses] unless the reason
keyword argument is given.

	log_message (string [https://docs.python.org/3.5/library/string.html#module-string]) – Message to be written to the log for this error
(will not be shown to the user unless the Application is in debug
mode). May contain %s-style placeholders, which will be filled
in with remaining positional parameters.

	reason (string [https://docs.python.org/3.5/library/string.html#module-string]) – Keyword-only argument. The HTTP “reason” phrase
to pass in the status line along with status_code. Normally
determined automatically from status_code, but can be used
to use a non-standard numeric code.

	
exception tornado.web.Finish[source]

	An exception that ends the request without producing an error response.

When Finish is raised in a RequestHandler, the request will
end (calling RequestHandler.finish if it hasn’t already been
called), but the error-handling methods (including
RequestHandler.write_error) will not be called.

If Finish() was created with no arguments, the pending response
will be sent as-is. If Finish() was given an argument, that
argument will be passed to RequestHandler.finish().

This can be a more convenient way to implement custom error pages
than overriding write_error (especially in library code):

if self.current_user is None:
 self.set_status(401)
 self.set_header('WWW-Authenticate', 'Basic realm="something"')
 raise Finish()

Changed in version 4.3: Arguments passed to Finish() will be passed on to
RequestHandler.finish.

	
exception tornado.web.MissingArgumentError(arg_name)[source]

	Exception raised by RequestHandler.get_argument.

This is a subclass of HTTPError, so if it is uncaught a 400 response
code will be used instead of 500 (and a stack trace will not be logged).

New in version 3.1.

	
class tornado.web.UIModule(handler)[source]

	A re-usable, modular UI unit on a page.

UI modules often execute additional queries, and they can include
additional CSS and JavaScript that will be included in the output
page, which is automatically inserted on page render.

Subclasses of UIModule must override the render method.

	
render(*args, **kwargs)[source]

	Override in subclasses to return this module’s output.

	
embedded_javascript()[source]

	Override to return a JavaScript string
to be embedded in the page.

	
javascript_files()[source]

	Override to return a list of JavaScript files needed by this module.

If the return values are relative paths, they will be passed to
RequestHandler.static_url; otherwise they will be used as-is.

	
embedded_css()[source]

	Override to return a CSS string
that will be embedded in the page.

	
css_files()[source]

	Override to returns a list of CSS files required by this module.

If the return values are relative paths, they will be passed to
RequestHandler.static_url; otherwise they will be used as-is.

	
html_head()[source]

	Override to return an HTML string that will be put in the <head/>
element.

	
html_body()[source]

	Override to return an HTML string that will be put at the end of
the <body/> element.

	
render_string(path, **kwargs)[source]

	Renders a template and returns it as a string.

	
class tornado.web.ErrorHandler(application, request, **kwargs)[source]

	Generates an error response with status_code for all requests.

	
class tornado.web.FallbackHandler(application, request, **kwargs)[source]

	A RequestHandler that wraps another HTTP server callback.

The fallback is a callable object that accepts an
HTTPServerRequest, such as an Application or
tornado.wsgi.WSGIContainer. This is most useful to use both
Tornado RequestHandlers and WSGI in the same server. Typical
usage:

wsgi_app = tornado.wsgi.WSGIContainer(
 django.core.handlers.wsgi.WSGIHandler())
application = tornado.web.Application([
 (r"/foo", FooHandler),
 (r".*", FallbackHandler, dict(fallback=wsgi_app),
])

	
class tornado.web.RedirectHandler(application, request, **kwargs)[source]

	Redirects the client to the given URL for all GET requests.

You should provide the keyword argument url to the handler, e.g.:

application = web.Application([
 (r"/oldpath", web.RedirectHandler, {"url": "/newpath"}),
])

	
class tornado.web.StaticFileHandler(application, request, **kwargs)[source]

	A simple handler that can serve static content from a directory.

A StaticFileHandler is configured automatically if you pass the
static_path keyword argument to Application. This handler
can be customized with the static_url_prefix, static_handler_class,
and static_handler_args settings.

To map an additional path to this handler for a static data directory
you would add a line to your application like:

application = web.Application([
 (r"/content/(.*)", web.StaticFileHandler, {"path": "/var/www"}),
])

The handler constructor requires a path argument, which specifies the
local root directory of the content to be served.

Note that a capture group in the regex is required to parse the value for
the path argument to the get() method (different than the constructor
argument above); see URLSpec for details.

To serve a file like index.html automatically when a directory is
requested, set static_handler_args=dict(default_filename="index.html")
in your application settings, or add default_filename as an initializer
argument for your StaticFileHandler.

To maximize the effectiveness of browser caching, this class supports
versioned urls (by default using the argument ?v=). If a version
is given, we instruct the browser to cache this file indefinitely.
make_static_url (also available as RequestHandler.static_url) can
be used to construct a versioned url.

This handler is intended primarily for use in development and light-duty
file serving; for heavy traffic it will be more efficient to use
a dedicated static file server (such as nginx or Apache). We support
the HTTP Accept-Ranges mechanism to return partial content (because
some browsers require this functionality to be present to seek in
HTML5 audio or video).

Subclassing notes

This class is designed to be extensible by subclassing, but because
of the way static urls are generated with class methods rather than
instance methods, the inheritance patterns are somewhat unusual.
Be sure to use the @classmethod decorator when overriding a
class method. Instance methods may use the attributes self.path
self.absolute_path, and self.modified.

Subclasses should only override methods discussed in this section;
overriding other methods is error-prone. Overriding
StaticFileHandler.get is particularly problematic due to the
tight coupling with compute_etag and other methods.

To change the way static urls are generated (e.g. to match the behavior
of another server or CDN), override make_static_url, parse_url_path,
get_cache_time, and/or get_version.

To replace all interaction with the filesystem (e.g. to serve
static content from a database), override get_content,
get_content_size, get_modified_time, get_absolute_path, and
validate_absolute_path.

Changed in version 3.1: Many of the methods for subclasses were added in Tornado 3.1.

	
compute_etag()[source]

	Sets the Etag header based on static url version.

This allows efficient If-None-Match checks against cached
versions, and sends the correct Etag for a partial response
(i.e. the same Etag as the full file).

New in version 3.1.

	
set_headers()[source]

	Sets the content and caching headers on the response.

New in version 3.1.

	
should_return_304()[source]

	Returns True if the headers indicate that we should return 304.

New in version 3.1.

	
classmethod get_absolute_path(root, path)[source]

	Returns the absolute location of path relative to root.

root is the path configured for this StaticFileHandler
(in most cases the static_path Application setting).

This class method may be overridden in subclasses. By default
it returns a filesystem path, but other strings may be used
as long as they are unique and understood by the subclass’s
overridden get_content.

New in version 3.1.

	
validate_absolute_path(root, absolute_path)[source]

	Validate and return the absolute path.

root is the configured path for the StaticFileHandler,
and path is the result of get_absolute_path

This is an instance method called during request processing,
so it may raise HTTPError or use methods like
RequestHandler.redirect (return None after redirecting to
halt further processing). This is where 404 errors for missing files
are generated.

This method may modify the path before returning it, but note that
any such modifications will not be understood by make_static_url.

In instance methods, this method’s result is available as
self.absolute_path.

New in version 3.1.

	
classmethod get_content(abspath, start=None, end=None)[source]

	Retrieve the content of the requested resource which is located
at the given absolute path.

This class method may be overridden by subclasses. Note that its
signature is different from other overridable class methods
(no settings argument); this is deliberate to ensure that
abspath is able to stand on its own as a cache key.

This method should either return a byte string or an iterator
of byte strings. The latter is preferred for large files
as it helps reduce memory fragmentation.

New in version 3.1.

	
classmethod get_content_version(abspath)[source]

	Returns a version string for the resource at the given path.

This class method may be overridden by subclasses. The
default implementation is a hash of the file’s contents.

New in version 3.1.

	
get_content_size()[source]

	Retrieve the total size of the resource at the given path.

This method may be overridden by subclasses.

New in version 3.1.

Changed in version 4.0: This method is now always called, instead of only when
partial results are requested.

	
get_modified_time()[source]

	Returns the time that self.absolute_path was last modified.

May be overridden in subclasses. Should return a datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]
object or None.

New in version 3.1.

	
get_content_type()[source]

	Returns the Content-Type header to be used for this request.

New in version 3.1.

	
set_extra_headers(path)[source]

	For subclass to add extra headers to the response

	
get_cache_time(path, modified, mime_type)[source]

	Override to customize cache control behavior.

Return a positive number of seconds to make the result
cacheable for that amount of time or 0 to mark resource as
cacheable for an unspecified amount of time (subject to
browser heuristics).

By default returns cache expiry of 10 years for resources requested
with v argument.

	
classmethod make_static_url(settings, path, include_version=True)[source]

	Constructs a versioned url for the given path.

This method may be overridden in subclasses (but note that it
is a class method rather than an instance method). Subclasses
are only required to implement the signature
make_static_url(cls, settings, path); other keyword
arguments may be passed through static_url
but are not standard.

settings is the Application.settings dictionary. path
is the static path being requested. The url returned should be
relative to the current host.

include_version determines whether the generated URL should
include the query string containing the version hash of the
file corresponding to the given path.

	
parse_url_path(url_path)[source]

	Converts a static URL path into a filesystem path.

url_path is the path component of the URL with
static_url_prefix removed. The return value should be
filesystem path relative to static_path.

This is the inverse of make_static_url.

	
classmethod get_version(settings, path)[source]

	Generate the version string to be used in static URLs.

settings is the Application.settings dictionary and path
is the relative location of the requested asset on the filesystem.
The returned value should be a string, or None if no version
could be determined.

Changed in version 3.1: This method was previously recommended for subclasses to override;
get_content_version is now preferred as it allows the base
class to handle caching of the result.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Web framework

tornado.template — Flexible output generation

A simple template system that compiles templates to Python code.

Basic usage looks like:

t = template.Template("<html>{{ myvalue }}</html>")
print(t.generate(myvalue="XXX"))

Loader is a class that loads templates from a root directory and caches
the compiled templates:

loader = template.Loader("/home/btaylor")
print(loader.load("test.html").generate(myvalue="XXX"))

We compile all templates to raw Python. Error-reporting is currently... uh,
interesting. Syntax for the templates:

base.html
<html>
 <head>
 <title>{% block title %}Default title{% end %}</title>
 </head>
 <body>

 {% for student in students %}
 {% block student %}
 {{ escape(student.name) }}
 {% end %}
 {% end %}

 </body>
</html>

bold.html
{% extends "base.html" %}

{% block title %}A bolder title{% end %}

{% block student %}
 {{ escape(student.name) }}
{% end %}

Unlike most other template systems, we do not put any restrictions on the
expressions you can include in your statements. if and for blocks get
translated exactly into Python, so you can do complex expressions like:

{% for student in [p for p in people if p.student and p.age > 23] %}
 {{ escape(student.name) }}
{% end %}

Translating directly to Python means you can apply functions to expressions
easily, like the escape() function in the examples above. You can pass
functions in to your template just like any other variable
(In a RequestHandler, override RequestHandler.get_template_namespace):

Python code
def add(x, y):
 return x + y
template.execute(add=add)

The template
{{ add(1, 2) }}

We provide the functions escape(), url_escape(),
json_encode(), and squeeze() to all templates by default.

Typical applications do not create Template or Loader instances by
hand, but instead use the render and
render_string methods of
tornado.web.RequestHandler, which load templates automatically based
on the template_path Application setting.

Variable names beginning with _tt_ are reserved by the template
system and should not be used by application code.

Syntax Reference

Template expressions are surrounded by double curly braces: {{ ... }}.
The contents may be any python expression, which will be escaped according
to the current autoescape setting and inserted into the output. Other
template directives use {% %}.

To comment out a section so that it is omitted from the output, surround it
with {# ... #}.

These tags may be escaped as {{!, {%!, and {#!
if you need to include a literal {{, {%, or {# in the output.

	{% apply *function* %}...{% end %}

	Applies a function to the output of all template code between apply
and end:

{% apply linkify %}{{name}} said: {{message}}{% end %}

Note that as an implementation detail apply blocks are implemented
as nested functions and thus may interact strangely with variables
set via {% set %}, or the use of {% break %} or {% continue %}
within loops.

	{% autoescape *function* %}

	Sets the autoescape mode for the current file. This does not affect
other files, even those referenced by {% include %}. Note that
autoescaping can also be configured globally, at the Application
or Loader.:

{% autoescape xhtml_escape %}
{% autoescape None %}

	{% block *name* %}...{% end %}

	Indicates a named, replaceable block for use with {% extends %}.
Blocks in the parent template will be replaced with the contents of
the same-named block in a child template.:

<!-- base.html -->
<title>{% block title %}Default title{% end %}</title>

<!-- mypage.html -->
{% extends "base.html" %}
{% block title %}My page title{% end %}

	{% comment ... %}

	A comment which will be removed from the template output. Note that
there is no {% end %} tag; the comment goes from the word comment
to the closing %} tag.

	{% extends *filename* %}

	Inherit from another template. Templates that use extends should
contain one or more block tags to replace content from the parent
template. Anything in the child template not contained in a block
tag will be ignored. For an example, see the {% block %} tag.

	{% for *var* in *expr* %}...{% end %}

	Same as the python for statement. {% break %} and
{% continue %} may be used inside the loop.

	{% from *x* import *y* %}

	Same as the python import statement.

	{% if *condition* %}...{% elif *condition* %}...{% else %}...{% end %}

	Conditional statement - outputs the first section whose condition is
true. (The elif and else sections are optional)

	{% import *module* %}

	Same as the python import statement.

	{% include *filename* %}

	Includes another template file. The included file can see all the local
variables as if it were copied directly to the point of the include
directive (the {% autoescape %} directive is an exception).
Alternately, {% module Template(filename, **kwargs) %} may be used
to include another template with an isolated namespace.

	{% module *expr* %}

	Renders a UIModule. The output of the UIModule is
not escaped:

{% module Template("foo.html", arg=42) %}

UIModules are a feature of the tornado.web.RequestHandler
class (and specifically its render method) and will not work
when the template system is used on its own in other contexts.

	{% raw *expr* %}

	Outputs the result of the given expression without autoescaping.

	{% set *x* = *y* %}

	Sets a local variable.

	{% try %}...{% except %}...{% else %}...{% finally %}...{% end %}

	Same as the python try statement.

	{% while *condition* %}... {% end %}

	Same as the python while statement. {% break %} and
{% continue %} may be used inside the loop.

	{% whitespace *mode* %}

	Sets the whitespace mode for the remainder of the current file
(or until the next {% whitespace %} directive). See
filter_whitespace for available options. New in Tornado 4.3.

Class reference

	
class tornado.template.Template(template_string, name="<string>", loader=None, compress_whitespace=None, autoescape="xhtml_escape", whitespace=None)[source]

	A compiled template.

We compile into Python from the given template_string. You can generate
the template from variables with generate().

Construct a Template.

	Parameters:	
	template_string (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – the contents of the template file.

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – the filename from which the template was loaded
(used for error message).

	loader (tornado.template.BaseLoader) – the BaseLoader responsible for this template,
used to resolve {% include %} and {% extend %}
directives.

	compress_whitespace (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Deprecated since Tornado 4.3.
Equivalent to whitespace="single" if true and
whitespace="all" if false.

	autoescape (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of a function in the template
namespace, or None to disable escaping by default.

	whitespace (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – A string specifying treatment of whitespace;
see filter_whitespace for options.

Changed in version 4.3: Added whitespace parameter; deprecated compress_whitespace.

	
generate(**kwargs)[source]

	Generate this template with the given arguments.

	
class tornado.template.BaseLoader(autoescape='xhtml_escape', namespace=None, whitespace=None)[source]

	Base class for template loaders.

You must use a template loader to use template constructs like
{% extends %} and {% include %}. The loader caches all
templates after they are loaded the first time.

Construct a template loader.

	Parameters:	
	autoescape (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of a function in the template
namespace, such as “xhtml_escape”, or None to disable
autoescaping by default.

	namespace (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – A dictionary to be added to the default template
namespace, or None.

	whitespace (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – A string specifying default behavior for
whitespace in templates; see filter_whitespace for options.
Default is “single” for files ending in ”.html” and ”.js” and
“all” for other files.

Changed in version 4.3: Added whitespace parameter.

	
load(name, parent_path=None)[source]

	Loads a template.

	
reset()[source]

	Resets the cache of compiled templates.

	
resolve_path(name, parent_path=None)[source]

	Converts a possibly-relative path to absolute (used internally).

	
class tornado.template.Loader(root_directory, **kwargs)[source]

	A template loader that loads from a single root directory.

	
class tornado.template.DictLoader(dict, **kwargs)[source]

	A template loader that loads from a dictionary.

	
exception tornado.template.ParseError(message, filename=None, lineno=0)[source]

	Raised for template syntax errors.

ParseError instances have filename and lineno attributes
indicating the position of the error.

Changed in version 4.3: Added filename and lineno attributes.

	
tornado.template.filter_whitespace(mode, text)[source]

	Transform whitespace in text according to mode.

Available modes are:

	all: Return all whitespace unmodified.

	single: Collapse consecutive whitespace with a single whitespace
character, preserving newlines.

	oneline: Collapse all runs of whitespace into a single space
character, removing all newlines in the process.

New in version 4.3.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Web framework

tornado.escape — Escaping and string manipulation

Escaping/unescaping methods for HTML, JSON, URLs, and others.

Also includes a few other miscellaneous string manipulation functions that
have crept in over time.

Escaping functions

	
tornado.escape.xhtml_escape(value)[source]

	Escapes a string so it is valid within HTML or XML.

Escapes the characters <, >, ", ', and &.
When used in attribute values the escaped strings must be enclosed
in quotes.

Changed in version 3.2: Added the single quote to the list of escaped characters.

	
tornado.escape.xhtml_unescape(value)[source]

	Un-escapes an XML-escaped string.

	
tornado.escape.url_escape(value, plus=True)[source]

	Returns a URL-encoded version of the given value.

If plus is true (the default), spaces will be represented
as “+” instead of “%20”. This is appropriate for query strings
but not for the path component of a URL. Note that this default
is the reverse of Python’s urllib module.

New in version 3.1: The plus argument

	
tornado.escape.url_unescape(value, encoding='utf-8', plus=True)[source]

	Decodes the given value from a URL.

The argument may be either a byte or unicode string.

If encoding is None, the result will be a byte string. Otherwise,
the result is a unicode string in the specified encoding.

If plus is true (the default), plus signs will be interpreted
as spaces (literal plus signs must be represented as “%2B”). This
is appropriate for query strings and form-encoded values but not
for the path component of a URL. Note that this default is the
reverse of Python’s urllib module.

New in version 3.1: The plus argument

	
tornado.escape.json_encode(value)[source]

	JSON-encodes the given Python object.

	
tornado.escape.json_decode(value)[source]

	Returns Python objects for the given JSON string.

Byte/unicode conversions

These functions are used extensively within Tornado itself,
but should not be directly needed by most applications. Note that
much of the complexity of these functions comes from the fact that
Tornado supports both Python 2 and Python 3.

	
tornado.escape.utf8(value)[source]

	Converts a string argument to a byte string.

If the argument is already a byte string or None, it is returned unchanged.
Otherwise it must be a unicode string and is encoded as utf8.

	
tornado.escape.to_unicode(value)[source]

	Converts a string argument to a unicode string.

If the argument is already a unicode string or None, it is returned
unchanged. Otherwise it must be a byte string and is decoded as utf8.

	
tornado.escape.native_str()

	Converts a byte or unicode string into type str [https://docs.python.org/3.5/library/stdtypes.html#str]. Equivalent to
utf8 on Python 2 and to_unicode on Python 3.

	
tornado.escape.to_basestring(value)[source]

	Converts a string argument to a subclass of basestring.

In python2, byte and unicode strings are mostly interchangeable,
so functions that deal with a user-supplied argument in combination
with ascii string constants can use either and should return the type
the user supplied. In python3, the two types are not interchangeable,
so this method is needed to convert byte strings to unicode.

	
tornado.escape.recursive_unicode(obj)[source]

	Walks a simple data structure, converting byte strings to unicode.

Supports lists, tuples, and dictionaries.

Miscellaneous functions

	
tornado.escape.linkify(text, shorten=False, extra_params='', require_protocol=False, permitted_protocols=['http', 'https'])[source]

	Converts plain text into HTML with links.

For example: linkify("Hello http://tornadoweb.org!") would return
Hello http://tornadoweb.org!

Parameters:

	shorten: Long urls will be shortened for display.

	
	extra_params: Extra text to include in the link tag, or a callable

	taking the link as an argument and returning the extra text
e.g. linkify(text, extra_params='rel="nofollow" class="external"'),
or:

def extra_params_cb(url):
 if url.startswith("http://example.com"):
 return 'class="internal"'
 else:
 return 'class="external" rel="nofollow"'
linkify(text, extra_params=extra_params_cb)

	
	require_protocol: Only linkify urls which include a protocol. If

	this is False, urls such as www.facebook.com will also be linkified.

	
	permitted_protocols: List (or set) of protocols which should be

	linkified, e.g. linkify(text, permitted_protocols=["http", "ftp",
"mailto"]). It is very unsafe to include protocols such as
javascript.

	
tornado.escape.squeeze(value)[source]

	Replace all sequences of whitespace chars with a single space.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Web framework

tornado.locale — Internationalization support

Translation methods for generating localized strings.

To load a locale and generate a translated string:

user_locale = tornado.locale.get("es_LA")
print(user_locale.translate("Sign out"))

tornado.locale.get() returns the closest matching locale, not necessarily the
specific locale you requested. You can support pluralization with
additional arguments to translate(), e.g.:

people = [...]
message = user_locale.translate(
 "%(list)s is online", "%(list)s are online", len(people))
print(message % {"list": user_locale.list(people)})

The first string is chosen if len(people) == 1, otherwise the second
string is chosen.

Applications should call one of load_translations (which uses a simple
CSV format) or load_gettext_translations (which uses the .mo format
supported by gettext [https://docs.python.org/3.5/library/gettext.html#module-gettext] and related tools). If neither method is called,
the Locale.translate method will simply return the original string.

	
tornado.locale.get(*locale_codes)[source]

	Returns the closest match for the given locale codes.

We iterate over all given locale codes in order. If we have a tight
or a loose match for the code (e.g., “en” for “en_US”), we return
the locale. Otherwise we move to the next code in the list.

By default we return en_US if no translations are found for any of
the specified locales. You can change the default locale with
set_default_locale().

	
tornado.locale.set_default_locale(code)[source]

	Sets the default locale.

The default locale is assumed to be the language used for all strings
in the system. The translations loaded from disk are mappings from
the default locale to the destination locale. Consequently, you don’t
need to create a translation file for the default locale.

	
tornado.locale.load_translations(directory, encoding=None)[source]

	Loads translations from CSV files in a directory.

Translations are strings with optional Python-style named placeholders
(e.g., My name is %(name)s) and their associated translations.

The directory should have translation files of the form LOCALE.csv,
e.g. es_GT.csv. The CSV files should have two or three columns: string,
translation, and an optional plural indicator. Plural indicators should
be one of “plural” or “singular”. A given string can have both singular
and plural forms. For example %(name)s liked this may have a
different verb conjugation depending on whether %(name)s is one
name or a list of names. There should be two rows in the CSV file for
that string, one with plural indicator “singular”, and one “plural”.
For strings with no verbs that would change on translation, simply
use “unknown” or the empty string (or don’t include the column at all).

The file is read using the csv [https://docs.python.org/3.5/library/csv.html#module-csv] module in the default “excel” dialect.
In this format there should not be spaces after the commas.

If no encoding parameter is given, the encoding will be
detected automatically (among UTF-8 and UTF-16) if the file
contains a byte-order marker (BOM), defaulting to UTF-8 if no BOM
is present.

Example translation es_LA.csv:

"I love you","Te amo"
"%(name)s liked this","A %(name)s les gustó esto","plural"
"%(name)s liked this","A %(name)s le gustó esto","singular"

Changed in version 4.3: Added encoding parameter. Added support for BOM-based encoding
detection, UTF-16, and UTF-8-with-BOM.

	
tornado.locale.load_gettext_translations(directory, domain)[source]

	Loads translations from gettext [https://docs.python.org/3.5/library/gettext.html#module-gettext]‘s locale tree

Locale tree is similar to system’s /usr/share/locale, like:

{directory}/{lang}/LC_MESSAGES/{domain}.mo

Three steps are required to have you app translated:

	Generate POT translation file:

xgettext --language=Python --keyword=_:1,2 -d mydomain file1.py file2.html etc

	Merge against existing POT file:

msgmerge old.po mydomain.po > new.po

	Compile:

msgfmt mydomain.po -o {directory}/pt_BR/LC_MESSAGES/mydomain.mo

	
tornado.locale.get_supported_locales()[source]

	Returns a list of all the supported locale codes.

	
class tornado.locale.Locale(code, translations)[source]

	Object representing a locale.

After calling one of load_translations or load_gettext_translations,
call get or get_closest to get a Locale object.

	
classmethod get_closest(*locale_codes)[source]

	Returns the closest match for the given locale code.

	
classmethod get(code)[source]

	Returns the Locale for the given locale code.

If it is not supported, we raise an exception.

	
translate(message, plural_message=None, count=None)[source]

	Returns the translation for the given message for this locale.

If plural_message is given, you must also provide
count. We return plural_message when count != 1,
and we return the singular form for the given message when
count == 1.

	
format_date(date, gmt_offset=0, relative=True, shorter=False, full_format=False)[source]

	Formats the given date (which should be GMT).

By default, we return a relative time (e.g., “2 minutes ago”). You
can return an absolute date string with relative=False.

You can force a full format date (“July 10, 1980”) with
full_format=True.

This method is primarily intended for dates in the past.
For dates in the future, we fall back to full format.

	
format_day(date, gmt_offset=0, dow=True)[source]

	Formats the given date as a day of week.

Example: “Monday, January 22”. You can remove the day of week with
dow=False.

	
list(parts)[source]

	Returns a comma-separated list for the given list of parts.

The format is, e.g., “A, B and C”, “A and B” or just “A” for lists
of size 1.

	
friendly_number(value)[source]

	Returns a comma-separated number for the given integer.

	
class tornado.locale.CSVLocale(code, translations)[source]

	Locale implementation using tornado’s CSV translation format.

	
class tornado.locale.GettextLocale(code, translations)[source]

	Locale implementation using the gettext [https://docs.python.org/3.5/library/gettext.html#module-gettext] module.

	
pgettext(context, message, plural_message=None, count=None)[source]

	Allows to set context for translation, accepts plural forms.

Usage example:

pgettext("law", "right")
pgettext("good", "right")

Plural message example:

pgettext("organization", "club", "clubs", len(clubs))
pgettext("stick", "club", "clubs", len(clubs))

To generate POT file with context, add following options to step 1
of load_gettext_translations sequence:

xgettext [basic options] --keyword=pgettext:1c,2 --keyword=pgettext:1c,2,3

New in version 4.2.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Web framework

tornado.websocket — Bidirectional communication to the browser

Implementation of the WebSocket protocol.

WebSockets [http://dev.w3.org/html5/websockets/] allow for bidirectional
communication between the browser and server.

WebSockets are supported in the current versions of all major browsers,
although older versions that do not support WebSockets are still in use
(refer to http://caniuse.com/websockets for details).

This module implements the final version of the WebSocket protocol as
defined in RFC 6455 [http://tools.ietf.org/html/rfc6455]. Certain
browser versions (notably Safari 5.x) implemented an earlier draft of
the protocol (known as “draft 76”) and are not compatible with this module.

Changed in version 4.0: Removed support for the draft 76 protocol version.

	
class tornado.websocket.WebSocketHandler(application, request, **kwargs)[source]

	Subclass this class to create a basic WebSocket handler.

Override on_message to handle incoming messages, and use
write_message to send messages to the client. You can also
override open and on_close to handle opened and closed
connections.

See http://dev.w3.org/html5/websockets/ for details on the
JavaScript interface. The protocol is specified at
http://tools.ietf.org/html/rfc6455.

Here is an example WebSocket handler that echos back all received messages
back to the client:

class EchoWebSocket(tornado.websocket.WebSocketHandler):
 def open(self):
 print("WebSocket opened")

 def on_message(self, message):
 self.write_message(u"You said: " + message)

 def on_close(self):
 print("WebSocket closed")

WebSockets are not standard HTTP connections. The “handshake” is
HTTP, but after the handshake, the protocol is
message-based. Consequently, most of the Tornado HTTP facilities
are not available in handlers of this type. The only communication
methods available to you are write_message(), ping(), and
close(). Likewise, your request handler class should implement
open() method rather than get() or post().

If you map the handler above to /websocket in your application, you can
invoke it in JavaScript with:

var ws = new WebSocket("ws://localhost:8888/websocket");
ws.onopen = function() {
 ws.send("Hello, world");
};
ws.onmessage = function (evt) {
 alert(evt.data);
};

This script pops up an alert box that says “You said: Hello, world”.

Web browsers allow any site to open a websocket connection to any other,
instead of using the same-origin policy that governs other network
access from javascript. This can be surprising and is a potential
security hole, so since Tornado 4.0 WebSocketHandler requires
applications that wish to receive cross-origin websockets to opt in
by overriding the check_origin method (see that
method’s docs for details). Failure to do so is the most likely
cause of 403 errors when making a websocket connection.

When using a secure websocket connection (wss://) with a self-signed
certificate, the connection from a browser may fail because it wants
to show the “accept this certificate” dialog but has nowhere to show it.
You must first visit a regular HTML page using the same certificate
to accept it before the websocket connection will succeed.

Event handlers

	
WebSocketHandler.open(*args, **kwargs)[source]

	Invoked when a new WebSocket is opened.

The arguments to open are extracted from the tornado.web.URLSpec
regular expression, just like the arguments to
tornado.web.RequestHandler.get.

	
WebSocketHandler.on_message(message)[source]

	Handle incoming messages on the WebSocket

This method must be overridden.

	
WebSocketHandler.on_close()[source]

	Invoked when the WebSocket is closed.

If the connection was closed cleanly and a status code or reason
phrase was supplied, these values will be available as the attributes
self.close_code and self.close_reason.

Changed in version 4.0: Added close_code and close_reason attributes.

	
WebSocketHandler.select_subprotocol(subprotocols)[source]

	Invoked when a new WebSocket requests specific subprotocols.

subprotocols is a list of strings identifying the
subprotocols proposed by the client. This method may be
overridden to return one of those strings to select it, or
None to not select a subprotocol. Failure to select a
subprotocol does not automatically abort the connection,
although clients may close the connection if none of their
proposed subprotocols was selected.

Output

	
WebSocketHandler.write_message(message, binary=False)[source]

	Sends the given message to the client of this Web Socket.

The message may be either a string or a dict (which will be
encoded as json). If the binary argument is false, the
message will be sent as utf8; in binary mode any byte string
is allowed.

If the connection is already closed, raises WebSocketClosedError.

Changed in version 3.2: WebSocketClosedError was added (previously a closed connection
would raise an AttributeError [https://docs.python.org/3.5/library/exceptions.html#AttributeError])

Changed in version 4.3: Returns a Future which can be used for flow control.

	
WebSocketHandler.close(code=None, reason=None)[source]

	Closes this Web Socket.

Once the close handshake is successful the socket will be closed.

code may be a numeric status code, taken from the values
defined in RFC 6455 section 7.4.1 [https://tools.ietf.org/html/rfc6455#section-7.4.1].
reason may be a textual message about why the connection is
closing. These values are made available to the client, but are
not otherwise interpreted by the websocket protocol.

Changed in version 4.0: Added the code and reason arguments.

Configuration

	
WebSocketHandler.check_origin(origin)[source]

	Override to enable support for allowing alternate origins.

The origin argument is the value of the Origin HTTP
header, the url responsible for initiating this request. This
method is not called for clients that do not send this header;
such requests are always allowed (because all browsers that
implement WebSockets support this header, and non-browser
clients do not have the same cross-site security concerns).

Should return True to accept the request or False to reject it.
By default, rejects all requests with an origin on a host other
than this one.

This is a security protection against cross site scripting attacks on
browsers, since WebSockets are allowed to bypass the usual same-origin
policies and don’t use CORS headers.

Warning

This is an important security measure; don’t disable it
without understanding the security implications. In
particular, if your authenticatino is cookie-based, you
must either restrict the origins allowed by
check_origin() or implement your own XSRF-like
protection for websocket connections. See these [https://www.christian-schneider.net/CrossSiteWebSocketHijacking.html]
articles [https://devcenter.heroku.com/articles/websocket-security]
for more.

To accept all cross-origin traffic (which was the default prior to
Tornado 4.0), simply override this method to always return true:

def check_origin(self, origin):
 return True

To allow connections from any subdomain of your site, you might
do something like:

def check_origin(self, origin):
 parsed_origin = urllib.parse.urlparse(origin)
 return parsed_origin.netloc.endswith(".mydomain.com")

New in version 4.0.

	
WebSocketHandler.get_compression_options()[source]

	Override to return compression options for the connection.

If this method returns None (the default), compression will
be disabled. If it returns a dict (even an empty one), it
will be enabled. The contents of the dict may be used to
control the memory and CPU usage of the compression,
but no such options are currently implemented.

New in version 4.1.

	
WebSocketHandler.set_nodelay(value)[source]

	Set the no-delay flag for this stream.

By default, small messages may be delayed and/or combined to minimize
the number of packets sent. This can sometimes cause 200-500ms delays
due to the interaction between Nagle’s algorithm and TCP delayed
ACKs. To reduce this delay (at the expense of possibly increasing
bandwidth usage), call self.set_nodelay(True) once the websocket
connection is established.

See BaseIOStream.set_nodelay for additional details.

New in version 3.1.

Other

	
WebSocketHandler.ping(data)[source]

	Send ping frame to the remote end.

	
WebSocketHandler.on_pong(data)[source]

	Invoked when the response to a ping frame is received.

	
exception tornado.websocket.WebSocketClosedError[source]

	Raised by operations on a closed connection.

New in version 3.2.

Client-side support

	
tornado.websocket.websocket_connect(url, io_loop=None, callback=None, connect_timeout=None, on_message_callback=None, compression_options=None)[source]

	Client-side websocket support.

Takes a url and returns a Future whose result is a
WebSocketClientConnection.

compression_options is interpreted in the same way as the
return value of WebSocketHandler.get_compression_options.

The connection supports two styles of operation. In the coroutine
style, the application typically calls
read_message in a loop:

conn = yield websocket_connect(url)
while True:
 msg = yield conn.read_message()
 if msg is None: break
 # Do something with msg

In the callback style, pass an on_message_callback to
websocket_connect. In both styles, a message of None
indicates that the connection has been closed.

Changed in version 3.2: Also accepts HTTPRequest objects in place of urls.

Changed in version 4.1: Added compression_options and on_message_callback.
The io_loop argument is deprecated.

	
class tornado.websocket.WebSocketClientConnection(io_loop, request, on_message_callback=None, compression_options=None)[source]

	WebSocket client connection.

This class should not be instantiated directly; use the
websocket_connect function instead.

	
close(code=None, reason=None)[source]

	Closes the websocket connection.

code and reason are documented under
WebSocketHandler.close.

New in version 3.2.

Changed in version 4.0: Added the code and reason arguments.

	
write_message(message, binary=False)[source]

	Sends a message to the WebSocket server.

	
read_message(callback=None)[source]

	Reads a message from the WebSocket server.

If on_message_callback was specified at WebSocket
initialization, this function will never return messages

Returns a future whose result is the message, or None
if the connection is closed. If a callback argument
is given it will be called with the future when it is
ready.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

HTTP servers and clients

	tornado.httpserver — Non-blocking HTTP server
	HTTP Server

	tornado.httpclient — Asynchronous HTTP client
	HTTP client interfaces

	Request objects

	Response objects

	Exceptions

	Command-line interface

	Implementations

	tornado.httputil — Manipulate HTTP headers and URLs

	tornado.http1connection – HTTP/1.x client/server implementation

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	HTTP servers and clients

tornado.httpserver — Non-blocking HTTP server

A non-blocking, single-threaded HTTP server.

Typical applications have little direct interaction with the HTTPServer
class except to start a server at the beginning of the process
(and even that is often done indirectly via tornado.web.Application.listen).

Changed in version 4.0: The HTTPRequest class that used to live in this module has been moved
to tornado.httputil.HTTPServerRequest. The old name remains as an alias.

HTTP Server

	
class tornado.httpserver.HTTPServer(*args, **kwargs)[source]

	A non-blocking, single-threaded HTTP server.

A server is defined by a subclass of HTTPServerConnectionDelegate,
or, for backwards compatibility, a callback that takes an
HTTPServerRequest as an argument. The delegate is usually a
tornado.web.Application.

HTTPServer supports keep-alive connections by default
(automatically for HTTP/1.1, or for HTTP/1.0 when the client
requests Connection: keep-alive).

If xheaders is True, we support the
X-Real-Ip/X-Forwarded-For and
X-Scheme/X-Forwarded-Proto headers, which override the
remote IP and URI scheme/protocol for all requests. These headers
are useful when running Tornado behind a reverse proxy or load
balancer. The protocol argument can also be set to https
if Tornado is run behind an SSL-decoding proxy that does not set one of
the supported xheaders.

To make this server serve SSL traffic, send the ssl_options keyword
argument with an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object. For compatibility with older
versions of Python ssl_options may also be a dictionary of keyword
arguments for the ssl.wrap_socket [https://docs.python.org/3.5/library/ssl.html#ssl.wrap_socket] method.:

ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ssl_ctx.load_cert_chain(os.path.join(data_dir, "mydomain.crt"),
 os.path.join(data_dir, "mydomain.key"))
HTTPServer(applicaton, ssl_options=ssl_ctx)

HTTPServer initialization follows one of three patterns (the
initialization methods are defined on tornado.tcpserver.TCPServer):

	listen: simple single-process:

server = HTTPServer(app)
server.listen(8888)
IOLoop.current().start()

In many cases, tornado.web.Application.listen can be used to avoid
the need to explicitly create the HTTPServer.

	bind/start:
simple multi-process:

server = HTTPServer(app)
server.bind(8888)
server.start(0) # Forks multiple sub-processes
IOLoop.current().start()

When using this interface, an IOLoop must not be passed
to the HTTPServer constructor. start will always start
the server on the default singleton IOLoop.

	add_sockets: advanced multi-process:

sockets = tornado.netutil.bind_sockets(8888)
tornado.process.fork_processes(0)
server = HTTPServer(app)
server.add_sockets(sockets)
IOLoop.current().start()

The add_sockets interface is more complicated,
but it can be used with tornado.process.fork_processes to
give you more flexibility in when the fork happens.
add_sockets can also be used in single-process
servers if you want to create your listening sockets in some
way other than tornado.netutil.bind_sockets.

Changed in version 4.0: Added decompress_request, chunk_size, max_header_size,
idle_connection_timeout, body_timeout, max_body_size
arguments. Added support for HTTPServerConnectionDelegate
instances as request_callback.

Changed in version 4.1: HTTPServerConnectionDelegate.start_request is now called with
two arguments (server_conn, request_conn) (in accordance with the
documentation) instead of one (request_conn).

Changed in version 4.2: HTTPServer is now a subclass of tornado.util.Configurable.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	HTTP servers and clients

tornado.httpclient — Asynchronous HTTP client

Blocking and non-blocking HTTP client interfaces.

This module defines a common interface shared by two implementations,
simple_httpclient and curl_httpclient. Applications may either
instantiate their chosen implementation class directly or use the
AsyncHTTPClient class from this module, which selects an implementation
that can be overridden with the AsyncHTTPClient.configure method.

The default implementation is simple_httpclient, and this is expected
to be suitable for most users’ needs. However, some applications may wish
to switch to curl_httpclient for reasons such as the following:

	curl_httpclient has some features not found in simple_httpclient,
including support for HTTP proxies and the ability to use a specified
network interface.

	curl_httpclient is more likely to be compatible with sites that are
not-quite-compliant with the HTTP spec, or sites that use little-exercised
features of HTTP.

	curl_httpclient is faster.

	curl_httpclient was the default prior to Tornado 2.0.

Note that if you are using curl_httpclient, it is highly
recommended that you use a recent version of libcurl and
pycurl. Currently the minimum supported version of libcurl is
7.22.0, and the minimum version of pycurl is 7.18.2. It is highly
recommended that your libcurl installation is built with
asynchronous DNS resolver (threaded or c-ares), otherwise you may
encounter various problems with request timeouts (for more
information, see
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html#CURLOPTCONNECTTIMEOUTMS
and comments in curl_httpclient.py).

To select curl_httpclient, call AsyncHTTPClient.configure at startup:

AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")

HTTP client interfaces

	
class tornado.httpclient.HTTPClient(async_client_class=None, **kwargs)[source]

	A blocking HTTP client.

This interface is provided for convenience and testing; most applications
that are running an IOLoop will want to use AsyncHTTPClient instead.
Typical usage looks like this:

http_client = httpclient.HTTPClient()
try:
 response = http_client.fetch("http://www.google.com/")
 print(response.body)
except httpclient.HTTPError as e:
 # HTTPError is raised for non-200 responses; the response
 # can be found in e.response.
 print("Error: " + str(e))
except Exception as e:
 # Other errors are possible, such as IOError.
 print("Error: " + str(e))
http_client.close()

	
close()[source]

	Closes the HTTPClient, freeing any resources used.

	
fetch(request, **kwargs)[source]

	Executes a request, returning an HTTPResponse.

The request may be either a string URL or an HTTPRequest object.
If it is a string, we construct an HTTPRequest using any additional
kwargs: HTTPRequest(request, **kwargs)

If an error occurs during the fetch, we raise an HTTPError unless
the raise_error keyword argument is set to False.

	
class tornado.httpclient.AsyncHTTPClient[source]

	An non-blocking HTTP client.

Example usage:

def handle_response(response):
 if response.error:
 print("Error: %s" % response.error)
 else:
 print(response.body)

http_client = AsyncHTTPClient()
http_client.fetch("http://www.google.com/", handle_response)

The constructor for this class is magic in several respects: It
actually creates an instance of an implementation-specific
subclass, and instances are reused as a kind of pseudo-singleton
(one per IOLoop). The keyword argument force_instance=True
can be used to suppress this singleton behavior. Unless
force_instance=True is used, no arguments other than
io_loop should be passed to the AsyncHTTPClient constructor.
The implementation subclass as well as arguments to its
constructor can be set with the static method configure()

All AsyncHTTPClient implementations support a defaults
keyword argument, which can be used to set default values for
HTTPRequest attributes. For example:

AsyncHTTPClient.configure(
 None, defaults=dict(user_agent="MyUserAgent"))
or with force_instance:
client = AsyncHTTPClient(force_instance=True,
 defaults=dict(user_agent="MyUserAgent"))

Changed in version 4.1: The io_loop argument is deprecated.

	
close()[source]

	Destroys this HTTP client, freeing any file descriptors used.

This method is not needed in normal use due to the way
that AsyncHTTPClient objects are transparently reused.
close() is generally only necessary when either the
IOLoop is also being closed, or the force_instance=True
argument was used when creating the AsyncHTTPClient.

No other methods may be called on the AsyncHTTPClient after
close().

	
fetch(request, callback=None, raise_error=True, **kwargs)[source]

	Executes a request, asynchronously returning an HTTPResponse.

The request may be either a string URL or an HTTPRequest object.
If it is a string, we construct an HTTPRequest using any additional
kwargs: HTTPRequest(request, **kwargs)

This method returns a Future whose result is an
HTTPResponse. By default, the Future will raise an
HTTPError if the request returned a non-200 response code
(other errors may also be raised if the server could not be
contacted). Instead, if raise_error is set to False, the
response will always be returned regardless of the response
code.

If a callback is given, it will be invoked with the HTTPResponse.
In the callback interface, HTTPError is not automatically raised.
Instead, you must check the response’s error attribute or
call its rethrow method.

	
classmethod configure(impl, **kwargs)[source]

	Configures the AsyncHTTPClient subclass to use.

AsyncHTTPClient() actually creates an instance of a subclass.
This method may be called with either a class object or the
fully-qualified name of such a class (or None to use the default,
SimpleAsyncHTTPClient)

If additional keyword arguments are given, they will be passed
to the constructor of each subclass instance created. The
keyword argument max_clients determines the maximum number
of simultaneous fetch() operations that can
execute in parallel on each IOLoop. Additional arguments
may be supported depending on the implementation class in use.

Example:

AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")

Request objects

	
class tornado.httpclient.HTTPRequest(url, method='GET', headers=None, body=None, auth_username=None, auth_password=None, auth_mode=None, connect_timeout=None, request_timeout=None, if_modified_since=None, follow_redirects=None, max_redirects=None, user_agent=None, use_gzip=None, network_interface=None, streaming_callback=None, header_callback=None, prepare_curl_callback=None, proxy_host=None, proxy_port=None, proxy_username=None, proxy_password=None, proxy_auth_mode=None, allow_nonstandard_methods=None, validate_cert=None, ca_certs=None, allow_ipv6=None, client_key=None, client_cert=None, body_producer=None, expect_100_continue=False, decompress_response=None, ssl_options=None)[source]

	HTTP client request object.

All parameters except url are optional.

	Parameters:	
	url (string [https://docs.python.org/3.5/library/string.html#module-string]) – URL to fetch

	method (string [https://docs.python.org/3.5/library/string.html#module-string]) – HTTP method, e.g. “GET” or “POST”

	headers (HTTPHeaders or dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – Additional HTTP headers to pass on the request

	body – HTTP request body as a string (byte or unicode; if unicode
the utf-8 encoding will be used)

	body_producer – Callable used for lazy/asynchronous request bodies.
It is called with one argument, a write function, and should
return a Future. It should call the write function with new
data as it becomes available. The write function returns a
Future which can be used for flow control.
Only one of body and body_producer may
be specified. body_producer is not supported on
curl_httpclient. When using body_producer it is recommended
to pass a Content-Length in the headers as otherwise chunked
encoding will be used, and many servers do not support chunked
encoding on requests. New in Tornado 4.0

	auth_username (string [https://docs.python.org/3.5/library/string.html#module-string]) – Username for HTTP authentication

	auth_password (string [https://docs.python.org/3.5/library/string.html#module-string]) – Password for HTTP authentication

	auth_mode (string [https://docs.python.org/3.5/library/string.html#module-string]) – Authentication mode; default is “basic”.
Allowed values are implementation-defined; curl_httpclient
supports “basic” and “digest”; simple_httpclient only supports
“basic”

	connect_timeout (float [https://docs.python.org/3.5/library/functions.html#float]) – Timeout for initial connection in seconds

	request_timeout (float [https://docs.python.org/3.5/library/functions.html#float]) – Timeout for entire request in seconds

	if_modified_since (datetime [https://docs.python.org/3.5/library/datetime.html#module-datetime] or float [https://docs.python.org/3.5/library/functions.html#float]) – Timestamp for If-Modified-Since header

	follow_redirects (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Should redirects be followed automatically
or return the 3xx response?

	max_redirects (int [https://docs.python.org/3.5/library/functions.html#int]) – Limit for follow_redirects

	user_agent (string [https://docs.python.org/3.5/library/string.html#module-string]) – String to send as User-Agent header

	decompress_response (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Request a compressed response from
the server and decompress it after downloading. Default is True.
New in Tornado 4.0.

	use_gzip (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Deprecated alias for decompress_response
since Tornado 4.0.

	network_interface (string [https://docs.python.org/3.5/library/string.html#module-string]) – Network interface to use for request.
curl_httpclient only; see note below.

	streaming_callback (callable [https://docs.python.org/3.5/library/functions.html#callable]) – If set, streaming_callback will
be run with each chunk of data as it is received, and
HTTPResponse.body and HTTPResponse.buffer will be empty in
the final response.

	header_callback (callable [https://docs.python.org/3.5/library/functions.html#callable]) – If set, header_callback will
be run with each header line as it is received (including the
first line, e.g. HTTP/1.0 200 OK\r\n, and a final line
containing only \r\n. All lines include the trailing newline
characters). HTTPResponse.headers will be empty in the final
response. This is most useful in conjunction with
streaming_callback, because it’s the only way to get access to
header data while the request is in progress.

	prepare_curl_callback (callable [https://docs.python.org/3.5/library/functions.html#callable]) – If set, will be called with
a pycurl.Curl object to allow the application to make additional
setopt calls.

	proxy_host (string [https://docs.python.org/3.5/library/string.html#module-string]) – HTTP proxy hostname. To use proxies,
proxy_host and proxy_port must be set; proxy_username,
proxy_pass and proxy_auth_mode are optional. Proxies are
currently only supported with curl_httpclient.

	proxy_port (int [https://docs.python.org/3.5/library/functions.html#int]) – HTTP proxy port

	proxy_username (string [https://docs.python.org/3.5/library/string.html#module-string]) – HTTP proxy username

	proxy_password (string [https://docs.python.org/3.5/library/string.html#module-string]) – HTTP proxy password

	proxy_auth_mode (string [https://docs.python.org/3.5/library/string.html#module-string]) – HTTP proxy Authentication mode;
default is “basic”. supports “basic” and “digest”

	allow_nonstandard_methods (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Allow unknown values for method
argument?

	validate_cert (bool [https://docs.python.org/3.5/library/functions.html#bool]) – For HTTPS requests, validate the server’s
certificate?

	ca_certs (string [https://docs.python.org/3.5/library/string.html#module-string]) – filename of CA certificates in PEM format,
or None to use defaults. See note below when used with
curl_httpclient.

	client_key (string [https://docs.python.org/3.5/library/string.html#module-string]) – Filename for client SSL key, if any. See
note below when used with curl_httpclient.

	client_cert (string [https://docs.python.org/3.5/library/string.html#module-string]) – Filename for client SSL certificate, if any.
See note below when used with curl_httpclient.

	ssl_options (ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext]) – ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object for use in
simple_httpclient (unsupported by curl_httpclient).
Overrides validate_cert, ca_certs, client_key,
and client_cert.

	allow_ipv6 (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Use IPv6 when available? Default is true.

	expect_100_continue (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If true, send the
Expect: 100-continue header and wait for a continue response
before sending the request body. Only supported with
simple_httpclient.

Note

When using curl_httpclient certain options may be
inherited by subsequent fetches because pycurl does
not allow them to be cleanly reset. This applies to the
ca_certs, client_key, client_cert, and
network_interface arguments. If you use these
options, you should pass them on every request (you don’t
have to always use the same values, but it’s not possible
to mix requests that specify these options with ones that
use the defaults).

New in version 3.1: The auth_mode argument.

New in version 4.0: The body_producer and expect_100_continue arguments.

New in version 4.2: The ssl_options argument.

Response objects

	
class tornado.httpclient.HTTPResponse(request, code, headers=None, buffer=None, effective_url=None, error=None, request_time=None, time_info=None, reason=None)[source]

	HTTP Response object.

Attributes:

	request: HTTPRequest object

	code: numeric HTTP status code, e.g. 200 or 404

	reason: human-readable reason phrase describing the status code

	headers: tornado.httputil.HTTPHeaders object

	effective_url: final location of the resource after following any
redirects

	buffer: cStringIO object for response body

	body: response body as bytes (created on demand from self.buffer)

	error: Exception object, if any

	request_time: seconds from request start to finish

	time_info: dictionary of diagnostic timing information from the request.
Available data are subject to change, but currently uses timings
available from http://curl.haxx.se/libcurl/c/curl_easy_getinfo.html,
plus queue, which is the delay (if any) introduced by waiting for
a slot under AsyncHTTPClient‘s max_clients setting.

	
rethrow()[source]

	If there was an error on the request, raise an HTTPError.

Exceptions

	
exception tornado.httpclient.HTTPError(code, message=None, response=None)[source]

	Exception thrown for an unsuccessful HTTP request.

Attributes:

	code - HTTP error integer error code, e.g. 404. Error code 599 is
used when no HTTP response was received, e.g. for a timeout.

	response - HTTPResponse object, if any.

Note that if follow_redirects is False, redirects become HTTPErrors,
and you can look at error.response.headers['Location'] to see the
destination of the redirect.

Command-line interface

This module provides a simple command-line interface to fetch a url
using Tornado’s HTTP client. Example usage:

Fetch the url and print its body
python -m tornado.httpclient http://www.google.com

Just print the headers
python -m tornado.httpclient --print_headers --print_body=false http://www.google.com

Implementations

	
class tornado.simple_httpclient.SimpleAsyncHTTPClient[source]

	Non-blocking HTTP client with no external dependencies.

This class implements an HTTP 1.1 client on top of Tornado’s IOStreams.
Some features found in the curl-based AsyncHTTPClient are not yet
supported. In particular, proxies are not supported, connections
are not reused, and callers cannot select the network interface to be
used.

	
initialize(io_loop, max_clients=10, hostname_mapping=None, max_buffer_size=104857600, resolver=None, defaults=None, max_header_size=None, max_body_size=None)[source]

	Creates a AsyncHTTPClient.

Only a single AsyncHTTPClient instance exists per IOLoop
in order to provide limitations on the number of pending connections.
force_instance=True may be used to suppress this behavior.

Note that because of this implicit reuse, unless force_instance
is used, only the first call to the constructor actually uses
its arguments. It is recommended to use the configure method
instead of the constructor to ensure that arguments take effect.

max_clients is the number of concurrent requests that can be
in progress; when this limit is reached additional requests will be
queued. Note that time spent waiting in this queue still counts
against the request_timeout.

hostname_mapping is a dictionary mapping hostnames to IP addresses.
It can be used to make local DNS changes when modifying system-wide
settings like /etc/hosts is not possible or desirable (e.g. in
unittests).

max_buffer_size (default 100MB) is the number of bytes
that can be read into memory at once. max_body_size
(defaults to max_buffer_size) is the largest response body
that the client will accept. Without a
streaming_callback, the smaller of these two limits
applies; with a streaming_callback only max_body_size
does.

Changed in version 4.2: Added the max_body_size argument.

	
class tornado.curl_httpclient.CurlAsyncHTTPClient(io_loop, max_clients=10, defaults=None)

	libcurl-based HTTP client.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	HTTP servers and clients

tornado.httputil — Manipulate HTTP headers and URLs

HTTP utility code shared by clients and servers.

This module also defines the HTTPServerRequest class which is exposed
via tornado.web.RequestHandler.request.

	
class tornado.httputil.HTTPHeaders(*args, **kwargs)[source]

	A dictionary that maintains Http-Header-Case for all keys.

Supports multiple values per key via a pair of new methods,
add() and get_list(). The regular dictionary interface
returns a single value per key, with multiple values joined by a
comma.

>>> h = HTTPHeaders({"content-type": "text/html"})
>>> list(h.keys())
['Content-Type']
>>> h["Content-Type"]
'text/html'

>>> h.add("Set-Cookie", "A=B")
>>> h.add("Set-Cookie", "C=D")
>>> h["set-cookie"]
'A=B,C=D'
>>> h.get_list("set-cookie")
['A=B', 'C=D']

>>> for (k,v) in sorted(h.get_all()):
... print('%s: %s' % (k,v))
...
Content-Type: text/html
Set-Cookie: A=B
Set-Cookie: C=D

	
add(name, value)[source]

	Adds a new value for the given key.

	
get_list(name)[source]

	Returns all values for the given header as a list.

	
get_all()[source]

	Returns an iterable of all (name, value) pairs.

If a header has multiple values, multiple pairs will be
returned with the same name.

	
parse_line(line)[source]

	Updates the dictionary with a single header line.

>>> h = HTTPHeaders()
>>> h.parse_line("Content-Type: text/html")
>>> h.get('content-type')
'text/html'

	
classmethod parse(headers)[source]

	Returns a dictionary from HTTP header text.

>>> h = HTTPHeaders.parse("Content-Type: text/html\r\nContent-Length: 42\r\n")
>>> sorted(h.items())
[('Content-Length', '42'), ('Content-Type', 'text/html')]

	
class tornado.httputil.HTTPServerRequest(method=None, uri=None, version='HTTP/1.0', headers=None, body=None, host=None, files=None, connection=None, start_line=None)[source]

	A single HTTP request.

All attributes are type str [https://docs.python.org/3.5/library/stdtypes.html#str] unless otherwise noted.

	
method

	HTTP request method, e.g. “GET” or “POST”

	
uri

	The requested uri.

	
path

	The path portion of uri

	
query

	The query portion of uri

	
version

	HTTP version specified in request, e.g. “HTTP/1.1”

	
headers

	HTTPHeaders dictionary-like object for request headers. Acts like
a case-insensitive dictionary with additional methods for repeated
headers.

	
body

	Request body, if present, as a byte string.

	
remote_ip

	Client’s IP address as a string. If HTTPServer.xheaders is set,
will pass along the real IP address provided by a load balancer
in the X-Real-Ip or X-Forwarded-For header.

Changed in version 3.1: The list format of X-Forwarded-For is now supported.

	
protocol

	The protocol used, either “http” or “https”. If HTTPServer.xheaders
is set, will pass along the protocol used by a load balancer if
reported via an X-Scheme header.

	
host

	The requested hostname, usually taken from the Host header.

	
arguments

	GET/POST arguments are available in the arguments property, which
maps arguments names to lists of values (to support multiple values
for individual names). Names are of type str [https://docs.python.org/3.5/library/stdtypes.html#str], while arguments
are byte strings. Note that this is different from
RequestHandler.get_argument, which returns argument values as
unicode strings.

	
query_arguments

	Same format as arguments, but contains only arguments extracted
from the query string.

New in version 3.2.

	
body_arguments

	Same format as arguments, but contains only arguments extracted
from the request body.

New in version 3.2.

	
files

	File uploads are available in the files property, which maps file
names to lists of HTTPFile.

	
connection

	An HTTP request is attached to a single HTTP connection, which can
be accessed through the “connection” attribute. Since connections
are typically kept open in HTTP/1.1, multiple requests can be handled
sequentially on a single connection.

Changed in version 4.0: Moved from tornado.httpserver.HTTPRequest.

	
supports_http_1_1()[source]

	Returns True if this request supports HTTP/1.1 semantics.

Deprecated since version 4.0: Applications are less likely to need this information with the
introduction of HTTPConnection. If you still need it, access
the version attribute directly.

	
cookies

	A dictionary of Cookie.Morsel objects.

	
write(chunk, callback=None)[source]

	Writes the given chunk to the response stream.

Deprecated since version 4.0: Use request.connection and the HTTPConnection methods
to write the response.

	
finish()[source]

	Finishes this HTTP request on the open connection.

Deprecated since version 4.0: Use request.connection and the HTTPConnection methods
to write the response.

	
full_url()[source]

	Reconstructs the full URL for this request.

	
request_time()[source]

	Returns the amount of time it took for this request to execute.

	
get_ssl_certificate(binary_form=False)[source]

	Returns the client’s SSL certificate, if any.

To use client certificates, the HTTPServer’s
ssl.SSLContext.verify_mode [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext.verify_mode] field must be set, e.g.:

ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ssl_ctx.load_cert_chain("foo.crt", "foo.key")
ssl_ctx.load_verify_locations("cacerts.pem")
ssl_ctx.verify_mode = ssl.CERT_REQUIRED
server = HTTPServer(app, ssl_options=ssl_ctx)

By default, the return value is a dictionary (or None, if no
client certificate is present). If binary_form is true, a
DER-encoded form of the certificate is returned instead. See
SSLSocket.getpeercert() in the standard library for more
details.
http://docs.python.org/library/ssl.html#sslsocket-objects

	
exception tornado.httputil.HTTPInputError[source]

	Exception class for malformed HTTP requests or responses
from remote sources.

New in version 4.0.

	
exception tornado.httputil.HTTPOutputError[source]

	Exception class for errors in HTTP output.

New in version 4.0.

	
class tornado.httputil.HTTPServerConnectionDelegate[source]

	Implement this interface to handle requests from HTTPServer.

New in version 4.0.

	
start_request(server_conn, request_conn)[source]

	This method is called by the server when a new request has started.

	Parameters:	
	server_conn – is an opaque object representing the long-lived
(e.g. tcp-level) connection.

	request_conn – is a HTTPConnection object for a single
request/response exchange.

This method should return a HTTPMessageDelegate.

	
on_close(server_conn)[source]

	This method is called when a connection has been closed.

	Parameters:	server_conn – is a server connection that has previously been
passed to start_request.

	
class tornado.httputil.HTTPMessageDelegate[source]

	Implement this interface to handle an HTTP request or response.

New in version 4.0.

	
headers_received(start_line, headers)[source]

	Called when the HTTP headers have been received and parsed.

	Parameters:	
	start_line – a RequestStartLine or ResponseStartLine
depending on whether this is a client or server message.

	headers – a HTTPHeaders instance.

Some HTTPConnection methods can only be called during
headers_received.

May return a Future; if it does the body will not be read
until it is done.

	
data_received(chunk)[source]

	Called when a chunk of data has been received.

May return a Future for flow control.

	
finish()[source]

	Called after the last chunk of data has been received.

	
on_connection_close()[source]

	Called if the connection is closed without finishing the request.

If headers_received is called, either finish or
on_connection_close will be called, but not both.

	
class tornado.httputil.HTTPConnection[source]

	Applications use this interface to write their responses.

New in version 4.0.

	
write_headers(start_line, headers, chunk=None, callback=None)[source]

	Write an HTTP header block.

	Parameters:	
	start_line – a RequestStartLine or ResponseStartLine.

	headers – a HTTPHeaders instance.

	chunk – the first (optional) chunk of data. This is an optimization
so that small responses can be written in the same call as their
headers.

	callback – a callback to be run when the write is complete.

The version field of start_line is ignored.

Returns a Future if no callback is given.

	
write(chunk, callback=None)[source]

	Writes a chunk of body data.

The callback will be run when the write is complete. If no callback
is given, returns a Future.

	
finish()[source]

	Indicates that the last body data has been written.

	
tornado.httputil.url_concat(url, args)[source]

	Concatenate url and arguments regardless of whether
url has existing query parameters.

args may be either a dictionary or a list of key-value pairs
(the latter allows for multiple values with the same key.

>>> url_concat("http://example.com/foo", dict(c="d"))
'http://example.com/foo?c=d'
>>> url_concat("http://example.com/foo?a=b", dict(c="d"))
'http://example.com/foo?a=b&c=d'
>>> url_concat("http://example.com/foo?a=b", [("c", "d"), ("c", "d2")])
'http://example.com/foo?a=b&c=d&c=d2'

	
class tornado.httputil.HTTPFile[source]

	Represents a file uploaded via a form.

For backwards compatibility, its instance attributes are also
accessible as dictionary keys.

	filename

	body

	content_type

	
tornado.httputil.parse_body_arguments(content_type, body, arguments, files, headers=None)[source]

	Parses a form request body.

Supports application/x-www-form-urlencoded and
multipart/form-data. The content_type parameter should be
a string and body should be a byte string. The arguments
and files parameters are dictionaries that will be updated
with the parsed contents.

	
tornado.httputil.parse_multipart_form_data(boundary, data, arguments, files)[source]

	Parses a multipart/form-data body.

The boundary and data parameters are both byte strings.
The dictionaries given in the arguments and files parameters
will be updated with the contents of the body.

	
tornado.httputil.format_timestamp(ts)[source]

	Formats a timestamp in the format used by HTTP.

The argument may be a numeric timestamp as returned by time.time [https://docs.python.org/3.5/library/time.html#time.time],
a time tuple as returned by time.gmtime [https://docs.python.org/3.5/library/time.html#time.gmtime], or a datetime.datetime [https://docs.python.org/3.5/library/datetime.html#datetime.datetime]
object.

>>> format_timestamp(1359312200)
'Sun, 27 Jan 2013 18:43:20 GMT'

	
class tornado.httputil.RequestStartLine

	RequestStartLine(method, path, version)

	
method

	Alias for field number 0

	
path

	Alias for field number 1

	
version

	Alias for field number 2

	
tornado.httputil.parse_request_start_line(line)[source]

	Returns a (method, path, version) tuple for an HTTP 1.x request line.

The response is a collections.namedtuple [https://docs.python.org/3.5/library/collections.html#collections.namedtuple].

>>> parse_request_start_line("GET /foo HTTP/1.1")
RequestStartLine(method='GET', path='/foo', version='HTTP/1.1')

	
class tornado.httputil.ResponseStartLine

	ResponseStartLine(version, code, reason)

	
code

	Alias for field number 1

	
reason

	Alias for field number 2

	
version

	Alias for field number 0

	
tornado.httputil.parse_response_start_line(line)[source]

	Returns a (version, code, reason) tuple for an HTTP 1.x response line.

The response is a collections.namedtuple [https://docs.python.org/3.5/library/collections.html#collections.namedtuple].

>>> parse_response_start_line("HTTP/1.1 200 OK")
ResponseStartLine(version='HTTP/1.1', code=200, reason='OK')

	
tornado.httputil.split_host_and_port(netloc)[source]

	Returns (host, port) tuple from netloc.

Returned port will be None if not present.

New in version 4.1.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	HTTP servers and clients

tornado.http1connection – HTTP/1.x client/server implementation

Client and server implementations of HTTP/1.x.

New in version 4.0.

	
class tornado.http1connection.HTTP1ConnectionParameters(no_keep_alive=False, chunk_size=None, max_header_size=None, header_timeout=None, max_body_size=None, body_timeout=None, decompress=False)[source]

	Parameters for HTTP1Connection and HTTP1ServerConnection.

	Parameters:	
	no_keep_alive (bool [https://docs.python.org/3.5/library/functions.html#bool]) – If true, always close the connection after
one request.

	chunk_size (int [https://docs.python.org/3.5/library/functions.html#int]) – how much data to read into memory at once

	max_header_size (int [https://docs.python.org/3.5/library/functions.html#int]) – maximum amount of data for HTTP headers

	header_timeout (float [https://docs.python.org/3.5/library/functions.html#float]) – how long to wait for all headers (seconds)

	max_body_size (int [https://docs.python.org/3.5/library/functions.html#int]) – maximum amount of data for body

	body_timeout (float [https://docs.python.org/3.5/library/functions.html#float]) – how long to wait while reading body (seconds)

	decompress (bool [https://docs.python.org/3.5/library/functions.html#bool]) – if true, decode incoming
Content-Encoding: gzip

	
class tornado.http1connection.HTTP1Connection(stream, is_client, params=None, context=None)[source]

	Implements the HTTP/1.x protocol.

This class can be on its own for clients, or via HTTP1ServerConnection
for servers.

	Parameters:	
	stream – an IOStream

	is_client (bool [https://docs.python.org/3.5/library/functions.html#bool]) – client or server

	params – a HTTP1ConnectionParameters instance or None

	context – an opaque application-defined object that can be accessed
as connection.context.

	
read_response(delegate)[source]

	Read a single HTTP response.

Typical client-mode usage is to write a request using write_headers,
write, and finish, and then call read_response.

	Parameters:	delegate – a HTTPMessageDelegate

Returns a Future that resolves to None after the full response has
been read.

	
set_close_callback(callback)[source]

	Sets a callback that will be run when the connection is closed.

Deprecated since version 4.0: Use HTTPMessageDelegate.on_connection_close instead.

	
detach()[source]

	Take control of the underlying stream.

Returns the underlying IOStream object and stops all further
HTTP processing. May only be called during
HTTPMessageDelegate.headers_received. Intended for implementing
protocols like websockets that tunnel over an HTTP handshake.

	
set_body_timeout(timeout)[source]

	Sets the body timeout for a single request.

Overrides the value from HTTP1ConnectionParameters.

	
set_max_body_size(max_body_size)[source]

	Sets the body size limit for a single request.

Overrides the value from HTTP1ConnectionParameters.

	
write_headers(start_line, headers, chunk=None, callback=None)[source]

	Implements HTTPConnection.write_headers.

	
write(chunk, callback=None)[source]

	Implements HTTPConnection.write.

For backwards compatibility is is allowed but deprecated to
skip write_headers and instead call write() with a
pre-encoded header block.

	
finish()[source]

	Implements HTTPConnection.finish.

	
class tornado.http1connection.HTTP1ServerConnection(stream, params=None, context=None)[source]

	An HTTP/1.x server.

	Parameters:	
	stream – an IOStream

	params – a HTTP1ConnectionParameters or None

	context – an opaque application-defined object that is accessible
as connection.context

	
close(*args, **kwargs)[source]

	Closes the connection.

Returns a Future that resolves after the serving loop has exited.

	
start_serving(delegate)[source]

	Starts serving requests on this connection.

	Parameters:	delegate – a HTTPServerConnectionDelegate

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Asynchronous networking

	tornado.ioloop — Main event loop
	IOLoop objects
	Running an IOLoop

	I/O events

	Callbacks and timeouts

	Debugging and error handling

	Methods for subclasses

	tornado.iostream — Convenient wrappers for non-blocking sockets
	Base class
	Main interface

	Methods for subclasses

	Implementations

	Exceptions

	tornado.netutil — Miscellaneous network utilities

	tornado.tcpclient — IOStream connection factory

	tornado.tcpserver — Basic IOStream-based TCP server

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Asynchronous networking

tornado.ioloop — Main event loop

An I/O event loop for non-blocking sockets.

Typical applications will use a single IOLoop object, in the
IOLoop.instance singleton. The IOLoop.start method should usually
be called at the end of the main() function. Atypical applications may
use more than one IOLoop, such as one IOLoop per thread, or per unittest [https://docs.python.org/3.5/library/unittest.html#module-unittest]
case.

In addition to I/O events, the IOLoop can also schedule time-based events.
IOLoop.add_timeout is a non-blocking alternative to time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep].

IOLoop objects

	
class tornado.ioloop.IOLoop[source]

	A level-triggered I/O loop.

We use epoll (Linux) or kqueue (BSD and Mac OS X) if they
are available, or else we fall back on select(). If you are
implementing a system that needs to handle thousands of
simultaneous connections, you should use a system that supports
either epoll or kqueue.

Example usage for a simple TCP server:

import errno
import functools
import tornado.ioloop
import socket

def connection_ready(sock, fd, events):
 while True:
 try:
 connection, address = sock.accept()
 except socket.error as e:
 if e.args[0] not in (errno.EWOULDBLOCK, errno.EAGAIN):
 raise
 return
 connection.setblocking(0)
 handle_connection(connection, address)

if __name__ == '__main__':
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.setblocking(0)
 sock.bind(("", port))
 sock.listen(128)

 io_loop = tornado.ioloop.IOLoop.current()
 callback = functools.partial(connection_ready, sock)
 io_loop.add_handler(sock.fileno(), callback, io_loop.READ)
 io_loop.start()

By default, a newly-constructed IOLoop becomes the thread’s current
IOLoop, unless there already is a current IOLoop. This behavior
can be controlled with the make_current argument to the IOLoop
constructor: if make_current=True, the new IOLoop will always
try to become current and it raises an error if there is already a
current instance. If make_current=False, the new IOLoop will
not try to become current.

Changed in version 4.2: Added the make_current keyword argument to the IOLoop
constructor.

Running an IOLoop

	
static IOLoop.current(instance=True)[source]

	Returns the current thread’s IOLoop.

If an IOLoop is currently running or has been marked as
current by make_current, returns that instance. If there is
no current IOLoop, returns IOLoop.instance() (i.e. the
main thread’s IOLoop, creating one if necessary) if instance
is true.

In general you should use IOLoop.current as the default when
constructing an asynchronous object, and use IOLoop.instance
when you mean to communicate to the main thread from a different
one.

Changed in version 4.1: Added instance argument to control the fallback to
IOLoop.instance().

	
IOLoop.make_current()[source]

	Makes this the IOLoop for the current thread.

An IOLoop automatically becomes current for its thread
when it is started, but it is sometimes useful to call
make_current explicitly before starting the IOLoop,
so that code run at startup time can find the right
instance.

Changed in version 4.1: An IOLoop created while there is no current IOLoop
will automatically become current.

	
static IOLoop.instance()[source]

	Returns a global IOLoop instance.

Most applications have a single, global IOLoop running on the
main thread. Use this method to get this instance from
another thread. In most other cases, it is better to use current()
to get the current thread’s IOLoop.

	
static IOLoop.initialized()[source]

	Returns true if the singleton instance has been created.

	
IOLoop.install()[source]

	Installs this IOLoop object as the singleton instance.

This is normally not necessary as instance() will create
an IOLoop on demand, but you may want to call install to use
a custom subclass of IOLoop.

When using an IOLoop subclass, install must be called prior
to creating any objects that implicitly create their own
IOLoop (e.g., tornado.httpclient.AsyncHTTPClient).

	
static IOLoop.clear_instance()[source]

	Clear the global IOLoop instance.

New in version 4.0.

	
IOLoop.start()[source]

	Starts the I/O loop.

The loop will run until one of the callbacks calls stop(), which
will make the loop stop after the current event iteration completes.

	
IOLoop.stop()[source]

	Stop the I/O loop.

If the event loop is not currently running, the next call to start()
will return immediately.

To use asynchronous methods from otherwise-synchronous code (such as
unit tests), you can start and stop the event loop like this:

ioloop = IOLoop()
async_method(ioloop=ioloop, callback=ioloop.stop)
ioloop.start()

ioloop.start() will return after async_method has run
its callback, whether that callback was invoked before or
after ioloop.start.

Note that even after stop has been called, the IOLoop is not
completely stopped until IOLoop.start has also returned.
Some work that was scheduled before the call to stop may still
be run before the IOLoop shuts down.

	
IOLoop.run_sync(func, timeout=None)[source]

	Starts the IOLoop, runs the given function, and stops the loop.

The function must return either a yieldable object or
None. If the function returns a yieldable object, the
IOLoop will run until the yieldable is resolved (and
run_sync() will return the yieldable’s result). If it raises
an exception, the IOLoop will stop and the exception will be
re-raised to the caller.

The keyword-only argument timeout may be used to set
a maximum duration for the function. If the timeout expires,
a TimeoutError [https://docs.python.org/3.5/library/exceptions.html#TimeoutError] is raised.

This method is useful in conjunction with tornado.gen.coroutine
to allow asynchronous calls in a main() function:

@gen.coroutine
def main():
 # do stuff...

if __name__ == '__main__':
 IOLoop.current().run_sync(main)

Changed in version 4.3: Returning a non-None, non-yieldable value is now an error.

	
IOLoop.close(all_fds=False)[source]

	Closes the IOLoop, freeing any resources used.

If all_fds is true, all file descriptors registered on the
IOLoop will be closed (not just the ones created by the
IOLoop itself).

Many applications will only use a single IOLoop that runs for the
entire lifetime of the process. In that case closing the IOLoop
is not necessary since everything will be cleaned up when the
process exits. IOLoop.close is provided mainly for scenarios
such as unit tests, which create and destroy a large number of
IOLoops.

An IOLoop must be completely stopped before it can be closed. This
means that IOLoop.stop() must be called and IOLoop.start() must
be allowed to return before attempting to call IOLoop.close().
Therefore the call to close will usually appear just after
the call to start rather than near the call to stop.

Changed in version 3.1: If the IOLoop implementation supports non-integer objects
for “file descriptors”, those objects will have their
close method when all_fds is true.

I/O events

	
IOLoop.add_handler(fd, handler, events)[source]

	Registers the given handler to receive the given events for fd.

The fd argument may either be an integer file descriptor or
a file-like object with a fileno() method (and optionally a
close() method, which may be called when the IOLoop is shut
down).

The events argument is a bitwise or of the constants
IOLoop.READ, IOLoop.WRITE, and IOLoop.ERROR.

When an event occurs, handler(fd, events) will be run.

Changed in version 4.0: Added the ability to pass file-like objects in addition to
raw file descriptors.

	
IOLoop.update_handler(fd, events)[source]

	Changes the events we listen for fd.

Changed in version 4.0: Added the ability to pass file-like objects in addition to
raw file descriptors.

	
IOLoop.remove_handler(fd)[source]

	Stop listening for events on fd.

Changed in version 4.0: Added the ability to pass file-like objects in addition to
raw file descriptors.

Callbacks and timeouts

	
IOLoop.add_callback(callback, *args, **kwargs)[source]

	Calls the given callback on the next I/O loop iteration.

It is safe to call this method from any thread at any time,
except from a signal handler. Note that this is the only
method in IOLoop that makes this thread-safety guarantee; all
other interaction with the IOLoop must be done from that
IOLoop‘s thread. add_callback() may be used to transfer
control from other threads to the IOLoop‘s thread.

To add a callback from a signal handler, see
add_callback_from_signal.

	
IOLoop.add_callback_from_signal(callback, *args, **kwargs)[source]

	Calls the given callback on the next I/O loop iteration.

Safe for use from a Python signal handler; should not be used
otherwise.

Callbacks added with this method will be run without any
stack_context, to avoid picking up the context of the function
that was interrupted by the signal.

	
IOLoop.add_future(future, callback)[source]

	Schedules a callback on the IOLoop when the given
Future is finished.

The callback is invoked with one argument, the
Future.

	
IOLoop.add_timeout(deadline, callback, *args, **kwargs)[source]

	Runs the callback at the time deadline from the I/O loop.

Returns an opaque handle that may be passed to
remove_timeout to cancel.

deadline may be a number denoting a time (on the same
scale as IOLoop.time, normally time.time [https://docs.python.org/3.5/library/time.html#time.time]), or a
datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] object for a deadline relative to the
current time. Since Tornado 4.0, call_later is a more
convenient alternative for the relative case since it does not
require a timedelta object.

Note that it is not safe to call add_timeout from other threads.
Instead, you must use add_callback to transfer control to the
IOLoop‘s thread, and then call add_timeout from there.

Subclasses of IOLoop must implement either add_timeout or
call_at; the default implementations of each will call
the other. call_at is usually easier to implement, but
subclasses that wish to maintain compatibility with Tornado
versions prior to 4.0 must use add_timeout instead.

Changed in version 4.0: Now passes through *args and **kwargs to the callback.

	
IOLoop.call_at(when, callback, *args, **kwargs)[source]

	Runs the callback at the absolute time designated by when.

when must be a number using the same reference point as
IOLoop.time.

Returns an opaque handle that may be passed to remove_timeout
to cancel. Note that unlike the asyncio [https://docs.python.org/3.5/library/asyncio.html#module-asyncio] method of the same
name, the returned object does not have a cancel() method.

See add_timeout for comments on thread-safety and subclassing.

New in version 4.0.

	
IOLoop.call_later(delay, callback, *args, **kwargs)[source]

	Runs the callback after delay seconds have passed.

Returns an opaque handle that may be passed to remove_timeout
to cancel. Note that unlike the asyncio [https://docs.python.org/3.5/library/asyncio.html#module-asyncio] method of the same
name, the returned object does not have a cancel() method.

See add_timeout for comments on thread-safety and subclassing.

New in version 4.0.

	
IOLoop.remove_timeout(timeout)[source]

	Cancels a pending timeout.

The argument is a handle as returned by add_timeout. It is
safe to call remove_timeout even if the callback has already
been run.

	
IOLoop.spawn_callback(callback, *args, **kwargs)[source]

	Calls the given callback on the next IOLoop iteration.

Unlike all other callback-related methods on IOLoop,
spawn_callback does not associate the callback with its caller’s
stack_context, so it is suitable for fire-and-forget callbacks
that should not interfere with the caller.

New in version 4.0.

	
IOLoop.time()[source]

	Returns the current time according to the IOLoop‘s clock.

The return value is a floating-point number relative to an
unspecified time in the past.

By default, the IOLoop‘s time function is time.time [https://docs.python.org/3.5/library/time.html#time.time]. However,
it may be configured to use e.g. time.monotonic [https://docs.python.org/3.5/library/time.html#time.monotonic] instead.
Calls to add_timeout that pass a number instead of a
datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] should use this function to compute the
appropriate time, so they can work no matter what time function
is chosen.

	
class tornado.ioloop.PeriodicCallback(callback, callback_time, io_loop=None)[source]

	Schedules the given callback to be called periodically.

The callback is called every callback_time milliseconds.
Note that the timeout is given in milliseconds, while most other
time-related functions in Tornado use seconds.

If the callback runs for longer than callback_time milliseconds,
subsequent invocations will be skipped to get back on schedule.

start must be called after the PeriodicCallback is created.

Changed in version 4.1: The io_loop argument is deprecated.

	
start()[source]

	Starts the timer.

	
stop()[source]

	Stops the timer.

	
is_running()[source]

	Return True if this PeriodicCallback has been started.

New in version 4.1.

Debugging and error handling

	
IOLoop.handle_callback_exception(callback)[source]

	This method is called whenever a callback run by the IOLoop
throws an exception.

By default simply logs the exception as an error. Subclasses
may override this method to customize reporting of exceptions.

The exception itself is not passed explicitly, but is available
in sys.exc_info [https://docs.python.org/3.5/library/sys.html#sys.exc_info].

	
IOLoop.set_blocking_signal_threshold(seconds, action)[source]

	Sends a signal if the IOLoop is blocked for more than
s seconds.

Pass seconds=None to disable. Requires Python 2.6 on a unixy
platform.

The action parameter is a Python signal handler. Read the
documentation for the signal [https://docs.python.org/3.5/library/signal.html#module-signal] module for more information.
If action is None, the process will be killed if it is
blocked for too long.

	
IOLoop.set_blocking_log_threshold(seconds)[source]

	Logs a stack trace if the IOLoop is blocked for more than
s seconds.

Equivalent to set_blocking_signal_threshold(seconds,
self.log_stack)

	
IOLoop.log_stack(signal, frame)[source]

	Signal handler to log the stack trace of the current thread.

For use with set_blocking_signal_threshold.

Methods for subclasses

	
IOLoop.initialize(make_current=None)[source]

	

	
IOLoop.close_fd(fd)[source]

	Utility method to close an fd.

If fd is a file-like object, we close it directly; otherwise
we use os.close [https://docs.python.org/3.5/library/os.html#os.close].

This method is provided for use by IOLoop subclasses (in
implementations of IOLoop.close(all_fds=True) and should
not generally be used by application code.

New in version 4.0.

	
IOLoop.split_fd(fd)[source]

	Returns an (fd, obj) pair from an fd parameter.

We accept both raw file descriptors and file-like objects as
input to add_handler and related methods. When a file-like
object is passed, we must retain the object itself so we can
close it correctly when the IOLoop shuts down, but the
poller interfaces favor file descriptors (they will accept
file-like objects and call fileno() for you, but they
always return the descriptor itself).

This method is provided for use by IOLoop subclasses and should
not generally be used by application code.

New in version 4.0.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Asynchronous networking

tornado.iostream — Convenient wrappers for non-blocking sockets

Utility classes to write to and read from non-blocking files and sockets.

Contents:

	BaseIOStream: Generic interface for reading and writing.

	IOStream: Implementation of BaseIOStream using non-blocking sockets.

	SSLIOStream: SSL-aware version of IOStream.

	PipeIOStream: Pipe-based IOStream implementation.

Base class

	
class tornado.iostream.BaseIOStream(io_loop=None, max_buffer_size=None, read_chunk_size=None, max_write_buffer_size=None)[source]

	A utility class to write to and read from a non-blocking file or socket.

We support a non-blocking write() and a family of read_*() methods.
All of the methods take an optional callback argument and return a
Future only if no callback is given. When the operation completes,
the callback will be run or the Future will resolve with the data
read (or None for write()). All outstanding Futures will
resolve with a StreamClosedError when the stream is closed; users
of the callback interface will be notified via
BaseIOStream.set_close_callback instead.

When a stream is closed due to an error, the IOStream’s error
attribute contains the exception object.

Subclasses must implement fileno, close_fd, write_to_fd,
read_from_fd, and optionally get_fd_error.

BaseIOStream constructor.

	Parameters:	
	io_loop – The IOLoop to use; defaults to IOLoop.current.
Deprecated since Tornado 4.1.

	max_buffer_size – Maximum amount of incoming data to buffer;
defaults to 100MB.

	read_chunk_size – Amount of data to read at one time from the
underlying transport; defaults to 64KB.

	max_write_buffer_size – Amount of outgoing data to buffer;
defaults to unlimited.

Changed in version 4.0: Add the max_write_buffer_size parameter. Changed default
read_chunk_size to 64KB.

Main interface

	
BaseIOStream.write(data, callback=None)[source]

	Asynchronously write the given data to this stream.

If callback is given, we call it when all of the buffered write
data has been successfully written to the stream. If there was
previously buffered write data and an old write callback, that
callback is simply overwritten with this new callback.

If no callback is given, this method returns a Future that
resolves (with a result of None) when the write has been
completed. If write is called again before that Future has
resolved, the previous future will be orphaned and will never resolve.

Changed in version 4.0: Now returns a Future if no callback is given.

	
BaseIOStream.read_bytes(num_bytes, callback=None, streaming_callback=None, partial=False)[source]

	Asynchronously read a number of bytes.

If a streaming_callback is given, it will be called with chunks
of data as they become available, and the final result will be empty.
Otherwise, the result is all the data that was read.
If a callback is given, it will be run with the data as an argument;
if not, this method returns a Future.

If partial is true, the callback is run as soon as we have
any bytes to return (but never more than num_bytes)

Changed in version 4.0: Added the partial argument. The callback argument is now
optional and a Future will be returned if it is omitted.

	
BaseIOStream.read_until(delimiter, callback=None, max_bytes=None)[source]

	Asynchronously read until we have found the given delimiter.

The result includes all the data read including the delimiter.
If a callback is given, it will be run with the data as an argument;
if not, this method returns a Future.

If max_bytes is not None, the connection will be closed
if more than max_bytes bytes have been read and the delimiter
is not found.

Changed in version 4.0: Added the max_bytes argument. The callback argument is
now optional and a Future will be returned if it is omitted.

	
BaseIOStream.read_until_regex(regex, callback=None, max_bytes=None)[source]

	Asynchronously read until we have matched the given regex.

The result includes the data that matches the regex and anything
that came before it. If a callback is given, it will be run
with the data as an argument; if not, this method returns a
Future.

If max_bytes is not None, the connection will be closed
if more than max_bytes bytes have been read and the regex is
not satisfied.

Changed in version 4.0: Added the max_bytes argument. The callback argument is
now optional and a Future will be returned if it is omitted.

	
BaseIOStream.read_until_close(callback=None, streaming_callback=None)[source]

	Asynchronously reads all data from the socket until it is closed.

If a streaming_callback is given, it will be called with chunks
of data as they become available, and the final result will be empty.
Otherwise, the result is all the data that was read.
If a callback is given, it will be run with the data as an argument;
if not, this method returns a Future.

Note that if a streaming_callback is used, data will be
read from the socket as quickly as it becomes available; there
is no way to apply backpressure or cancel the reads. If flow
control or cancellation are desired, use a loop with
read_bytes(partial=True) instead.

Changed in version 4.0: The callback argument is now optional and a Future will
be returned if it is omitted.

	
BaseIOStream.close(exc_info=False)[source]

	Close this stream.

If exc_info is true, set the error attribute to the current
exception from sys.exc_info [https://docs.python.org/3.5/library/sys.html#sys.exc_info] (or if exc_info is a tuple,
use that instead of sys.exc_info [https://docs.python.org/3.5/library/sys.html#sys.exc_info]).

	
BaseIOStream.set_close_callback(callback)[source]

	Call the given callback when the stream is closed.

This is not necessary for applications that use the Future
interface; all outstanding Futures will resolve with a
StreamClosedError when the stream is closed.

	
BaseIOStream.closed()[source]

	Returns true if the stream has been closed.

	
BaseIOStream.reading()[source]

	Returns true if we are currently reading from the stream.

	
BaseIOStream.writing()[source]

	Returns true if we are currently writing to the stream.

	
BaseIOStream.set_nodelay(value)[source]

	Sets the no-delay flag for this stream.

By default, data written to TCP streams may be held for a time
to make the most efficient use of bandwidth (according to
Nagle’s algorithm). The no-delay flag requests that data be
written as soon as possible, even if doing so would consume
additional bandwidth.

This flag is currently defined only for TCP-based IOStreams.

New in version 3.1.

Methods for subclasses

	
BaseIOStream.fileno()[source]

	Returns the file descriptor for this stream.

	
BaseIOStream.close_fd()[source]

	Closes the file underlying this stream.

close_fd is called by BaseIOStream and should not be called
elsewhere; other users should call close instead.

	
BaseIOStream.write_to_fd(data)[source]

	Attempts to write data to the underlying file.

Returns the number of bytes written.

	
BaseIOStream.read_from_fd()[source]

	Attempts to read from the underlying file.

Returns None if there was nothing to read (the socket
returned EWOULDBLOCK [https://docs.python.org/3.5/library/errno.html#errno.EWOULDBLOCK] or equivalent), otherwise
returns the data. When possible, should return no more than
self.read_chunk_size bytes at a time.

	
BaseIOStream.get_fd_error()[source]

	Returns information about any error on the underlying file.

This method is called after the IOLoop has signaled an error on the
file descriptor, and should return an Exception (such as socket.error [https://docs.python.org/3.5/library/socket.html#socket.error]
with additional information, or None if no such information is
available.

Implementations

	
class tornado.iostream.IOStream(socket, *args, **kwargs)[source]

	Socket-based IOStream implementation.

This class supports the read and write methods from BaseIOStream
plus a connect method.

The socket parameter may either be connected or unconnected.
For server operations the socket is the result of calling
socket.accept [https://docs.python.org/3.5/library/socket.html#socket.socket.accept]. For client operations the
socket is created with socket.socket [https://docs.python.org/3.5/library/socket.html#socket.socket], and may either be
connected before passing it to the IOStream or connected with
IOStream.connect.

A very simple (and broken) HTTP client using this class:

import tornado.ioloop
import tornado.iostream
import socket

def send_request():
 stream.write(b"GET / HTTP/1.0\r\nHost: friendfeed.com\r\n\r\n")
 stream.read_until(b"\r\n\r\n", on_headers)

def on_headers(data):
 headers = {}
 for line in data.split(b"\r\n"):
 parts = line.split(b":")
 if len(parts) == 2:
 headers[parts[0].strip()] = parts[1].strip()
 stream.read_bytes(int(headers[b"Content-Length"]), on_body)

def on_body(data):
 print(data)
 stream.close()
 tornado.ioloop.IOLoop.current().stop()

if __name__ == '__main__':
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
 stream = tornado.iostream.IOStream(s)
 stream.connect(("friendfeed.com", 80), send_request)
 tornado.ioloop.IOLoop.current().start()

	
connect(address, callback=None, server_hostname=None)[source]

	Connects the socket to a remote address without blocking.

May only be called if the socket passed to the constructor was
not previously connected. The address parameter is in the
same format as for socket.connect [https://docs.python.org/3.5/library/socket.html#socket.socket.connect] for
the type of socket passed to the IOStream constructor,
e.g. an (ip, port) tuple. Hostnames are accepted here,
but will be resolved synchronously and block the IOLoop.
If you have a hostname instead of an IP address, the TCPClient
class is recommended instead of calling this method directly.
TCPClient will do asynchronous DNS resolution and handle
both IPv4 and IPv6.

If callback is specified, it will be called with no
arguments when the connection is completed; if not this method
returns a Future (whose result after a successful
connection will be the stream itself).

In SSL mode, the server_hostname parameter will be used
for certificate validation (unless disabled in the
ssl_options) and SNI (if supported; requires Python
2.7.9+).

Note that it is safe to call IOStream.write while the connection is pending, in
which case the data will be written as soon as the connection
is ready. Calling IOStream read methods before the socket is
connected works on some platforms but is non-portable.

Changed in version 4.0: If no callback is given, returns a Future.

Changed in version 4.2: SSL certificates are validated by default; pass
ssl_options=dict(cert_reqs=ssl.CERT_NONE) or a
suitably-configured ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] to the
SSLIOStream constructor to disable.

	
start_tls(server_side, ssl_options=None, server_hostname=None)[source]

	Convert this IOStream to an SSLIOStream.

This enables protocols that begin in clear-text mode and
switch to SSL after some initial negotiation (such as the
STARTTLS extension to SMTP and IMAP).

This method cannot be used if there are outstanding reads
or writes on the stream, or if there is any data in the
IOStream’s buffer (data in the operating system’s socket
buffer is allowed). This means it must generally be used
immediately after reading or writing the last clear-text
data. It can also be used immediately after connecting,
before any reads or writes.

The ssl_options argument may be either an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext]
object or a dictionary of keyword arguments for the
ssl.wrap_socket [https://docs.python.org/3.5/library/ssl.html#ssl.wrap_socket] function. The server_hostname argument
will be used for certificate validation unless disabled
in the ssl_options.

This method returns a Future whose result is the new
SSLIOStream. After this method has been called,
any other operation on the original stream is undefined.

If a close callback is defined on this stream, it will be
transferred to the new stream.

New in version 4.0.

Changed in version 4.2: SSL certificates are validated by default; pass
ssl_options=dict(cert_reqs=ssl.CERT_NONE) or a
suitably-configured ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] to disable.

	
class tornado.iostream.SSLIOStream(*args, **kwargs)[source]

	A utility class to write to and read from a non-blocking SSL socket.

If the socket passed to the constructor is already connected,
it should be wrapped with:

ssl.wrap_socket(sock, do_handshake_on_connect=False, **kwargs)

before constructing the SSLIOStream. Unconnected sockets will be
wrapped when IOStream.connect is finished.

The ssl_options keyword argument may either be an
ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object or a dictionary of keywords arguments
for ssl.wrap_socket [https://docs.python.org/3.5/library/ssl.html#ssl.wrap_socket]

	
wait_for_handshake(callback=None)[source]

	Wait for the initial SSL handshake to complete.

If a callback is given, it will be called with no
arguments once the handshake is complete; otherwise this
method returns a Future which will resolve to the
stream itself after the handshake is complete.

Once the handshake is complete, information such as
the peer’s certificate and NPN/ALPN selections may be
accessed on self.socket.

This method is intended for use on server-side streams
or after using IOStream.start_tls; it should not be used
with IOStream.connect (which already waits for the
handshake to complete). It may only be called once per stream.

New in version 4.2.

	
class tornado.iostream.PipeIOStream(fd, *args, **kwargs)[source]

	Pipe-based IOStream implementation.

The constructor takes an integer file descriptor (such as one returned
by os.pipe [https://docs.python.org/3.5/library/os.html#os.pipe]) rather than an open file object. Pipes are generally
one-way, so a PipeIOStream can be used for reading or writing but not
both.

Exceptions

	
exception tornado.iostream.StreamBufferFullError[source]

	Exception raised by IOStream methods when the buffer is full.

	
exception tornado.iostream.StreamClosedError(real_error=None)[source]

	Exception raised by IOStream methods when the stream is closed.

Note that the close callback is scheduled to run after other
callbacks on the stream (to allow for buffered data to be processed),
so you may see this error before you see the close callback.

The real_error attribute contains the underlying error that caused
the stream to close (if any).

Changed in version 4.3: Added the real_error attribute.

	
exception tornado.iostream.UnsatisfiableReadError[source]

	Exception raised when a read cannot be satisfied.

Raised by read_until and read_until_regex with a max_bytes
argument.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Asynchronous networking

tornado.netutil — Miscellaneous network utilities

Miscellaneous network utility code.

	
tornado.netutil.bind_sockets(port, address=None, family=0, backlog=128, flags=None, reuse_port=False)[source]

	Creates listening sockets bound to the given port and address.

Returns a list of socket objects (multiple sockets are returned if
the given address maps to multiple IP addresses, which is most common
for mixed IPv4 and IPv6 use).

Address may be either an IP address or hostname. If it’s a hostname,
the server will listen on all IP addresses associated with the
name. Address may be an empty string or None to listen on all
available interfaces. Family may be set to either socket.AF_INET [https://docs.python.org/3.5/library/socket.html#socket.AF_INET]
or socket.AF_INET6 [https://docs.python.org/3.5/library/socket.html#socket.AF_INET6] to restrict to IPv4 or IPv6 addresses, otherwise
both will be used if available.

The backlog argument has the same meaning as for
socket.listen() [https://docs.python.org/3.5/library/socket.html#socket.socket.listen].

flags is a bitmask of AI_* flags to getaddrinfo [https://docs.python.org/3.5/library/socket.html#socket.getaddrinfo], like
socket.AI_PASSIVE | socket.AI_NUMERICHOST.

reuse_port option sets SO_REUSEPORT option for every socket
in the list. If your platform doesn’t support this option ValueError will
be raised.

	
tornado.netutil.bind_unix_socket(file, mode=384, backlog=128)[source]

	Creates a listening unix socket.

If a socket with the given name already exists, it will be deleted.
If any other file with that name exists, an exception will be
raised.

Returns a socket object (not a list of socket objects like
bind_sockets)

	
tornado.netutil.add_accept_handler(sock, callback, io_loop=None)[source]

	Adds an IOLoop event handler to accept new connections on sock.

When a connection is accepted, callback(connection, address) will
be run (connection is a socket object, and address is the
address of the other end of the connection). Note that this signature
is different from the callback(fd, events) signature used for
IOLoop handlers.

Changed in version 4.1: The io_loop argument is deprecated.

	
tornado.netutil.is_valid_ip(ip)[source]

	Returns true if the given string is a well-formed IP address.

Supports IPv4 and IPv6.

	
class tornado.netutil.Resolver[source]

	Configurable asynchronous DNS resolver interface.

By default, a blocking implementation is used (which simply calls
socket.getaddrinfo [https://docs.python.org/3.5/library/socket.html#socket.getaddrinfo]). An alternative implementation can be
chosen with the Resolver.configure
class method:

Resolver.configure('tornado.netutil.ThreadedResolver')

The implementations of this interface included with Tornado are

	tornado.netutil.BlockingResolver

	tornado.netutil.ThreadedResolver

	tornado.netutil.OverrideResolver

	tornado.platform.twisted.TwistedResolver

	tornado.platform.caresresolver.CaresResolver

	
resolve(host, port, family=0, callback=None)[source]

	Resolves an address.

The host argument is a string which may be a hostname or a
literal IP address.

Returns a Future whose result is a list of (family,
address) pairs, where address is a tuple suitable to pass to
socket.connect [https://docs.python.org/3.5/library/socket.html#socket.socket.connect] (i.e. a (host,
port) pair for IPv4; additional fields may be present for
IPv6). If a callback is passed, it will be run with the
result as an argument when it is complete.

	Raises:	IOError [https://docs.python.org/3.5/library/exceptions.html#IOError] – if the address cannot be resolved.

Changed in version 4.4: Standardized all implementations to raise IOError [https://docs.python.org/3.5/library/exceptions.html#IOError].

	
close()[source]

	Closes the Resolver, freeing any resources used.

New in version 3.1.

	
class tornado.netutil.ExecutorResolver[source]

	Resolver implementation using a concurrent.futures.Executor [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Executor].

Use this instead of ThreadedResolver when you require additional
control over the executor being used.

The executor will be shut down when the resolver is closed unless
close_resolver=False; use this if you want to reuse the same
executor elsewhere.

Changed in version 4.1: The io_loop argument is deprecated.

	
class tornado.netutil.BlockingResolver[source]

	Default Resolver implementation, using socket.getaddrinfo [https://docs.python.org/3.5/library/socket.html#socket.getaddrinfo].

The IOLoop will be blocked during the resolution, although the
callback will not be run until the next IOLoop iteration.

	
class tornado.netutil.ThreadedResolver[source]

	Multithreaded non-blocking Resolver implementation.

Requires the concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] package to be installed
(available in the standard library since Python 3.2,
installable with pip install futures in older versions).

The thread pool size can be configured with:

Resolver.configure('tornado.netutil.ThreadedResolver',
 num_threads=10)

Changed in version 3.1: All ThreadedResolvers share a single thread pool, whose
size is set by the first one to be created.

	
class tornado.netutil.OverrideResolver[source]

	Wraps a resolver with a mapping of overrides.

This can be used to make local DNS changes (e.g. for testing)
without modifying system-wide settings.

The mapping can contain either host strings or host-port pairs.

	
tornado.netutil.ssl_options_to_context(ssl_options)[source]

	Try to convert an ssl_options dictionary to an
SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object.

The ssl_options dictionary contains keywords to be passed to
ssl.wrap_socket [https://docs.python.org/3.5/library/ssl.html#ssl.wrap_socket]. In Python 2.7.9+, ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] objects can
be used instead. This function converts the dict form to its
SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] equivalent, and may be used when a component which
accepts both forms needs to upgrade to the SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] version
to use features like SNI or NPN.

	
tornado.netutil.ssl_wrap_socket(socket, ssl_options, server_hostname=None, **kwargs)[source]

	Returns an ssl.SSLSocket wrapping the given socket.

ssl_options may be either an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object or a
dictionary (as accepted by ssl_options_to_context). Additional
keyword arguments are passed to wrap_socket (either the
SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] method or the ssl [https://docs.python.org/3.5/library/ssl.html#module-ssl] module function as
appropriate).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Asynchronous networking

tornado.tcpclient — IOStream connection factory

A non-blocking TCP connection factory.

	
class tornado.tcpclient.TCPClient(resolver=None, io_loop=None)[source]

	A non-blocking TCP connection factory.

Changed in version 4.1: The io_loop argument is deprecated.

	
connect(*args, **kwargs)[source]

	Connect to the given host and port.

Asynchronously returns an IOStream (or SSLIOStream if
ssl_options is not None).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Asynchronous networking

tornado.tcpserver — Basic IOStream-based TCP server

A non-blocking, single-threaded TCP server.

	
class tornado.tcpserver.TCPServer(io_loop=None, ssl_options=None, max_buffer_size=None, read_chunk_size=None)[source]

	A non-blocking, single-threaded TCP server.

To use TCPServer, define a subclass which overrides the handle_stream
method. For example, a simple echo server could be defined like this:

from tornado.tcpserver import TCPServer
from tornado.iostream import StreamClosedError
from tornado import gen

class EchoServer(TCPServer):
 @gen.coroutine
 def handle_stream(self, stream, address):
 while True:
 try:
 data = yield stream.read_until(b"\n")
 yield stream.write(data)
 except StreamClosedError:
 break

To make this server serve SSL traffic, send the ssl_options keyword
argument with an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object. For compatibility with older
versions of Python ssl_options may also be a dictionary of keyword
arguments for the ssl.wrap_socket [https://docs.python.org/3.5/library/ssl.html#ssl.wrap_socket] method.:

ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ssl_ctx.load_cert_chain(os.path.join(data_dir, "mydomain.crt"),
 os.path.join(data_dir, "mydomain.key"))
TCPServer(ssl_options=ssl_ctx)

TCPServer initialization follows one of three patterns:

	listen: simple single-process:

server = TCPServer()
server.listen(8888)
IOLoop.current().start()

	bind/start: simple multi-process:

server = TCPServer()
server.bind(8888)
server.start(0) # Forks multiple sub-processes
IOLoop.current().start()

When using this interface, an IOLoop must not be passed
to the TCPServer constructor. start will always start
the server on the default singleton IOLoop.

	add_sockets: advanced multi-process:

sockets = bind_sockets(8888)
tornado.process.fork_processes(0)
server = TCPServer()
server.add_sockets(sockets)
IOLoop.current().start()

The add_sockets interface is more complicated, but it can be
used with tornado.process.fork_processes to give you more
flexibility in when the fork happens. add_sockets can
also be used in single-process servers if you want to create
your listening sockets in some way other than
bind_sockets.

New in version 3.1: The max_buffer_size argument.

	
listen(port, address='')[source]

	Starts accepting connections on the given port.

This method may be called more than once to listen on multiple ports.
listen takes effect immediately; it is not necessary to call
TCPServer.start afterwards. It is, however, necessary to start
the IOLoop.

	
add_sockets(sockets)[source]

	Makes this server start accepting connections on the given sockets.

The sockets parameter is a list of socket objects such as
those returned by bind_sockets.
add_sockets is typically used in combination with that
method and tornado.process.fork_processes to provide greater
control over the initialization of a multi-process server.

	
add_socket(socket)[source]

	Singular version of add_sockets. Takes a single socket object.

	
bind(port, address=None, family=0, backlog=128, reuse_port=False)[source]

	Binds this server to the given port on the given address.

To start the server, call start. If you want to run this server
in a single process, you can call listen as a shortcut to the
sequence of bind and start calls.

Address may be either an IP address or hostname. If it’s a hostname,
the server will listen on all IP addresses associated with the
name. Address may be an empty string or None to listen on all
available interfaces. Family may be set to either socket.AF_INET [https://docs.python.org/3.5/library/socket.html#socket.AF_INET]
or socket.AF_INET6 [https://docs.python.org/3.5/library/socket.html#socket.AF_INET6] to restrict to IPv4 or IPv6 addresses, otherwise
both will be used if available.

The backlog argument has the same meaning as for
socket.listen [https://docs.python.org/3.5/library/socket.html#socket.socket.listen]. The reuse_port argument
has the same meaning as for bind_sockets.

This method may be called multiple times prior to start to listen
on multiple ports or interfaces.

Changed in version 4.4: Added the reuse_port argument.

	
start(num_processes=1)[source]

	Starts this server in the IOLoop.

By default, we run the server in this process and do not fork any
additional child process.

If num_processes is None or <= 0, we detect the number of cores
available on this machine and fork that number of child
processes. If num_processes is given and > 1, we fork that
specific number of sub-processes.

Since we use processes and not threads, there is no shared memory
between any server code.

Note that multiple processes are not compatible with the autoreload
module (or the autoreload=True option to tornado.web.Application
which defaults to True when debug=True).
When using multiple processes, no IOLoops can be created or
referenced until after the call to TCPServer.start(n).

	
stop()[source]

	Stops listening for new connections.

Requests currently in progress may still continue after the
server is stopped.

	
handle_stream(stream, address)[source]

	Override to handle a new IOStream from an incoming connection.

This method may be a coroutine; if so any exceptions it raises
asynchronously will be logged. Accepting of incoming connections
will not be blocked by this coroutine.

If this TCPServer is configured for SSL, handle_stream
may be called before the SSL handshake has completed. Use
SSLIOStream.wait_for_handshake if you need to verify the client’s
certificate or use NPN/ALPN.

Changed in version 4.2: Added the option for this method to be a coroutine.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Coroutines and concurrency

	tornado.gen — Simplify asynchronous code
	Decorators

	Utility functions

	Legacy interface

	tornado.concurrent — Work with threads and futures
	Consumer methods

	Producer methods

	tornado.locks – Synchronization primitives
	Condition

	Event

	Semaphore

	BoundedSemaphore

	Lock

	tornado.queues – Queues for coroutines
	Classes
	Queue

	PriorityQueue

	LifoQueue

	Exceptions
	QueueEmpty

	QueueFull

	tornado.process — Utilities for multiple processes

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Coroutines and concurrency

tornado.gen — Simplify asynchronous code

tornado.gen is a generator-based interface to make it easier to
work in an asynchronous environment. Code using the gen module
is technically asynchronous, but it is written as a single generator
instead of a collection of separate functions.

For example, the following asynchronous handler:

class AsyncHandler(RequestHandler):
 @asynchronous
 def get(self):
 http_client = AsyncHTTPClient()
 http_client.fetch("http://example.com",
 callback=self.on_fetch)

 def on_fetch(self, response):
 do_something_with_response(response)
 self.render("template.html")

could be written with gen as:

class GenAsyncHandler(RequestHandler):
 @gen.coroutine
 def get(self):
 http_client = AsyncHTTPClient()
 response = yield http_client.fetch("http://example.com")
 do_something_with_response(response)
 self.render("template.html")

Most asynchronous functions in Tornado return a Future;
yielding this object returns its result.

You can also yield a list or dict of Futures, which will be
started at the same time and run in parallel; a list or dict of results will
be returned when they are all finished:

@gen.coroutine
def get(self):
 http_client = AsyncHTTPClient()
 response1, response2 = yield [http_client.fetch(url1),
 http_client.fetch(url2)]
 response_dict = yield dict(response3=http_client.fetch(url3),
 response4=http_client.fetch(url4))
 response3 = response_dict['response3']
 response4 = response_dict['response4']

If the singledispatch [https://docs.python.org/3.5/library/functools.html#functools.singledispatch] library is available (standard in
Python 3.4, available via the singledispatch [https://pypi.python.org/pypi/singledispatch] package on older
versions), additional types of objects may be yielded. Tornado includes
support for asyncio.Future and Twisted’s Deferred class when
tornado.platform.asyncio and tornado.platform.twisted are imported.
See the convert_yielded function to extend this mechanism.

Changed in version 3.2: Dict support added.

Changed in version 4.1: Support added for yielding asyncio Futures and Twisted Deferreds
via singledispatch.

Decorators

	
tornado.gen.coroutine(func, replace_callback=True)[source]

	Decorator for asynchronous generators.

Any generator that yields objects from this module must be wrapped
in either this decorator or engine.

Coroutines may “return” by raising the special exception
Return(value). In Python 3.3+, it is also possible for
the function to simply use the return value statement (prior to
Python 3.3 generators were not allowed to also return values).
In all versions of Python a coroutine that simply wishes to exit
early may use the return statement without a value.

Functions with this decorator return a Future. Additionally,
they may be called with a callback keyword argument, which
will be invoked with the future’s result when it resolves. If the
coroutine fails, the callback will not be run and an exception
will be raised into the surrounding StackContext. The
callback argument is not visible inside the decorated
function; it is handled by the decorator itself.

From the caller’s perspective, @gen.coroutine is similar to
the combination of @return_future and @gen.engine.

Warning

When exceptions occur inside a coroutine, the exception
information will be stored in the Future object. You must
examine the result of the Future object, or the exception
may go unnoticed by your code. This means yielding the function
if called from another coroutine, using something like
IOLoop.run_sync for top-level calls, or passing the Future
to IOLoop.add_future.

	
tornado.gen.engine(func)[source]

	Callback-oriented decorator for asynchronous generators.

This is an older interface; for new code that does not need to be
compatible with versions of Tornado older than 3.0 the
coroutine decorator is recommended instead.

This decorator is similar to coroutine, except it does not
return a Future and the callback argument is not treated
specially.

In most cases, functions decorated with engine should take
a callback argument and invoke it with their result when
they are finished. One notable exception is the
RequestHandler HTTP verb methods,
which use self.finish() in place of a callback argument.

Utility functions

	
exception tornado.gen.Return(value=None)[source]

	Special exception to return a value from a coroutine.

If this exception is raised, its value argument is used as the
result of the coroutine:

@gen.coroutine
def fetch_json(url):
 response = yield AsyncHTTPClient().fetch(url)
 raise gen.Return(json_decode(response.body))

In Python 3.3, this exception is no longer necessary: the return
statement can be used directly to return a value (previously
yield and return with a value could not be combined in the
same function).

By analogy with the return statement, the value argument is optional,
but it is never necessary to raise gen.Return(). The return
statement can be used with no arguments instead.

	
tornado.gen.with_timeout(timeout, future, io_loop=None, quiet_exceptions=())[source]

	Wraps a Future (or other yieldable object) in a timeout.

Raises TimeoutError if the input future does not complete before
timeout, which may be specified in any form allowed by
IOLoop.add_timeout (i.e. a datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] or an absolute time
relative to IOLoop.time)

If the wrapped Future fails after it has timed out, the exception
will be logged unless it is of a type contained in quiet_exceptions
(which may be an exception type or a sequence of types).

Does not support YieldPoint subclasses.

New in version 4.0.

Changed in version 4.1: Added the quiet_exceptions argument and the logging of unhandled
exceptions.

Changed in version 4.4: Added support for yieldable objects other than Future.

	
exception tornado.gen.TimeoutError[source]

	Exception raised by with_timeout.

	
tornado.gen.sleep(duration)[source]

	Return a Future that resolves after the given number of seconds.

When used with yield in a coroutine, this is a non-blocking
analogue to time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep] (which should not be used in coroutines
because it is blocking):

yield gen.sleep(0.5)

Note that calling this function on its own does nothing; you must
wait on the Future it returns (usually by yielding it).

New in version 4.1.

	
tornado.gen.moment

	A special object which may be yielded to allow the IOLoop to run for
one iteration.

This is not needed in normal use but it can be helpful in long-running
coroutines that are likely to yield Futures that are ready instantly.

Usage: yield gen.moment

New in version 4.0.

	
class tornado.gen.WaitIterator(*args, **kwargs)[source]

	Provides an iterator to yield the results of futures as they finish.

Yielding a set of futures like this:

results = yield [future1, future2]

pauses the coroutine until both future1 and future2
return, and then restarts the coroutine with the results of both
futures. If either future is an exception, the expression will
raise that exception and all the results will be lost.

If you need to get the result of each future as soon as possible,
or if you need the result of some futures even if others produce
errors, you can use WaitIterator:

wait_iterator = gen.WaitIterator(future1, future2)
while not wait_iterator.done():
 try:
 result = yield wait_iterator.next()
 except Exception as e:
 print("Error {} from {}".format(e, wait_iterator.current_future))
 else:
 print("Result {} received from {} at {}".format(
 result, wait_iterator.current_future,
 wait_iterator.current_index))

Because results are returned as soon as they are available the
output from the iterator will not be in the same order as the
input arguments. If you need to know which future produced the
current result, you can use the attributes
WaitIterator.current_future, or WaitIterator.current_index
to get the index of the future from the input list. (if keyword
arguments were used in the construction of the WaitIterator,
current_index will use the corresponding keyword).

On Python 3.5, WaitIterator implements the async iterator
protocol, so it can be used with the async for statement (note
that in this version the entire iteration is aborted if any value
raises an exception, while the previous example can continue past
individual errors):

async for result in gen.WaitIterator(future1, future2):
 print("Result {} received from {} at {}".format(
 result, wait_iterator.current_future,
 wait_iterator.current_index))

New in version 4.1.

Changed in version 4.3: Added async for support in Python 3.5.

	
done()[source]

	Returns True if this iterator has no more results.

	
next()[source]

	Returns a Future that will yield the next available result.

Note that this Future will not be the same object as any of
the inputs.

	
tornado.gen.multi(children, quiet_exceptions=())[source]

	Runs multiple asynchronous operations in parallel.

children may either be a list or a dict whose values are
yieldable objects. multi() returns a new yieldable
object that resolves to a parallel structure containing their
results. If children is a list, the result is a list of
results in the same order; if it is a dict, the result is a dict
with the same keys.

That is, results = yield multi(list_of_futures) is equivalent
to:

results = []
for future in list_of_futures:
 results.append(yield future)

If any children raise exceptions, multi() will raise the first
one. All others will be logged, unless they are of types
contained in the quiet_exceptions argument.

If any of the inputs are YieldPoints, the returned
yieldable object is a YieldPoint. Otherwise, returns a Future.
This means that the result of multi can be used in a native
coroutine if and only if all of its children can be.

In a yield-based coroutine, it is not normally necessary to
call this function directly, since the coroutine runner will
do it automatically when a list or dict is yielded. However,
it is necessary in await-based coroutines, or to pass
the quiet_exceptions argument.

This function is available under the names multi() and Multi()
for historical reasons.

Changed in version 4.2: If multiple yieldables fail, any exceptions after the first
(which is raised) will be logged. Added the quiet_exceptions
argument to suppress this logging for selected exception types.

Changed in version 4.3: Replaced the class Multi and the function multi_future
with a unified function multi. Added support for yieldables
other than YieldPoint and Future.

	
tornado.gen.multi_future(children, quiet_exceptions=())[source]

	Wait for multiple asynchronous futures in parallel.

This function is similar to multi, but does not support
YieldPoints.

New in version 4.0.

Changed in version 4.2: If multiple Futures fail, any exceptions after the first (which is
raised) will be logged. Added the quiet_exceptions
argument to suppress this logging for selected exception types.

Deprecated since version 4.3: Use multi instead.

	
tornado.gen.Task(func, *args, **kwargs)[source]

	Adapts a callback-based asynchronous function for use in coroutines.

Takes a function (and optional additional arguments) and runs it with
those arguments plus a callback keyword argument. The argument passed
to the callback is returned as the result of the yield expression.

Changed in version 4.0: gen.Task is now a function that returns a Future, instead of
a subclass of YieldPoint. It still behaves the same way when
yielded.

	
class tornado.gen.Arguments

	The result of a Task or Wait whose callback had more than one
argument (or keyword arguments).

The Arguments object is a collections.namedtuple [https://docs.python.org/3.5/library/collections.html#collections.namedtuple] and can be
used either as a tuple (args, kwargs) or an object with attributes
args and kwargs.

	
tornado.gen.convert_yielded(*args, **kw)[source]

	Convert a yielded object into a Future.

The default implementation accepts lists, dictionaries, and Futures.

If the singledispatch [https://docs.python.org/3.5/library/functools.html#functools.singledispatch] library is available, this function
may be extended to support additional types. For example:

@convert_yielded.register(asyncio.Future)
def _(asyncio_future):
 return tornado.platform.asyncio.to_tornado_future(asyncio_future)

New in version 4.1.

	
tornado.gen.maybe_future(x)[source]

	Converts x into a Future.

If x is already a Future, it is simply returned; otherwise
it is wrapped in a new Future. This is suitable for use as
result = yield gen.maybe_future(f()) when you don’t know whether
f() returns a Future or not.

Deprecated since version 4.3: This function only handles Futures, not other yieldable objects.
Instead of maybe_future, check for the non-future result types
you expect (often just None), and yield anything unknown.

Legacy interface

Before support for Futures was introduced in Tornado 3.0,
coroutines used subclasses of YieldPoint in their yield expressions.
These classes are still supported but should generally not be used
except for compatibility with older interfaces. None of these classes
are compatible with native (await-based) coroutines.

	
class tornado.gen.YieldPoint[source]

	Base class for objects that may be yielded from the generator.

Deprecated since version 4.0: Use Futures instead.

	
start(runner)[source]

	Called by the runner after the generator has yielded.

No other methods will be called on this object before start.

	
is_ready()[source]

	Called by the runner to determine whether to resume the generator.

Returns a boolean; may be called more than once.

	
get_result()[source]

	Returns the value to use as the result of the yield expression.

This method will only be called once, and only after is_ready
has returned true.

	
class tornado.gen.Callback(key)[source]

	Returns a callable object that will allow a matching Wait to proceed.

The key may be any value suitable for use as a dictionary key, and is
used to match Callbacks to their corresponding Waits. The key
must be unique among outstanding callbacks within a single run of the
generator function, but may be reused across different runs of the same
function (so constants generally work fine).

The callback may be called with zero or one arguments; if an argument
is given it will be returned by Wait.

Deprecated since version 4.0: Use Futures instead.

	
class tornado.gen.Wait(key)[source]

	Returns the argument passed to the result of a previous Callback.

Deprecated since version 4.0: Use Futures instead.

	
class tornado.gen.WaitAll(keys)[source]

	Returns the results of multiple previous Callbacks.

The argument is a sequence of Callback keys, and the result is
a list of results in the same order.

WaitAll is equivalent to yielding a list of Wait objects.

Deprecated since version 4.0: Use Futures instead.

	
class tornado.gen.MultiYieldPoint(children, quiet_exceptions=())[source]

	Runs multiple asynchronous operations in parallel.

This class is similar to multi, but it always creates a stack
context even when no children require it. It is not compatible with
native coroutines.

Changed in version 4.2: If multiple YieldPoints fail, any exceptions after the first
(which is raised) will be logged. Added the quiet_exceptions
argument to suppress this logging for selected exception types.

Changed in version 4.3: Renamed from Multi to MultiYieldPoint. The name Multi
remains as an alias for the equivalent multi function.

Deprecated since version 4.3: Use multi instead.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Coroutines and concurrency

tornado.concurrent — Work with threads and futures

Utilities for working with threads and Futures.

Futures are a pattern for concurrent programming introduced in
Python 3.2 in the concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] package. This package defines
a mostly-compatible Future class designed for use from coroutines,
as well as some utility functions for interacting with the
concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] package.

	
class tornado.concurrent.Future[source]

	Placeholder for an asynchronous result.

A Future encapsulates the result of an asynchronous
operation. In synchronous applications Futures are used
to wait for the result from a thread or process pool; in
Tornado they are normally used with IOLoop.add_future or by
yielding them in a gen.coroutine.

tornado.concurrent.Future is similar to
concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future], but not thread-safe (and therefore
faster for use with single-threaded event loops).

In addition to exception and set_exception, methods exc_info
and set_exc_info are supported to capture tracebacks in Python 2.
The traceback is automatically available in Python 3, but in the
Python 2 futures backport this information is discarded.
This functionality was previously available in a separate class
TracebackFuture, which is now a deprecated alias for this class.

Changed in version 4.0: tornado.concurrent.Future is always a thread-unsafe Future
with support for the exc_info methods. Previously it would
be an alias for the thread-safe concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future]
if that package was available and fall back to the thread-unsafe
implementation if it was not.

Changed in version 4.1: If a Future contains an error but that error is never observed
(by calling result(), exception(), or exc_info()),
a stack trace will be logged when the Future is garbage collected.
This normally indicates an error in the application, but in cases
where it results in undesired logging it may be necessary to
suppress the logging by ensuring that the exception is observed:
f.add_done_callback(lambda f: f.exception()).

Consumer methods

	
Future.result(timeout=None)[source]

	If the operation succeeded, return its result. If it failed,
re-raise its exception.

This method takes a timeout argument for compatibility with
concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future] but it is an error to call it
before the Future is done, so the timeout is never used.

	
Future.exception(timeout=None)[source]

	If the operation raised an exception, return the Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]
object. Otherwise returns None.

This method takes a timeout argument for compatibility with
concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future] but it is an error to call it
before the Future is done, so the timeout is never used.

	
Future.exc_info()[source]

	Returns a tuple in the same format as sys.exc_info [https://docs.python.org/3.5/library/sys.html#sys.exc_info] or None.

New in version 4.0.

	
Future.add_done_callback(fn)[source]

	Attaches the given callback to the Future.

It will be invoked with the Future as its argument when the Future
has finished running and its result is available. In Tornado
consider using IOLoop.add_future instead of calling
add_done_callback directly.

	
Future.done()[source]

	Returns True if the future has finished running.

	
Future.running()[source]

	Returns True if this operation is currently running.

	
Future.cancel()[source]

	Cancel the operation, if possible.

Tornado Futures do not support cancellation, so this method always
returns False.

	
Future.cancelled()[source]

	Returns True if the operation has been cancelled.

Tornado Futures do not support cancellation, so this method
always returns False.

Producer methods

	
Future.set_result(result)[source]

	Sets the result of a Future.

It is undefined to call any of the set methods more than once
on the same object.

	
Future.set_exception(exception)[source]

	Sets the exception of a Future.

	
Future.set_exc_info(exc_info)[source]

	Sets the exception information of a Future.

Preserves tracebacks on Python 2.

New in version 4.0.

	
tornado.concurrent.FUTURES

	alias of Future

	
tornado.concurrent.run_on_executor(*args, **kwargs)[source]

	Decorator to run a synchronous method asynchronously on an executor.

The decorated method may be called with a callback keyword
argument and returns a future.

The IOLoop and executor to be used are determined by the io_loop
and executor attributes of self. To use different attributes,
pass keyword arguments to the decorator:

@run_on_executor(executor='_thread_pool')
def foo(self):
 pass

Changed in version 4.2: Added keyword arguments to use alternative attributes.

	
tornado.concurrent.return_future(f)[source]

	Decorator to make a function that returns via callback return a
Future.

The wrapped function should take a callback keyword argument
and invoke it with one argument when it has finished. To signal failure,
the function can simply raise an exception (which will be
captured by the StackContext and passed along to the Future).

From the caller’s perspective, the callback argument is optional.
If one is given, it will be invoked when the function is complete
with Future.result() as an argument. If the function fails, the
callback will not be run and an exception will be raised into the
surrounding StackContext.

If no callback is given, the caller should use the Future to
wait for the function to complete (perhaps by yielding it in a
gen.engine function, or passing it to IOLoop.add_future).

Usage:

@return_future
def future_func(arg1, arg2, callback):
 # Do stuff (possibly asynchronous)
 callback(result)

@gen.engine
def caller(callback):
 yield future_func(arg1, arg2)
 callback()

Note that @return_future and @gen.engine can be applied to the
same function, provided @return_future appears first. However,
consider using @gen.coroutine instead of this combination.

	
tornado.concurrent.chain_future(a, b)[source]

	Chain two futures together so that when one completes, so does the other.

The result (success or failure) of a will be copied to b, unless
b has already been completed or cancelled by the time a finishes.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Coroutines and concurrency

tornado.locks – Synchronization primitives

New in version 4.2.

Coordinate coroutines with synchronization primitives analogous to those the
standard library provides to threads.

(Note that these primitives are not actually thread-safe and cannot be used in
place of those from the standard library–they are meant to coordinate Tornado
coroutines in a single-threaded app, not to protect shared objects in a
multithreaded app.)

Condition

	
class tornado.locks.Condition[source]

	A condition allows one or more coroutines to wait until notified.

Like a standard threading.Condition [https://docs.python.org/3.5/library/threading.html#threading.Condition], but does not need an underlying lock
that is acquired and released.

With a Condition, coroutines can wait to be notified by other coroutines:

from tornado import gen
from tornado.ioloop import IOLoop
from tornado.locks import Condition

condition = Condition()

@gen.coroutine
def waiter():
 print("I'll wait right here")
 yield condition.wait() # Yield a Future.
 print("I'm done waiting")

@gen.coroutine
def notifier():
 print("About to notify")
 condition.notify()
 print("Done notifying")

@gen.coroutine
def runner():
 # Yield two Futures; wait for waiter() and notifier() to finish.
 yield [waiter(), notifier()]

IOLoop.current().run_sync(runner)

I'll wait right here
About to notify
Done notifying
I'm done waiting

wait takes an optional timeout argument, which is either an absolute
timestamp:

io_loop = IOLoop.current()

Wait up to 1 second for a notification.
yield condition.wait(timeout=io_loop.time() + 1)

...or a datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] for a timeout relative to the current time:

Wait up to 1 second.
yield condition.wait(timeout=datetime.timedelta(seconds=1))

The method raises tornado.gen.TimeoutError if there’s no notification
before the deadline.

	
wait(timeout=None)[source]

	Wait for notify.

Returns a Future that resolves True if the condition is notified,
or False after a timeout.

	
notify(n=1)[source]

	Wake n waiters.

	
notify_all()[source]

	Wake all waiters.

Event

	
class tornado.locks.Event[source]

	An event blocks coroutines until its internal flag is set to True.

Similar to threading.Event [https://docs.python.org/3.5/library/threading.html#threading.Event].

A coroutine can wait for an event to be set. Once it is set, calls to
yield event.wait() will not block unless the event has been cleared:

from tornado import gen
from tornado.ioloop import IOLoop
from tornado.locks import Event

event = Event()

@gen.coroutine
def waiter():
 print("Waiting for event")
 yield event.wait()
 print("Not waiting this time")
 yield event.wait()
 print("Done")

@gen.coroutine
def setter():
 print("About to set the event")
 event.set()

@gen.coroutine
def runner():
 yield [waiter(), setter()]

IOLoop.current().run_sync(runner)

Waiting for event
About to set the event
Not waiting this time
Done

	
is_set()[source]

	Return True if the internal flag is true.

	
set()[source]

	Set the internal flag to True. All waiters are awakened.

Calling wait once the flag is set will not block.

	
clear()[source]

	Reset the internal flag to False.

Calls to wait will block until set is called.

	
wait(timeout=None)[source]

	Block until the internal flag is true.

Returns a Future, which raises tornado.gen.TimeoutError after a
timeout.

Semaphore

	
class tornado.locks.Semaphore(value=1)[source]

	A lock that can be acquired a fixed number of times before blocking.

A Semaphore manages a counter representing the number of release calls
minus the number of acquire calls, plus an initial value. The acquire
method blocks if necessary until it can return without making the counter
negative.

Semaphores limit access to a shared resource. To allow access for two
workers at a time:

from tornado import gen
from tornado.ioloop import IOLoop
from tornado.locks import Semaphore

sem = Semaphore(2)

@gen.coroutine
def worker(worker_id):
 yield sem.acquire()
 try:
 print("Worker %d is working" % worker_id)
 yield use_some_resource()
 finally:
 print("Worker %d is done" % worker_id)
 sem.release()

@gen.coroutine
def runner():
 # Join all workers.
 yield [worker(i) for i in range(3)]

IOLoop.current().run_sync(runner)

Worker 0 is working
Worker 1 is working
Worker 0 is done
Worker 2 is working
Worker 1 is done
Worker 2 is done

Workers 0 and 1 are allowed to run concurrently, but worker 2 waits until
the semaphore has been released once, by worker 0.

acquire is a context manager, so worker could be written as:

@gen.coroutine
def worker(worker_id):
 with (yield sem.acquire()):
 print("Worker %d is working" % worker_id)
 yield use_some_resource()

 # Now the semaphore has been released.
 print("Worker %d is done" % worker_id)

In Python 3.5, the semaphore itself can be used as an async context
manager:

async def worker(worker_id):
 async with sem:
 print("Worker %d is working" % worker_id)
 await use_some_resource()

 # Now the semaphore has been released.
 print("Worker %d is done" % worker_id)

Changed in version 4.3: Added async with support in Python 3.5.

	
release()[source]

	Increment the counter and wake one waiter.

	
acquire(timeout=None)[source]

	Decrement the counter. Returns a Future.

Block if the counter is zero and wait for a release. The Future
raises TimeoutError after the deadline.

BoundedSemaphore

	
class tornado.locks.BoundedSemaphore(value=1)[source]

	A semaphore that prevents release() being called too many times.

If release would increment the semaphore’s value past the initial
value, it raises ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError]. Semaphores are mostly used to guard
resources with limited capacity, so a semaphore released too many times
is a sign of a bug.

	
release()[source]

	Increment the counter and wake one waiter.

	
acquire(timeout=None)

	Decrement the counter. Returns a Future.

Block if the counter is zero and wait for a release. The Future
raises TimeoutError after the deadline.

Lock

	
class tornado.locks.Lock[source]

	A lock for coroutines.

A Lock begins unlocked, and acquire locks it immediately. While it is
locked, a coroutine that yields acquire waits until another coroutine
calls release.

Releasing an unlocked lock raises RuntimeError [https://docs.python.org/3.5/library/exceptions.html#RuntimeError].

acquire supports the context manager protocol in all Python versions:

>>> from tornado import gen, locks
>>> lock = locks.Lock()
>>>
>>> @gen.coroutine
... def f():
... with (yield lock.acquire()):
... # Do something holding the lock.
... pass
...
... # Now the lock is released.

In Python 3.5, Lock also supports the async context manager
protocol. Note that in this case there is no acquire, because
async with includes both the yield and the acquire
(just as it does with threading.Lock [https://docs.python.org/3.5/library/threading.html#threading.Lock]):

>>> async def f():
... async with lock:
... # Do something holding the lock.
... pass
...
... # Now the lock is released.

Changed in version 4.3: Added async with support in Python 3.5.

	
acquire(timeout=None)[source]

	Attempt to lock. Returns a Future.

Returns a Future, which raises tornado.gen.TimeoutError after a
timeout.

	
release()[source]

	Unlock.

The first coroutine in line waiting for acquire gets the lock.

If not locked, raise a RuntimeError [https://docs.python.org/3.5/library/exceptions.html#RuntimeError].

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Coroutines and concurrency

tornado.queues – Queues for coroutines

New in version 4.2.

Classes

Queue

	
class tornado.queues.Queue(maxsize=0)[source]

	Coordinate producer and consumer coroutines.

If maxsize is 0 (the default) the queue size is unbounded.

from tornado import gen
from tornado.ioloop import IOLoop
from tornado.queues import Queue

q = Queue(maxsize=2)

@gen.coroutine
def consumer():
 while True:
 item = yield q.get()
 try:
 print('Doing work on %s' % item)
 yield gen.sleep(0.01)
 finally:
 q.task_done()

@gen.coroutine
def producer():
 for item in range(5):
 yield q.put(item)
 print('Put %s' % item)

@gen.coroutine
def main():
 # Start consumer without waiting (since it never finishes).
 IOLoop.current().spawn_callback(consumer)
 yield producer() # Wait for producer to put all tasks.
 yield q.join() # Wait for consumer to finish all tasks.
 print('Done')

IOLoop.current().run_sync(main)

Put 0
Put 1
Doing work on 0
Put 2
Doing work on 1
Put 3
Doing work on 2
Put 4
Doing work on 3
Doing work on 4
Done

In Python 3.5, Queue implements the async iterator protocol, so
consumer() could be rewritten as:

async def consumer():
 async for item in q:
 try:
 print('Doing work on %s' % item)
 yield gen.sleep(0.01)
 finally:
 q.task_done()

Changed in version 4.3: Added async for support in Python 3.5.

	
maxsize

	Number of items allowed in the queue.

	
qsize()[source]

	Number of items in the queue.

	
put(item, timeout=None)[source]

	Put an item into the queue, perhaps waiting until there is room.

Returns a Future, which raises tornado.gen.TimeoutError after a
timeout.

	
put_nowait(item)[source]

	Put an item into the queue without blocking.

If no free slot is immediately available, raise QueueFull.

	
get(timeout=None)[source]

	Remove and return an item from the queue.

Returns a Future which resolves once an item is available, or raises
tornado.gen.TimeoutError after a timeout.

	
get_nowait()[source]

	Remove and return an item from the queue without blocking.

Return an item if one is immediately available, else raise
QueueEmpty.

	
task_done()[source]

	Indicate that a formerly enqueued task is complete.

Used by queue consumers. For each get used to fetch a task, a
subsequent call to task_done tells the queue that the processing
on the task is complete.

If a join is blocking, it resumes when all items have been
processed; that is, when every put is matched by a task_done.

Raises ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError] if called more times than put.

	
join(timeout=None)[source]

	Block until all items in the queue are processed.

Returns a Future, which raises tornado.gen.TimeoutError after a
timeout.

PriorityQueue

	
class tornado.queues.PriorityQueue(maxsize=0)[source]

	A Queue that retrieves entries in priority order, lowest first.

Entries are typically tuples like (priority number, data).

from tornado.queues import PriorityQueue

q = PriorityQueue()
q.put((1, 'medium-priority item'))
q.put((0, 'high-priority item'))
q.put((10, 'low-priority item'))

print(q.get_nowait())
print(q.get_nowait())
print(q.get_nowait())

(0, 'high-priority item')
(1, 'medium-priority item')
(10, 'low-priority item')

LifoQueue

	
class tornado.queues.LifoQueue(maxsize=0)[source]

	A Queue that retrieves the most recently put items first.

from tornado.queues import LifoQueue

q = LifoQueue()
q.put(3)
q.put(2)
q.put(1)

print(q.get_nowait())
print(q.get_nowait())
print(q.get_nowait())

1
2
3

Exceptions

QueueEmpty

	
exception tornado.queues.QueueEmpty[source]

	Raised by Queue.get_nowait when the queue has no items.

QueueFull

	
exception tornado.queues.QueueFull[source]

	Raised by Queue.put_nowait when a queue is at its maximum size.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Coroutines and concurrency

tornado.process — Utilities for multiple processes

Utilities for working with multiple processes, including both forking
the server into multiple processes and managing subprocesses.

	
exception tornado.process.CalledProcessError[source]

	An alias for subprocess.CalledProcessError [https://docs.python.org/3.5/library/subprocess.html#subprocess.CalledProcessError].

	
tornado.process.cpu_count()[source]

	Returns the number of processors on this machine.

	
tornado.process.fork_processes(num_processes, max_restarts=100)[source]

	Starts multiple worker processes.

If num_processes is None or <= 0, we detect the number of cores
available on this machine and fork that number of child
processes. If num_processes is given and > 0, we fork that
specific number of sub-processes.

Since we use processes and not threads, there is no shared memory
between any server code.

Note that multiple processes are not compatible with the autoreload
module (or the autoreload=True option to tornado.web.Application
which defaults to True when debug=True).
When using multiple processes, no IOLoops can be created or
referenced until after the call to fork_processes.

In each child process, fork_processes returns its task id, a
number between 0 and num_processes. Processes that exit
abnormally (due to a signal or non-zero exit status) are restarted
with the same id (up to max_restarts times). In the parent
process, fork_processes returns None if all child processes
have exited normally, but will otherwise only exit by throwing an
exception.

	
tornado.process.task_id()[source]

	Returns the current task id, if any.

Returns None if this process was not created by fork_processes.

	
class tornado.process.Subprocess(*args, **kwargs)[source]

	Wraps subprocess.Popen with IOStream support.

The constructor is the same as subprocess.Popen with the following
additions:

	stdin, stdout, and stderr may have the value
tornado.process.Subprocess.STREAM, which will make the corresponding
attribute of the resulting Subprocess a PipeIOStream.

	A new keyword argument io_loop may be used to pass in an IOLoop.

The Subprocess.STREAM option and the set_exit_callback and
wait_for_exit methods do not work on Windows. There is
therefore no reason to use this class instead of
subprocess.Popen on that platform.

Changed in version 4.1: The io_loop argument is deprecated.

	
set_exit_callback(callback)[source]

	Runs callback when this process exits.

The callback takes one argument, the return code of the process.

This method uses a SIGCHLD handler, which is a global setting
and may conflict if you have other libraries trying to handle the
same signal. If you are using more than one IOLoop it may
be necessary to call Subprocess.initialize first to designate
one IOLoop to run the signal handlers.

In many cases a close callback on the stdout or stderr streams
can be used as an alternative to an exit callback if the
signal handler is causing a problem.

	
wait_for_exit(raise_error=True)[source]

	Returns a Future which resolves when the process exits.

Usage:

ret = yield proc.wait_for_exit()

This is a coroutine-friendly alternative to set_exit_callback
(and a replacement for the blocking subprocess.Popen.wait [https://docs.python.org/3.5/library/subprocess.html#subprocess.Popen.wait]).

By default, raises subprocess.CalledProcessError [https://docs.python.org/3.5/library/subprocess.html#subprocess.CalledProcessError] if the process
has a non-zero exit status. Use wait_for_exit(raise_error=False)
to suppress this behavior and return the exit status without raising.

New in version 4.2.

	
classmethod initialize(io_loop=None)[source]

	Initializes the SIGCHLD handler.

The signal handler is run on an IOLoop to avoid locking issues.
Note that the IOLoop used for signal handling need not be the
same one used by individual Subprocess objects (as long as the
IOLoops are each running in separate threads).

Changed in version 4.1: The io_loop argument is deprecated.

	
classmethod uninitialize()[source]

	Removes the SIGCHLD handler.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Integration with other services

	tornado.auth — Third-party login with OpenID and OAuth
	Common protocols

	Google

	Facebook

	Twitter

	tornado.wsgi — Interoperability with other Python frameworks and servers
	Running Tornado apps on WSGI servers

	Running WSGI apps on Tornado servers

	tornado.platform.asyncio — Bridge between asyncio and Tornado

	tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares

	tornado.platform.twisted — Bridges between Twisted and Tornado
	Twisted on Tornado

	Tornado on Twisted

	Twisted DNS resolver

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Integration with other services

tornado.auth — Third-party login with OpenID and OAuth

This module contains implementations of various third-party
authentication schemes.

All the classes in this file are class mixins designed to be used with
the tornado.web.RequestHandler class. They are used in two ways:

	On a login handler, use methods such as authenticate_redirect(),
authorize_redirect(), and get_authenticated_user() to
establish the user’s identity and store authentication tokens to your
database and/or cookies.

	In non-login handlers, use methods such as facebook_request()
or twitter_request() to use the authentication tokens to make
requests to the respective services.

They all take slightly different arguments due to the fact all these
services implement authentication and authorization slightly differently.
See the individual service classes below for complete documentation.

Example usage for Google OAuth:

class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
 tornado.auth.GoogleOAuth2Mixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument('code', False):
 user = yield self.get_authenticated_user(
 redirect_uri='http://your.site.com/auth/google',
 code=self.get_argument('code'))
 # Save the user with e.g. set_secure_cookie
 else:
 yield self.authorize_redirect(
 redirect_uri='http://your.site.com/auth/google',
 client_id=self.settings['google_oauth']['key'],
 scope=['profile', 'email'],
 response_type='code',
 extra_params={'approval_prompt': 'auto'})

Changed in version 4.0: All of the callback interfaces in this module are now guaranteed
to run their callback with an argument of None on error.
Previously some functions would do this while others would simply
terminate the request on their own. This change also ensures that
errors are more consistently reported through the Future interfaces.

Common protocols

These classes implement the OpenID and OAuth standards. They will
generally need to be subclassed to use them with any particular site.
The degree of customization required will vary, but in most cases
overridding the class attributes (which are named beginning with
underscores for historical reasons) should be sufficient.

	
class tornado.auth.OpenIdMixin[source]

	Abstract implementation of OpenID and Attribute Exchange.

Class attributes:

	_OPENID_ENDPOINT: the identity provider’s URI.

	
authenticate_redirect(*args, **kwargs)[source]

	Redirects to the authentication URL for this service.

After authentication, the service will redirect back to the given
callback URI with additional parameters including openid.mode.

We request the given attributes for the authenticated user by
default (name, email, language, and username). If you don’t need
all those attributes for your app, you can request fewer with
the ax_attrs keyword argument.

Changed in version 3.1: Returns a Future and takes an optional callback. These are
not strictly necessary as this method is synchronous,
but they are supplied for consistency with
OAuthMixin.authorize_redirect.

	
get_authenticated_user(*args, **kwargs)[source]

	Fetches the authenticated user data upon redirect.

This method should be called by the handler that receives the
redirect from the authenticate_redirect() method (which is
often the same as the one that calls it; in that case you would
call get_authenticated_user if the openid.mode parameter
is present and authenticate_redirect if it is not).

The result of this method will generally be used to set a cookie.

	
get_auth_http_client()[source]

	Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than
the default.

	
class tornado.auth.OAuthMixin[source]

	Abstract implementation of OAuth 1.0 and 1.0a.

See TwitterMixin below for an example implementation.

Class attributes:

	_OAUTH_AUTHORIZE_URL: The service’s OAuth authorization url.

	_OAUTH_ACCESS_TOKEN_URL: The service’s OAuth access token url.

	_OAUTH_VERSION: May be either “1.0” or “1.0a”.

	_OAUTH_NO_CALLBACKS: Set this to True if the service requires
advance registration of callbacks.

Subclasses must also override the _oauth_get_user_future and
_oauth_consumer_token methods.

	
authorize_redirect(*args, **kwargs)[source]

	Redirects the user to obtain OAuth authorization for this service.

The callback_uri may be omitted if you have previously
registered a callback URI with the third-party service. For
some services (including Friendfeed), you must use a
previously-registered callback URI and cannot specify a
callback via this method.

This method sets a cookie called _oauth_request_token which is
subsequently used (and cleared) in get_authenticated_user for
security purposes.

Note that this method is asynchronous, although it calls
RequestHandler.finish for you so it may not be necessary
to pass a callback or use the Future it returns. However,
if this method is called from a function decorated with
gen.coroutine, you must call it with yield to keep the
response from being closed prematurely.

Changed in version 3.1: Now returns a Future and takes an optional callback, for
compatibility with gen.coroutine.

	
get_authenticated_user(*args, **kwargs)[source]

	Gets the OAuth authorized user and access token.

This method should be called from the handler for your
OAuth callback URL to complete the registration process. We run the
callback with the authenticated user dictionary. This dictionary
will contain an access_key which can be used to make authorized
requests to this service on behalf of the user. The dictionary will
also contain other fields such as name, depending on the service
used.

	
_oauth_consumer_token()[source]

	Subclasses must override this to return their OAuth consumer keys.

The return value should be a dict [https://docs.python.org/3.5/library/stdtypes.html#dict] with keys key and secret.

	
_oauth_get_user_future(*args, **kwargs)[source]

	Subclasses must override this to get basic information about the
user.

Should return a Future whose result is a dictionary
containing information about the user, which may have been
retrieved by using access_token to make a request to the
service.

The access token will be added to the returned dictionary to make
the result of get_authenticated_user.

For backwards compatibility, the callback-based _oauth_get_user
method is also supported.

	
get_auth_http_client()[source]

	Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than
the default.

	
class tornado.auth.OAuth2Mixin[source]

	Abstract implementation of OAuth 2.0.

See FacebookGraphMixin or GoogleOAuth2Mixin below for example
implementations.

Class attributes:

	_OAUTH_AUTHORIZE_URL: The service’s authorization url.

	_OAUTH_ACCESS_TOKEN_URL: The service’s access token url.

	
authorize_redirect(*args, **kwargs)[source]

	Redirects the user to obtain OAuth authorization for this service.

Some providers require that you register a redirect URL with
your application instead of passing one via this method. You
should call this method to log the user in, and then call
get_authenticated_user in the handler for your
redirect URL to complete the authorization process.

Changed in version 3.1: Returns a Future and takes an optional callback. These are
not strictly necessary as this method is synchronous,
but they are supplied for consistency with
OAuthMixin.authorize_redirect.

	
oauth2_request(*args, **kwargs)[source]

	Fetches the given URL auth an OAuth2 access token.

If the request is a POST, post_args should be provided. Query
string arguments should be given as keyword arguments.

Example usage:

..testcode:

class MainHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.oauth2_request(
 "https://graph.facebook.com/me/feed",
 post_args={"message": "I am posting from my Tornado application!"},
 access_token=self.current_user["access_token"])

 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

New in version 4.3.

	
get_auth_http_client()[source]

	Returns the AsyncHTTPClient instance to be used for auth requests.

May be overridden by subclasses to use an HTTP client other than
the default.

New in version 4.3.

Google

	
class tornado.auth.GoogleOAuth2Mixin[source]

	Google authentication using OAuth2.

In order to use, register your application with Google and copy the
relevant parameters to your application settings.

	Go to the Google Dev Console at http://console.developers.google.com

	Select a project, or create a new one.

	In the sidebar on the left, select APIs & Auth.

	In the list of APIs, find the Google+ API service and set it to ON.

	In the sidebar on the left, select Credentials.

	In the OAuth section of the page, select Create New Client ID.

	Set the Redirect URI to point to your auth handler

	Copy the “Client secret” and “Client ID” to the application settings as
{“google_oauth”: {“key”: CLIENT_ID, “secret”: CLIENT_SECRET}}

New in version 3.2.

	
get_authenticated_user(*args, **kwargs)[source]

	Handles the login for the Google user, returning an access token.

The result is a dictionary containing an access_token field
([among others](https://developers.google.com/identity/protocols/OAuth2WebServer#handlingtheresponse)).
Unlike other get_authenticated_user methods in this package,
this method does not return any additional information about the user.
The returned access token can be used with OAuth2Mixin.oauth2_request
to request additional information (perhaps from
https://www.googleapis.com/oauth2/v2/userinfo)

Example usage:

class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
 tornado.auth.GoogleOAuth2Mixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument('code', False):
 access = yield self.get_authenticated_user(
 redirect_uri='http://your.site.com/auth/google',
 code=self.get_argument('code'))
 user = yield self.oauth2_request(
 "https://www.googleapis.com/oauth2/v1/userinfo",
 access_token=access["access_token"])
 # Save the user and access token with
 # e.g. set_secure_cookie.
 else:
 yield self.authorize_redirect(
 redirect_uri='http://your.site.com/auth/google',
 client_id=self.settings['google_oauth']['key'],
 scope=['profile', 'email'],
 response_type='code',
 extra_params={'approval_prompt': 'auto'})

Facebook

	
class tornado.auth.FacebookGraphMixin[source]

	Facebook authentication using the new Graph API and OAuth2.

	
get_authenticated_user(*args, **kwargs)[source]

	Handles the login for the Facebook user, returning a user object.

Example usage:

class FacebookGraphLoginHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument("code", False):
 user = yield self.get_authenticated_user(
 redirect_uri='/auth/facebookgraph/',
 client_id=self.settings["facebook_api_key"],
 client_secret=self.settings["facebook_secret"],
 code=self.get_argument("code"))
 # Save the user with e.g. set_secure_cookie
 else:
 yield self.authorize_redirect(
 redirect_uri='/auth/facebookgraph/',
 client_id=self.settings["facebook_api_key"],
 extra_params={"scope": "read_stream,offline_access"})

	
facebook_request(*args, **kwargs)[source]

	Fetches the given relative API path, e.g., “/btaylor/picture”

If the request is a POST, post_args should be provided. Query
string arguments should be given as keyword arguments.

An introduction to the Facebook Graph API can be found at
http://developers.facebook.com/docs/api

Many methods require an OAuth access token which you can
obtain through authorize_redirect and
get_authenticated_user. The user returned through that
process includes an access_token attribute that can be
used to make authenticated requests via this method.

Example usage:

..testcode:

class MainHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.facebook_request(
 "/me/feed",
 post_args={"message": "I am posting from my Tornado application!"},
 access_token=self.current_user["access_token"])

 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

The given path is relative to self._FACEBOOK_BASE_URL,
by default “https://graph.facebook.com”.

This method is a wrapper around OAuth2Mixin.oauth2_request;
the only difference is that this method takes a relative path,
while oauth2_request takes a complete url.

Changed in version 3.1: Added the ability to override self._FACEBOOK_BASE_URL.

Twitter

	
class tornado.auth.TwitterMixin[source]

	Twitter OAuth authentication.

To authenticate with Twitter, register your application with
Twitter at http://twitter.com/apps. Then copy your Consumer Key
and Consumer Secret to the application
settings twitter_consumer_key and
twitter_consumer_secret. Use this mixin on the handler for the
URL you registered as your application’s callback URL.

When your application is set up, you can use this mixin like this
to authenticate the user with Twitter and get access to their stream:

class TwitterLoginHandler(tornado.web.RequestHandler,
 tornado.auth.TwitterMixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument("oauth_token", None):
 user = yield self.get_authenticated_user()
 # Save the user using e.g. set_secure_cookie()
 else:
 yield self.authorize_redirect()

The user object returned by get_authenticated_user
includes the attributes username, name, access_token,
and all of the custom Twitter user attributes described at
https://dev.twitter.com/docs/api/1.1/get/users/show

	
authenticate_redirect(*args, **kwargs)[source]

	Just like authorize_redirect, but
auto-redirects if authorized.

This is generally the right interface to use if you are using
Twitter for single-sign on.

Changed in version 3.1: Now returns a Future and takes an optional callback, for
compatibility with gen.coroutine.

	
twitter_request(*args, **kwargs)[source]

	Fetches the given API path, e.g., statuses/user_timeline/btaylor

The path should not include the format or API version number.
(we automatically use JSON format and API version 1).

If the request is a POST, post_args should be provided. Query
string arguments should be given as keyword arguments.

All the Twitter methods are documented at http://dev.twitter.com/

Many methods require an OAuth access token which you can
obtain through authorize_redirect and
get_authenticated_user. The user returned through that
process includes an ‘access_token’ attribute that can be used
to make authenticated requests via this method. Example
usage:

class MainHandler(tornado.web.RequestHandler,
 tornado.auth.TwitterMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.twitter_request(
 "/statuses/update",
 post_args={"status": "Testing Tornado Web Server"},
 access_token=self.current_user["access_token"])
 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Integration with other services

tornado.wsgi — Interoperability with other Python frameworks and servers

WSGI support for the Tornado web framework.

WSGI is the Python standard for web servers, and allows for interoperability
between Tornado and other Python web frameworks and servers. This module
provides WSGI support in two ways:

	WSGIAdapter converts a tornado.web.Application to the WSGI application
interface. This is useful for running a Tornado app on another
HTTP server, such as Google App Engine. See the WSGIAdapter class
documentation for limitations that apply.

	WSGIContainer lets you run other WSGI applications and frameworks on the
Tornado HTTP server. For example, with this class you can mix Django
and Tornado handlers in a single server.

Running Tornado apps on WSGI servers

	
class tornado.wsgi.WSGIAdapter(application)[source]

	Converts a tornado.web.Application instance into a WSGI application.

Example usage:

import tornado.web
import tornado.wsgi
import wsgiref.simple_server

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

if __name__ == "__main__":
 application = tornado.web.Application([
 (r"/", MainHandler),
])
 wsgi_app = tornado.wsgi.WSGIAdapter(application)
 server = wsgiref.simple_server.make_server('', 8888, wsgi_app)
 server.serve_forever()

See the appengine demo [https://github.com/tornadoweb/tornado/tree/stable/demos/appengine]
for an example of using this module to run a Tornado app on Google
App Engine.

In WSGI mode asynchronous methods are not supported. This means
that it is not possible to use AsyncHTTPClient, or the
tornado.auth or tornado.websocket modules.

New in version 4.0.

	
class tornado.wsgi.WSGIApplication(handlers=None, default_host='', transforms=None, **settings)[source]

	A WSGI equivalent of tornado.web.Application.

Deprecated since version 4.0: Use a regular Application and wrap it in WSGIAdapter instead.

Running WSGI apps on Tornado servers

	
class tornado.wsgi.WSGIContainer(wsgi_application)[source]

	Makes a WSGI-compatible function runnable on Tornado’s HTTP server.

Warning

WSGI is a synchronous interface, while Tornado’s concurrency model
is based on single-threaded asynchronous execution. This means that
running a WSGI app with Tornado’s WSGIContainer is less scalable
than running the same app in a multi-threaded WSGI server like
gunicorn or uwsgi. Use WSGIContainer only when there are
benefits to combining Tornado and WSGI in the same process that
outweigh the reduced scalability.

Wrap a WSGI function in a WSGIContainer and pass it to HTTPServer to
run it. For example:

def simple_app(environ, start_response):
 status = "200 OK"
 response_headers = [("Content-type", "text/plain")]
 start_response(status, response_headers)
 return ["Hello world!\n"]

container = tornado.wsgi.WSGIContainer(simple_app)
http_server = tornado.httpserver.HTTPServer(container)
http_server.listen(8888)
tornado.ioloop.IOLoop.current().start()

This class is intended to let other frameworks (Django, web.py, etc)
run on the Tornado HTTP server and I/O loop.

The tornado.web.FallbackHandler class is often useful for mixing
Tornado and WSGI apps in the same server. See
https://github.com/bdarnell/django-tornado-demo for a complete example.

	
static environ(request)[source]

	Converts a tornado.httputil.HTTPServerRequest to a WSGI environment.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Integration with other services

tornado.platform.asyncio — Bridge between asyncio and Tornado

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Integration with other services

tornado.platform.caresresolver — Asynchronous DNS Resolver using C-Ares

This module contains a DNS resolver using the c-ares library (and its
wrapper pycares).

	
class tornado.platform.caresresolver.CaresResolver

	Name resolver based on the c-ares library.

This is a non-blocking and non-threaded resolver. It may not produce
the same results as the system resolver, but can be used for non-blocking
resolution when threads cannot be used.

c-ares fails to resolve some names when family is AF_UNSPEC,
so it is only recommended for use in AF_INET (i.e. IPv4). This is
the default for tornado.simple_httpclient, but other libraries
may default to AF_UNSPEC.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Integration with other services

tornado.platform.twisted — Bridges between Twisted and Tornado

Bridges between the Twisted reactor and Tornado IOLoop.

This module lets you run applications and libraries written for
Twisted in a Tornado application. It can be used in two modes,
depending on which library’s underlying event loop you want to use.

This module has been tested with Twisted versions 11.0.0 and newer.

Twisted on Tornado

	
class tornado.platform.twisted.TornadoReactor(io_loop=None)[source]

	Twisted reactor built on the Tornado IOLoop.

TornadoReactor implements the Twisted reactor interface on top of
the Tornado IOLoop. To use it, simply call install at the beginning
of the application:

import tornado.platform.twisted
tornado.platform.twisted.install()
from twisted.internet import reactor

When the app is ready to start, call IOLoop.current().start()
instead of reactor.run().

It is also possible to create a non-global reactor by calling
tornado.platform.twisted.TornadoReactor(io_loop). However, if
the IOLoop and reactor are to be short-lived (such as those used in
unit tests), additional cleanup may be required. Specifically, it is
recommended to call:

reactor.fireSystemEvent('shutdown')
reactor.disconnectAll()

before closing the IOLoop.

Changed in version 4.1: The io_loop argument is deprecated.

	
tornado.platform.twisted.install(io_loop=None)[source]

	Install this package as the default Twisted reactor.

install() must be called very early in the startup process,
before most other twisted-related imports. Conversely, because it
initializes the IOLoop, it cannot be called before
fork_processes or multi-process start. These
conflicting requirements make it difficult to use TornadoReactor
in multi-process mode, and an external process manager such as
supervisord is recommended instead.

Changed in version 4.1: The io_loop argument is deprecated.

Tornado on Twisted

	
class tornado.platform.twisted.TwistedIOLoop[source]

	IOLoop implementation that runs on Twisted.

TwistedIOLoop implements the Tornado IOLoop interface on top of
the Twisted reactor. Recommended usage:

from tornado.platform.twisted import TwistedIOLoop
from twisted.internet import reactor
TwistedIOLoop().install()
Set up your tornado application as usual using `IOLoop.instance`
reactor.run()

Uses the global Twisted reactor by default. To create multiple
TwistedIOLoops in the same process, you must pass a unique reactor
when constructing each one.

Not compatible with tornado.process.Subprocess.set_exit_callback
because the SIGCHLD handlers used by Tornado and Twisted conflict
with each other.

See also tornado.ioloop.IOLoop.install() for general notes on
installing alternative IOLoops.

Twisted DNS resolver

	
class tornado.platform.twisted.TwistedResolver[source]

	Twisted-based asynchronous resolver.

This is a non-blocking and non-threaded resolver. It is
recommended only when threads cannot be used, since it has
limitations compared to the standard getaddrinfo-based
Resolver and
ThreadedResolver. Specifically, it returns at
most one result, and arguments other than host and family
are ignored. It may fail to resolve when family is not
socket.AF_UNSPEC.

Requires Twisted 12.1 or newer.

Changed in version 4.1: The io_loop argument is deprecated.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Utilities

	tornado.autoreload — Automatically detect code changes in development

	tornado.log — Logging support

	tornado.options — Command-line parsing
	Global functions

	OptionParser class

	tornado.stack_context — Exception handling across asynchronous callbacks

	tornado.testing — Unit testing support for asynchronous code
	Asynchronous test cases

	Controlling log output

	Test runner

	Helper functions

	tornado.util — General-purpose utilities

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.autoreload — Automatically detect code changes in development

Automatically restart the server when a source file is modified.

Most applications should not access this module directly. Instead,
pass the keyword argument autoreload=True to the
tornado.web.Application constructor (or debug=True, which
enables this setting and several others). This will enable autoreload
mode as well as checking for changes to templates and static
resources. Note that restarting is a destructive operation and any
requests in progress will be aborted when the process restarts. (If
you want to disable autoreload while using other debug-mode features,
pass both debug=True and autoreload=False).

This module can also be used as a command-line wrapper around scripts
such as unit test runners. See the main method for details.

The command-line wrapper and Application debug modes can be used together.
This combination is encouraged as the wrapper catches syntax errors and
other import-time failures, while debug mode catches changes once
the server has started.

This module depends on IOLoop, so it will not work in WSGI applications
and Google App Engine. It also will not work correctly when HTTPServer‘s
multi-process mode is used.

Reloading loses any Python interpreter command-line arguments (e.g. -u)
because it re-executes Python using sys.executable and sys.argv.
Additionally, modifying these variables will cause reloading to behave
incorrectly.

	
tornado.autoreload.add_reload_hook(fn)[source]

	Add a function to be called before reloading the process.

Note that for open file and socket handles it is generally
preferable to set the FD_CLOEXEC flag (using fcntl [https://docs.python.org/3.5/library/fcntl.html#module-fcntl] or
tornado.platform.auto.set_close_exec) instead
of using a reload hook to close them.

	
tornado.autoreload.main()[source]

	Command-line wrapper to re-run a script whenever its source changes.

Scripts may be specified by filename or module name:

python -m tornado.autoreload -m tornado.test.runtests
python -m tornado.autoreload tornado/test/runtests.py

Running a script with this wrapper is similar to calling
tornado.autoreload.wait at the end of the script, but this wrapper
can catch import-time problems like syntax errors that would otherwise
prevent the script from reaching its call to wait.

	
tornado.autoreload.start(io_loop=None, check_time=500)[source]

	Begins watching source files for changes.

Changed in version 4.1: The io_loop argument is deprecated.

	
tornado.autoreload.wait()[source]

	Wait for a watched file to change, then restart the process.

Intended to be used at the end of scripts like unit test runners,
to run the tests again after any source file changes (but see also
the command-line interface in main)

	
tornado.autoreload.watch(filename)[source]

	Add a file to the watch list.

All imported modules are watched by default.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.log — Logging support

Logging support for Tornado.

Tornado uses three logger streams:

	tornado.access: Per-request logging for Tornado’s HTTP servers (and
potentially other servers in the future)

	tornado.application: Logging of errors from application code (i.e.
uncaught exceptions from callbacks)

	tornado.general: General-purpose logging, including any errors
or warnings from Tornado itself.

These streams may be configured independently using the standard library’s
logging [https://docs.python.org/3.5/library/logging.html#module-logging] module. For example, you may wish to send tornado.access logs
to a separate file for analysis.

	
class tornado.log.LogFormatter(color=True, fmt='%(color)s[%(levelname)1.1s %(asctime)s %(module)s:%(lineno)d]%(end_color)s %(message)s', datefmt='%y%m%d %H:%M:%S', colors={40: 1, 10: 4, 20: 2, 30: 3})[source]

	Log formatter used in Tornado.

Key features of this formatter are:

	Color support when logging to a terminal that supports it.

	Timestamps on every log line.

	Robust against str/bytes encoding problems.

This formatter is enabled automatically by
tornado.options.parse_command_line or tornado.options.parse_config_file
(unless --logging=none is used).

	Parameters:	
	color (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Enables color support.

	fmt (string [https://docs.python.org/3.5/library/string.html#module-string]) – Log message format.
It will be applied to the attributes dict of log records. The
text between %(color)s and %(end_color)s will be colored
depending on the level if color support is on.

	colors (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – color mappings from logging level to terminal color
code

	datefmt (string [https://docs.python.org/3.5/library/string.html#module-string]) – Datetime format.
Used for formatting (asctime) placeholder in prefix_fmt.

Changed in version 3.2: Added fmt and datefmt arguments.

	
tornado.log.enable_pretty_logging(options=None, logger=None)[source]

	Turns on formatted logging output as configured.

This is called automatically by tornado.options.parse_command_line
and tornado.options.parse_config_file.

	
tornado.log.define_logging_options(options=None)[source]

	Add logging-related flags to options.

These options are present automatically on the default options instance;
this method is only necessary if you have created your own OptionParser.

New in version 4.2: This function existed in prior versions but was broken and undocumented until 4.2.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.options — Command-line parsing

A command line parsing module that lets modules define their own options.

Each module defines its own options which are added to the global
option namespace, e.g.:

from tornado.options import define, options

define("mysql_host", default="127.0.0.1:3306", help="Main user DB")
define("memcache_hosts", default="127.0.0.1:11011", multiple=True,
 help="Main user memcache servers")

def connect():
 db = database.Connection(options.mysql_host)
 ...

The main() method of your application does not need to be aware of all of
the options used throughout your program; they are all automatically loaded
when the modules are loaded. However, all modules that define options
must have been imported before the command line is parsed.

Your main() method can parse the command line or parse a config file with
either:

tornado.options.parse_command_line()
or
tornado.options.parse_config_file("/etc/server.conf")

Command line formats are what you would expect (--myoption=myvalue).
Config files are just Python files. Global names become options, e.g.:

myoption = "myvalue"
myotheroption = "myothervalue"

We support datetimes [https://docs.python.org/3.5/library/datetime.html#datetime.datetime], timedeltas [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta], ints, and floats (just pass a type kwarg to
define). We also accept multi-value options. See the documentation for
define() below.

tornado.options.options is a singleton instance of OptionParser, and
the top-level functions in this module (define, parse_command_line, etc)
simply call methods on it. You may create additional OptionParser
instances to define isolated sets of options, such as for subcommands.

Note

By default, several options are defined that will configure the
standard logging [https://docs.python.org/3.5/library/logging.html#module-logging] module when parse_command_line or parse_config_file
are called. If you want Tornado to leave the logging configuration
alone so you can manage it yourself, either pass --logging=none
on the command line or do the following to disable it in code:

from tornado.options import options, parse_command_line
options.logging = None
parse_command_line()

Changed in version 4.3: Dashes and underscores are fully interchangeable in option names;
options can be defined, set, and read with any mix of the two.
Dashes are typical for command-line usage while config files require
underscores.

Global functions

	
tornado.options.define(name, default=None, type=None, help=None, metavar=None, multiple=False, group=None, callback=None)[source]

	Defines an option in the global namespace.

See OptionParser.define.

	
tornado.options.options

	Global options object. All defined options are available as attributes
on this object.

	
tornado.options.parse_command_line(args=None, final=True)[source]

	Parses global options from the command line.

See OptionParser.parse_command_line.

	
tornado.options.parse_config_file(path, final=True)[source]

	Parses global options from a config file.

See OptionParser.parse_config_file.

	
tornado.options.print_help(file=sys.stderr)[source]

	Prints all the command line options to stderr (or another file).

See OptionParser.print_help.

	
tornado.options.add_parse_callback(callback)[source]

	Adds a parse callback, to be invoked when option parsing is done.

See OptionParser.add_parse_callback

	
exception tornado.options.Error[source]

	Exception raised by errors in the options module.

OptionParser class

	
class tornado.options.OptionParser[source]

	A collection of options, a dictionary with object-like access.

Normally accessed via static functions in the tornado.options module,
which reference a global instance.

	
add_parse_callback(callback)[source]

	Adds a parse callback, to be invoked when option parsing is done.

	
as_dict()[source]

	The names and values of all options.

New in version 3.1.

	
define(name, default=None, type=None, help=None, metavar=None, multiple=False, group=None, callback=None)[source]

	Defines a new command line option.

If type is given (one of str, float, int, datetime, or timedelta)
or can be inferred from the default, we parse the command line
arguments based on the given type. If multiple is True, we accept
comma-separated values, and the option value is always a list.

For multi-value integers, we also accept the syntax x:y, which
turns into range(x, y) - very useful for long integer ranges.

help and metavar are used to construct the
automatically generated command line help string. The help
message is formatted like:

--name=METAVAR help string

group is used to group the defined options in logical
groups. By default, command line options are grouped by the
file in which they are defined.

Command line option names must be unique globally. They can be parsed
from the command line with parse_command_line or parsed from a
config file with parse_config_file.

If a callback is given, it will be run with the new value whenever
the option is changed. This can be used to combine command-line
and file-based options:

define("config", type=str, help="path to config file",
 callback=lambda path: parse_config_file(path, final=False))

With this definition, options in the file specified by --config will
override options set earlier on the command line, but can be overridden
by later flags.

	
group_dict(group)[source]

	The names and values of options in a group.

Useful for copying options into Application settings:

from tornado.options import define, parse_command_line, options

define('template_path', group='application')
define('static_path', group='application')

parse_command_line()

application = Application(
 handlers, **options.group_dict('application'))

New in version 3.1.

	
groups()[source]

	The set of option-groups created by define.

New in version 3.1.

	
items()[source]

	A sequence of (name, value) pairs.

New in version 3.1.

	
mockable()[source]

	Returns a wrapper around self that is compatible with
mock.patch [https://docs.python.org/3.5/library/unittest.mock.html#unittest.mock.patch].

The mock.patch [https://docs.python.org/3.5/library/unittest.mock.html#unittest.mock.patch] function (included in
the standard library unittest.mock [https://docs.python.org/3.5/library/unittest.mock.html#module-unittest.mock] package since Python 3.3,
or in the third-party mock package for older versions of
Python) is incompatible with objects like options that
override __getattr__ and __setattr__. This function
returns an object that can be used with mock.patch.object [https://docs.python.org/3.5/library/unittest.mock.html#unittest.mock.patch.object] to modify option values:

with mock.patch.object(options.mockable(), 'name', value):
 assert options.name == value

	
parse_command_line(args=None, final=True)[source]

	Parses all options given on the command line (defaults to
sys.argv [https://docs.python.org/3.5/library/sys.html#sys.argv]).

Note that args[0] is ignored since it is the program name
in sys.argv [https://docs.python.org/3.5/library/sys.html#sys.argv].

We return a list of all arguments that are not parsed as options.

If final is False, parse callbacks will not be run.
This is useful for applications that wish to combine configurations
from multiple sources.

	
parse_config_file(path, final=True)[source]

	Parses and loads the Python config file at the given path.

If final is False, parse callbacks will not be run.
This is useful for applications that wish to combine configurations
from multiple sources.

Changed in version 4.1: Config files are now always interpreted as utf-8 instead of
the system default encoding.

Changed in version 4.4: The special variable __file__ is available inside config
files, specifying the absolute path to the config file itself.

	
print_help(file=None)[source]

	Prints all the command line options to stderr (or another file).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.stack_context — Exception handling across asynchronous callbacks

StackContext allows applications to maintain threadlocal-like state
that follows execution as it moves to other execution contexts.

The motivating examples are to eliminate the need for explicit
async_callback wrappers (as in tornado.web.RequestHandler), and to
allow some additional context to be kept for logging.

This is slightly magic, but it’s an extension of the idea that an
exception handler is a kind of stack-local state and when that stack
is suspended and resumed in a new context that state needs to be
preserved. StackContext shifts the burden of restoring that state
from each call site (e.g. wrapping each AsyncHTTPClient callback
in async_callback) to the mechanisms that transfer control from
one context to another (e.g. AsyncHTTPClient itself, IOLoop,
thread pools, etc).

Example usage:

@contextlib.contextmanager
def die_on_error():
 try:
 yield
 except Exception:
 logging.error("exception in asynchronous operation",exc_info=True)
 sys.exit(1)

with StackContext(die_on_error):
 # Any exception thrown here *or in callback and its descendants*
 # will cause the process to exit instead of spinning endlessly
 # in the ioloop.
 http_client.fetch(url, callback)
ioloop.start()

Most applications shouldn’t have to work with StackContext directly.
Here are a few rules of thumb for when it’s necessary:

	If you’re writing an asynchronous library that doesn’t rely on a
stack_context-aware library like tornado.ioloop or tornado.iostream
(for example, if you’re writing a thread pool), use
stack_context.wrap() before any asynchronous operations to capture the
stack context from where the operation was started.

	If you’re writing an asynchronous library that has some shared
resources (such as a connection pool), create those shared resources
within a with stack_context.NullContext(): block. This will prevent
StackContexts from leaking from one request to another.

	If you want to write something like an exception handler that will
persist across asynchronous calls, create a new StackContext (or
ExceptionStackContext), and make your asynchronous calls in a with
block that references your StackContext.

	
class tornado.stack_context.StackContext(context_factory)[source]

	Establishes the given context as a StackContext that will be transferred.

Note that the parameter is a callable that returns a context
manager, not the context itself. That is, where for a
non-transferable context manager you would say:

with my_context():

StackContext takes the function itself rather than its result:

with StackContext(my_context):

The result of with StackContext() as cb: is a deactivation
callback. Run this callback when the StackContext is no longer
needed to ensure that it is not propagated any further (note that
deactivating a context does not affect any instances of that
context that are currently pending). This is an advanced feature
and not necessary in most applications.

	
class tornado.stack_context.ExceptionStackContext(exception_handler)[source]

	Specialization of StackContext for exception handling.

The supplied exception_handler function will be called in the
event of an uncaught exception in this context. The semantics are
similar to a try/finally clause, and intended use cases are to log
an error, close a socket, or similar cleanup actions. The
exc_info triple (type, value, traceback) will be passed to the
exception_handler function.

If the exception handler returns true, the exception will be
consumed and will not be propagated to other exception handlers.

	
class tornado.stack_context.NullContext[source]

	Resets the StackContext.

Useful when creating a shared resource on demand (e.g. an
AsyncHTTPClient) where the stack that caused the creating is
not relevant to future operations.

	
tornado.stack_context.wrap(fn)[source]

	Returns a callable object that will restore the current StackContext
when executed.

Use this whenever saving a callback to be executed later in a
different execution context (either in a different thread or
asynchronously in the same thread).

	
tornado.stack_context.run_with_stack_context(context, func)[source]

	Run a coroutine func in the given StackContext.

It is not safe to have a yield statement within a with StackContext
block, so it is difficult to use stack context with gen.coroutine.
This helper function runs the function in the correct context while
keeping the yield and with statements syntactically separate.

Example:

@gen.coroutine
def incorrect():
 with StackContext(ctx):
 # ERROR: this will raise StackContextInconsistentError
 yield other_coroutine()

@gen.coroutine
def correct():
 yield run_with_stack_context(StackContext(ctx), other_coroutine)

New in version 3.1.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.testing — Unit testing support for asynchronous code

Support classes for automated testing.

	AsyncTestCase and AsyncHTTPTestCase: Subclasses of unittest.TestCase
with additional support for testing asynchronous (IOLoop-based) code.

	ExpectLog and LogTrapTestCase: Make test logs less spammy.

	main(): A simple test runner (wrapper around unittest.main()) with support
for the tornado.autoreload module to rerun the tests when code changes.

Asynchronous test cases

	
class tornado.testing.AsyncTestCase(methodName='runTest')[source]

	TestCase [https://docs.python.org/3.5/library/unittest.html#unittest.TestCase] subclass for testing IOLoop-based
asynchronous code.

The unittest framework is synchronous, so the test must be
complete by the time the test method returns. This means that
asynchronous code cannot be used in quite the same way as usual.
To write test functions that use the same yield-based patterns
used with the tornado.gen module, decorate your test methods
with tornado.testing.gen_test instead of
tornado.gen.coroutine. This class also provides the stop()
and wait() methods for a more manual style of testing. The test
method itself must call self.wait(), and asynchronous
callbacks should call self.stop() to signal completion.

By default, a new IOLoop is constructed for each test and is available
as self.io_loop. This IOLoop should be used in the construction of
HTTP clients/servers, etc. If the code being tested requires a
global IOLoop, subclasses should override get_new_ioloop to return it.

The IOLoop‘s start and stop methods should not be
called directly. Instead, use self.stop and self.wait. Arguments passed to self.stop are returned from
self.wait. It is possible to have multiple wait/stop
cycles in the same test.

Example:

This test uses coroutine style.
class MyTestCase(AsyncTestCase):
 @tornado.testing.gen_test
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 response = yield client.fetch("http://www.tornadoweb.org")
 # Test contents of response
 self.assertIn("FriendFeed", response.body)

This test uses argument passing between self.stop and self.wait.
class MyTestCase2(AsyncTestCase):
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 client.fetch("http://www.tornadoweb.org/", self.stop)
 response = self.wait()
 # Test contents of response
 self.assertIn("FriendFeed", response.body)

This test uses an explicit callback-based style.
class MyTestCase3(AsyncTestCase):
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 client.fetch("http://www.tornadoweb.org/", self.handle_fetch)
 self.wait()

 def handle_fetch(self, response):
 # Test contents of response (failures and exceptions here
 # will cause self.wait() to throw an exception and end the
 # test).
 # Exceptions thrown here are magically propagated to
 # self.wait() in test_http_fetch() via stack_context.
 self.assertIn("FriendFeed", response.body)
 self.stop()

	
get_new_ioloop()[source]

	Creates a new IOLoop for this test. May be overridden in
subclasses for tests that require a specific IOLoop (usually
the singleton IOLoop.instance()).

	
stop(_arg=None, **kwargs)[source]

	Stops the IOLoop, causing one pending (or future) call to wait()
to return.

Keyword arguments or a single positional argument passed to stop() are
saved and will be returned by wait().

	
wait(condition=None, timeout=None)[source]

	Runs the IOLoop until stop is called or timeout has passed.

In the event of a timeout, an exception will be thrown. The
default timeout is 5 seconds; it may be overridden with a
timeout keyword argument or globally with the
ASYNC_TEST_TIMEOUT environment variable.

If condition is not None, the IOLoop will be restarted
after stop() until condition() returns true.

Changed in version 3.1: Added the ASYNC_TEST_TIMEOUT environment variable.

	
class tornado.testing.AsyncHTTPTestCase(methodName='runTest')[source]

	A test case that starts up an HTTP server.

Subclasses must override get_app(), which returns the
tornado.web.Application (or other HTTPServer callback) to be tested.
Tests will typically use the provided self.http_client to fetch
URLs from this server.

Example, assuming the “Hello, world” example from the user guide is in
hello.py:

import hello

class TestHelloApp(AsyncHTTPTestCase):
 def get_app(self):
 return hello.make_app()

 def test_homepage(self):
 response = self.fetch('/')
 self.assertEqual(response.code, 200)
 self.assertEqual(response.body, 'Hello, world')

That call to self.fetch() is equivalent to

self.http_client.fetch(self.get_url('/'), self.stop)
response = self.wait()

which illustrates how AsyncTestCase can turn an asynchronous operation,
like http_client.fetch(), into a synchronous operation. If you need
to do other asynchronous operations in tests, you’ll probably need to use
stop() and wait() yourself.

	
fetch(path, **kwargs)[source]

	Convenience method to synchronously fetch a url.

The given path will be appended to the local server’s host and
port. Any additional kwargs will be passed directly to
AsyncHTTPClient.fetch (and so could be used to pass
method="POST", body="...", etc).

	
get_app()[source]

	Should be overridden by subclasses to return a
tornado.web.Application or other HTTPServer callback.

	
get_http_port()[source]

	Returns the port used by the server.

A new port is chosen for each test.

	
get_httpserver_options()[source]

	May be overridden by subclasses to return additional
keyword arguments for the server.

	
get_url(path)[source]

	Returns an absolute url for the given path on the test server.

	
class tornado.testing.AsyncHTTPSTestCase(methodName='runTest')[source]

	A test case that starts an HTTPS server.

Interface is generally the same as AsyncHTTPTestCase.

	
get_ssl_options()[source]

	May be overridden by subclasses to select SSL options.

By default includes a self-signed testing certificate.

	
tornado.testing.gen_test(func=None, timeout=None)[source]

	Testing equivalent of @gen.coroutine, to be applied to test methods.

@gen.coroutine cannot be used on tests because the IOLoop is not
already running. @gen_test should be applied to test methods
on subclasses of AsyncTestCase.

Example:

class MyTest(AsyncHTTPTestCase):
 @gen_test
 def test_something(self):
 response = yield gen.Task(self.fetch('/'))

By default, @gen_test times out after 5 seconds. The timeout may be
overridden globally with the ASYNC_TEST_TIMEOUT environment variable,
or for each test with the timeout keyword argument:

class MyTest(AsyncHTTPTestCase):
 @gen_test(timeout=10)
 def test_something_slow(self):
 response = yield gen.Task(self.fetch('/'))

New in version 3.1: The timeout argument and ASYNC_TEST_TIMEOUT environment
variable.

Changed in version 4.0: The wrapper now passes along *args, **kwargs so it can be used
on functions with arguments.

Controlling log output

	
class tornado.testing.ExpectLog(logger, regex, required=True)[source]

	Context manager to capture and suppress expected log output.

Useful to make tests of error conditions less noisy, while still
leaving unexpected log entries visible. Not thread safe.

The attribute logged_stack is set to true if any exception
stack trace was logged.

Usage:

with ExpectLog('tornado.application', "Uncaught exception"):
 error_response = self.fetch("/some_page")

Changed in version 4.3: Added the logged_stack attribute.

Constructs an ExpectLog context manager.

	Parameters:	
	logger – Logger object (or name of logger) to watch. Pass
an empty string to watch the root logger.

	regex – Regular expression to match. Any log entries on
the specified logger that match this regex will be suppressed.

	required – If true, an exception will be raised if the end of
the with statement is reached without matching any log entries.

	
class tornado.testing.LogTrapTestCase(methodName='runTest')[source]

	A test case that captures and discards all logging output
if the test passes.

Some libraries can produce a lot of logging output even when
the test succeeds, so this class can be useful to minimize the noise.
Simply use it as a base class for your test case. It is safe to combine
with AsyncTestCase via multiple inheritance
(class MyTestCase(AsyncHTTPTestCase, LogTrapTestCase):)

This class assumes that only one log handler is configured and
that it is a StreamHandler [https://docs.python.org/3.5/library/logging.handlers.html#logging.StreamHandler]. This is true for both
logging.basicConfig [https://docs.python.org/3.5/library/logging.html#logging.basicConfig] and the “pretty logging” configured by
tornado.options. It is not compatible with other log buffering
mechanisms, such as those provided by some test runners.

Deprecated since version 4.1: Use the unittest module’s --buffer option instead, or ExpectLog.

Create an instance of the class that will use the named test
method when executed. Raises a ValueError if the instance does
not have a method with the specified name.

Test runner

	
tornado.testing.main(**kwargs)[source]

	A simple test runner.

This test runner is essentially equivalent to unittest.main [https://docs.python.org/3.5/library/unittest.html#unittest.main] from
the standard library, but adds support for tornado-style option
parsing and log formatting.

The easiest way to run a test is via the command line:

python -m tornado.testing tornado.test.stack_context_test

See the standard library unittest module for ways in which tests can
be specified.

Projects with many tests may wish to define a test script like
tornado/test/runtests.py. This script should define a method
all() which returns a test suite and then call
tornado.testing.main(). Note that even when a test script is
used, the all() test suite may be overridden by naming a
single test on the command line:

Runs all tests
python -m tornado.test.runtests
Runs one test
python -m tornado.test.runtests tornado.test.stack_context_test

Additional keyword arguments passed through to unittest.main().
For example, use tornado.testing.main(verbosity=2)
to show many test details as they are run.
See http://docs.python.org/library/unittest.html#unittest.main
for full argument list.

Helper functions

	
tornado.testing.bind_unused_port(reuse_port=False)[source]

	Binds a server socket to an available port on localhost.

Returns a tuple (socket, port).

Changed in version 4.4: Always binds to 127.0.0.1 without resolving the name
localhost.

	
tornado.testing.get_unused_port()[source]

	Returns a (hopefully) unused port number.

This function does not guarantee that the port it returns is available,
only that a series of get_unused_port calls in a single process return
distinct ports.

Deprecated since version Use: bind_unused_port instead, which is guaranteed to find an unused port.

	
tornado.testing.get_async_test_timeout()[source]

	Get the global timeout setting for async tests.

Returns a float, the timeout in seconds.

New in version 3.1.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Utilities

tornado.util — General-purpose utilities

Miscellaneous utility functions and classes.

This module is used internally by Tornado. It is not necessarily expected
that the functions and classes defined here will be useful to other
applications, but they are documented here in case they are.

The one public-facing part of this module is the Configurable class
and its configure method, which becomes a part of the
interface of its subclasses, including AsyncHTTPClient, IOLoop,
and Resolver.

	
class tornado.util.ObjectDict[source]

	Makes a dictionary behave like an object, with attribute-style access.

	
class tornado.util.GzipDecompressor[source]

	Streaming gzip decompressor.

The interface is like that of zlib.decompressobj [https://docs.python.org/3.5/library/zlib.html#zlib.decompressobj] (without some of the
optional arguments, but it understands gzip headers and checksums.

	
decompress(value, max_length=None)[source]

	Decompress a chunk, returning newly-available data.

Some data may be buffered for later processing; flush must
be called when there is no more input data to ensure that
all data was processed.

If max_length is given, some input data may be left over
in unconsumed_tail; you must retrieve this value and pass
it back to a future call to decompress if it is not empty.

	
unconsumed_tail

	Returns the unconsumed portion left over

	
flush()[source]

	Return any remaining buffered data not yet returned by decompress.

Also checks for errors such as truncated input.
No other methods may be called on this object after flush.

	
tornado.util.import_object(name)[source]

	Imports an object by name.

import_object(‘x’) is equivalent to ‘import x’.
import_object(‘x.y.z’) is equivalent to ‘from x.y import z’.

>>> import tornado.escape
>>> import_object('tornado.escape') is tornado.escape
True
>>> import_object('tornado.escape.utf8') is tornado.escape.utf8
True
>>> import_object('tornado') is tornado
True
>>> import_object('tornado.missing_module')
Traceback (most recent call last):
 ...
ImportError: No module named missing_module

	
tornado.util.errno_from_exception(e)[source]

	Provides the errno from an Exception object.

There are cases that the errno attribute was not set so we pull
the errno out of the args but if someone instantiates an Exception
without any args you will get a tuple error. So this function
abstracts all that behavior to give you a safe way to get the
errno.

	
tornado.util.re_unescape(s)[source]

	Unescape a string escaped by re.escape [https://docs.python.org/3.5/library/re.html#re.escape].

May raise ValueError for regular expressions which could not
have been produced by re.escape [https://docs.python.org/3.5/library/re.html#re.escape] (for example, strings containing
\d cannot be unescaped).

New in version 4.4.

	
class tornado.util.Configurable[source]

	Base class for configurable interfaces.

A configurable interface is an (abstract) class whose constructor
acts as a factory function for one of its implementation subclasses.
The implementation subclass as well as optional keyword arguments to
its initializer can be set globally at runtime with configure.

By using the constructor as the factory method, the interface
looks like a normal class, isinstance [https://docs.python.org/3.5/library/functions.html#isinstance] works as usual, etc. This
pattern is most useful when the choice of implementation is likely
to be a global decision (e.g. when epoll [https://docs.python.org/3.5/library/select.html#select.epoll] is available,
always use it instead of select [https://docs.python.org/3.5/library/select.html#select.select]), or when a
previously-monolithic class has been split into specialized
subclasses.

Configurable subclasses must define the class methods
configurable_base and configurable_default, and use the instance
method initialize instead of __init__.

	
classmethod configurable_base()[source]

	Returns the base class of a configurable hierarchy.

This will normally return the class in which it is defined.
(which is not necessarily the same as the cls classmethod parameter).

	
classmethod configurable_default()[source]

	Returns the implementation class to be used if none is configured.

	
initialize()[source]

	Initialize a Configurable subclass instance.

Configurable classes should use initialize instead of __init__.

Changed in version 4.2: Now accepts positional arguments in addition to keyword arguments.

	
classmethod configure(impl, **kwargs)[source]

	Sets the class to use when the base class is instantiated.

Keyword arguments will be saved and added to the arguments passed
to the constructor. This can be used to set global defaults for
some parameters.

	
classmethod configured_class()[source]

	Returns the currently configured class.

	
class tornado.util.ArgReplacer(func, name)[source]

	Replaces one value in an args, kwargs pair.

Inspects the function signature to find an argument by name
whether it is passed by position or keyword. For use in decorators
and similar wrappers.

	
get_old_value(args, kwargs, default=None)[source]

	Returns the old value of the named argument without replacing it.

Returns default if the argument is not present.

	
replace(new_value, args, kwargs)[source]

	Replace the named argument in args, kwargs with new_value.

Returns (old_value, args, kwargs). The returned args and
kwargs objects may not be the same as the input objects, or
the input objects may be mutated.

If the named argument was not found, new_value will be added
to kwargs and None will be returned as old_value.

	
tornado.util.timedelta_to_seconds(td)[source]

	Equivalent to td.total_seconds() (introduced in python 2.7).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Frequently Asked Questions

	Why isn’t this example with time.sleep() running in parallel?

	My code is asynchronous, but it’s not running in parallel in two browser tabs.

Why isn’t this example with time.sleep() running in parallel?

Many people’s first foray into Tornado’s concurrency looks something like
this:

class BadExampleHandler(RequestHandler):
 def get(self):
 for i in range(5):
 print(i)
 time.sleep(1)

Fetch this handler twice at the same time and you’ll see that the second
five-second countdown doesn’t start until the first one has completely
finished. The reason for this is that time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep] is a blocking
function: it doesn’t allow control to return to the IOLoop so that other
handlers can be run.

Of course, time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep] is really just a placeholder in these examples,
the point is to show what happens when something in a handler gets slow.
No matter what the real code is doing, to achieve concurrency blocking
code must be replaced with non-blocking equivalents. This means one of three things:

	Find a coroutine-friendly equivalent. For time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep], use
tornado.gen.sleep instead:

class CoroutineSleepHandler(RequestHandler):
 @gen.coroutine
 def get(self):
 for i in range(5):
 print(i)
 yield gen.sleep(1)

When this option is available, it is usually the best approach.
See the Tornado wiki [https://github.com/tornadoweb/tornado/wiki/Links]
for links to asynchronous libraries that may be useful.

	Find a callback-based equivalent. Similar to the first option,
callback-based libraries are available for many tasks, although they
are slightly more complicated to use than a library designed for
coroutines. These are typically used with tornado.gen.Task as an
adapter:

class CoroutineTimeoutHandler(RequestHandler):
 @gen.coroutine
 def get(self):
 io_loop = IOLoop.current()
 for i in range(5):
 print(i)
 yield gen.Task(io_loop.add_timeout, io_loop.time() + 1)

Again, the
Tornado wiki [https://github.com/tornadoweb/tornado/wiki/Links]
can be useful to find suitable libraries.

	Run the blocking code on another thread. When asynchronous libraries
are not available, concurrent.futures.ThreadPoolExecutor [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor] can be used
to run any blocking code on another thread. This is a universal solution
that can be used for any blocking function whether an asynchronous
counterpart exists or not:

executor = concurrent.futures.ThreadPoolExecutor(8)

class ThreadPoolHandler(RequestHandler):
 @gen.coroutine
 def get(self):
 for i in range(5):
 print(i)
 yield executor.submit(time.sleep, 1)

See the Asynchronous I/O chapter of the Tornado
user’s guide for more on blocking and asynchronous functions.

My code is asynchronous, but it’s not running in parallel in two browser tabs.

Even when a handler is asynchronous and non-blocking, it can be surprisingly
tricky to verify this. Browsers will recognize that you are trying to
load the same page in two different tabs and delay the second request
until the first has finished. To work around this and see that the server
is in fact working in parallel, do one of two things:

	Add something to your urls to make them unique. Instead of
http://localhost:8888 in both tabs, load
http://localhost:8888/?x=1 in one and
http://localhost:8888/?x=2 in the other.

	Use two different browsers. For example, Firefox will be able to load
a url even while that same url is being loaded in a Chrome tab.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

Release notes

	What’s new in Tornado 4.4.1
	Jul 23, 2016

	What’s new in Tornado 4.4
	Jul 15, 2016

	What’s new in Tornado 4.3
	Nov 6, 2015

	What’s new in Tornado 4.2.1
	Jul 17, 2015

	What’s new in Tornado 4.2
	May 26, 2015

	What’s new in Tornado 4.1
	Feb 7, 2015

	What’s new in Tornado 4.0.2
	Sept 10, 2014

	What’s new in Tornado 4.0.1
	Aug 12, 2014

	What’s new in Tornado 4.0
	July 15, 2014

	What’s new in Tornado 3.2.2
	June 3, 2014

	What’s new in Tornado 3.2.1
	May 5, 2014

	What’s new in Tornado 3.2
	Jan 14, 2014

	What’s new in Tornado 3.1.1
	Sep 1, 2013

	What’s new in Tornado 3.1
	Jun 15, 2013

	What’s new in Tornado 3.0.2
	Jun 2, 2013

	What’s new in Tornado 3.0.1
	Apr 8, 2013

	What’s new in Tornado 3.0
	Mar 29, 2013

	What’s new in Tornado 2.4.1
	Nov 24, 2012

	What’s new in Tornado 2.4
	Sep 4, 2012

	What’s new in Tornado 2.3
	May 31, 2012

	What’s new in Tornado 2.2.1
	Apr 23, 2012

	What’s new in Tornado 2.2
	Jan 30, 2012

	What’s new in Tornado 2.1.1
	Oct 4, 2011

	What’s new in Tornado 2.1
	Sep 20, 2011

	What’s new in Tornado 2.0
	Jun 21, 2011

	What’s new in Tornado 1.2.1
	Mar 3, 2011

	What’s new in Tornado 1.2
	Feb 20, 2011

	What’s new in Tornado 1.1.1
	Feb 8, 2011

	What’s new in Tornado 1.1
	Sep 7, 2010

	What’s new in Tornado 1.0.1
	Aug 13, 2010

	What’s new in Tornado 1.0
	July 22, 2010

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.4.1

Jul 23, 2016

tornado.web

	Fixed a regression in Tornado 4.4 which caused URL regexes
containing backslash escapes outside capturing groups to be
rejected.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.4

Jul 15, 2016

General

	Tornado now requires Python 2.7 or 3.3+; versions 2.6 and 3.2 are no
longer supported. Pypy3 is still supported even though its latest
release is mainly based on Python 3.2.

	The monotonic [https://pypi.python.org/pypi/monotonic] package is
now supported as an alternative to Monotime [https://pypi.python.org/pypi/Monotime] for monotonic clock support
on Python 2.

tornado.curl_httpclient

	Failures in _curl_setup_request no longer cause the
max_clients pool to be exhausted.

	Non-ascii header values are now handled correctly.

tornado.gen

	with_timeout now accepts any yieldable object (except
YieldPoint), not just tornado.concurrent.Future.

tornado.httpclient

	The errors raised by timeouts now indicate what state the request
was in; the error message is no longer simply “599 Timeout”.

	Calling repr [https://docs.python.org/3.5/library/functions.html#repr] on a tornado.httpclient.HTTPError no longer raises
an error.

tornado.httpserver

	Int-like enums (including http.HTTPStatus [https://docs.python.org/3.5/library/http.html#http.HTTPStatus]) can now be used as
status codes.

	Responses with status code 204 No Content no longer emit a
Content-Length: 0 header.

tornado.ioloop

	Improved performance when there are large numbers of active timeouts.

tornado.netutil

	All included Resolver implementations raise IOError [https://docs.python.org/3.5/library/exceptions.html#IOError] (or a
subclass) for any resolution failure.

tornado.options

	Options can now be modified with subscript syntax in addition to
attribute syntax.

	The special variable __file__ is now available inside config files.

tornado.simple_httpclient

	HTTP/1.0 (not 1.1) responses without a Content-Length header now
work correctly.

tornado.tcpserver

	TCPServer.bind now accepts a reuse_port argument.

tornado.testing

	Test sockets now always use 127.0.0.1 instead of localhost.
This avoids conflicts when the automatically-assigned port is
available on IPv4 but not IPv6, or in unusual network configurations
when localhost has multiple IP addresses.

tornado.web

	image/svg+xml is now on the list of compressible mime types.

	Fixed an error on Python 3 when compression is used with multiple
Vary headers.

tornado.websocket

	WebSocketHandler.__init__ now uses super [https://docs.python.org/3.5/library/functions.html#super], which improves
support for multiple inheritance.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.3

Nov 6, 2015

Highlights

	The new async/await keywords in Python 3.5 are supported. In most cases,
async def can be used in place of the @gen.coroutine decorator.
Inside a function defined with async def, use await instead of
yield to wait on an asynchronous operation. Coroutines defined with
async/await will be faster than those defined with @gen.coroutine and
yield, but do not support some features including Callback/Wait or
the ability to yield a Twisted Deferred. See the users’
guide for more.

	The async/await keywords are also available when compiling with Cython in
older versions of Python.

Deprecation notice

	This will be the last release of Tornado to support Python 2.6 or 3.2.
Note that PyPy3 will continue to be supported even though it implements
a mix of Python 3.2 and 3.3 features.

Installation

	Tornado has several new dependencies: ordereddict on Python 2.6,
singledispatch on all Python versions prior to 3.4 (This was an
optional dependency in prior versions of Tornado, and is now
mandatory), and backports_abc>=0.4 on all versions prior to
3.5. These dependencies will be installed automatically when installing
with pip or setup.py install. These dependencies will not
be required when running on Google App Engine.

	Binary wheels are provided for Python 3.5 on Windows (32 and 64 bit).

tornado.auth

	New method OAuth2Mixin.oauth2_request can be used to make authenticated
requests with an access token.

	Now compatible with callbacks that have been compiled with Cython.

tornado.autoreload

	Fixed an issue with the autoreload command-line wrapper in which
imports would be incorrectly interpreted as relative.

tornado.curl_httpclient

	Fixed parsing of multi-line headers.

	allow_nonstandard_methods=True now bypasses body sanity checks,
in the same way as in simple_httpclient.

	The PATCH method now allows a body without
allow_nonstandard_methods=True.

tornado.gen

	WaitIterator now supports the async for statement on Python 3.5.

	@gen.coroutine can be applied to functions compiled with Cython.
On python versions prior to 3.5, the backports_abc package must
be installed for this functionality.

	Multi and multi_future are deprecated and replaced by
a unified function multi.

tornado.httpclient

	tornado.httpclient.HTTPError is now copyable with the copy [https://docs.python.org/3.5/library/copy.html#module-copy] module.

tornado.httpserver

	Requests containing both Content-Length and Transfer-Encoding
will be treated as an error.

tornado.httputil

	HTTPHeaders can now be pickled and unpickled.

tornado.ioloop

	IOLoop(make_current=True) now works as intended instead
of raising an exception.

	The Twisted and asyncio IOLoop implementations now clear
current() when they exit, like the standard IOLoops.

	IOLoop.add_callback is faster in the single-threaded case.

	IOLoop.add_callback no longer raises an error when called on
a closed IOLoop, but the callback will not be invoked.

tornado.iostream

	Coroutine-style usage of IOStream now converts most errors into
StreamClosedError, which has the effect of reducing log noise from
exceptions that are outside the application’s control (especially
SSL errors).

	StreamClosedError now has a real_error attribute which indicates
why the stream was closed. It is the same as the error attribute of
IOStream but may be more easily accessible than the IOStream itself.

	Improved error handling in read_until_close.

	Logging is less noisy when an SSL server is port scanned.

	EINTR is now handled on all reads.

tornado.locale

	tornado.locale.load_translations now accepts encodings other than
UTF-8. UTF-16 and UTF-8 will be detected automatically if a BOM is
present; for other encodings load_translations has an encoding
parameter.

tornado.locks

	Lock and Semaphore now support the async with statement on
Python 3.5.

tornado.log

	A new time-based log rotation mode is available with
--log_rotate_mode=time, --log-rotate-when, and
log-rotate-interval.

tornado.netutil

	bind_sockets now supports SO_REUSEPORT with the reuse_port=True
argument.

tornado.options

	Dashes and underscores are now fully interchangeable in option names.

tornado.queues

	Queue now supports the async for statement on Python 3.5.

tornado.simple_httpclient

	When following redirects, streaming_callback and
header_callback will no longer be run on the redirect responses
(only the final non-redirect).

	Responses containing both Content-Length and Transfer-Encoding
will be treated as an error.

tornado.template

	tornado.template.ParseError now includes the filename in addition to
line number.

	Whitespace handling has become more configurable. The Loader
constructor now has a whitespace argument, there is a new
template_whitespace Application setting, and there is a new
{% whitespace %} template directive. All of these options take
a mode name defined in the tornado.template.filter_whitespace function.
The default mode is single, which is the same behavior as prior
versions of Tornado.

	Non-ASCII filenames are now supported.

tornado.testing

	ExpectLog objects now have a boolean logged_stack attribute to
make it easier to test whether an exception stack trace was logged.

tornado.web

	The hard limit of 4000 bytes per outgoing header has been removed.

	StaticFileHandler returns the correct Content-Type for files
with .gz, .bz2, and .xz extensions.

	Responses smaller than 1000 bytes will no longer be compressed.

	The default gzip compression level is now 6 (was 9).

	Fixed a regression in Tornado 4.2.1 that broke StaticFileHandler
with a path of /.

	tornado.web.HTTPError is now copyable with the copy [https://docs.python.org/3.5/library/copy.html#module-copy] module.

	The exception Finish now accepts an argument which will be passed to
the method RequestHandler.finish.

	New Application setting xsrf_cookie_kwargs can be used to set
additional attributes such as secure or httponly on the
XSRF cookie.

	Application.listen now returns the HTTPServer it created.

tornado.websocket

	Fixed handling of continuation frames when compression is enabled.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.2.1

Jul 17, 2015

Security fix

	This release fixes a path traversal vulnerability in StaticFileHandler,
in which files whose names started with the static_path directory
but were not actually in that directory could be accessed.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.2

May 26, 2015

Backwards-compatibility notes

	SSLIOStream.connect and IOStream.start_tls now validate certificates
by default.

	Certificate validation will now use the system CA root certificates instead
of certifi when possible (i.e. Python 2.7.9+ or 3.4+). This includes
IOStream and simple_httpclient, but not curl_httpclient.

	The default SSL configuration has become stricter, using
ssl.create_default_context [https://docs.python.org/3.5/library/ssl.html#ssl.create_default_context] where available on the client side.
(On the server side, applications are encouraged to migrate from the
ssl_options dict-based API to pass an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] instead).

	The deprecated classes in the tornado.auth module, GoogleMixin,
FacebookMixin, and FriendFeedMixin have been removed.

New modules: tornado.locks and tornado.queues

These modules provide classes for coordinating coroutines, merged from
Toro [https://toro.readthedocs.io].

To port your code from Toro’s queues to Tornado 4.2, import Queue,
PriorityQueue, or LifoQueue from tornado.queues instead of from
toro.

Use Queue instead of Toro’s JoinableQueue. In Tornado the methods
join and task_done are available on all queues, not on a
special JoinableQueue.

Tornado queues raise exceptions specific to Tornado instead of reusing
exceptions from the Python standard library.
Therefore instead of catching the standard queue.Empty [https://docs.python.org/3.5/library/queue.html#queue.Empty] exception from
Queue.get_nowait, catch the special tornado.queues.QueueEmpty exception,
and instead of catching the standard queue.Full [https://docs.python.org/3.5/library/queue.html#queue.Full] from Queue.get_nowait,
catch tornado.queues.QueueFull.

To port from Toro’s locks to Tornado 4.2, import Condition, Event,
Semaphore, BoundedSemaphore, or Lock from tornado.locks
instead of from toro.

Toro’s Semaphore.wait allowed a coroutine to wait for the semaphore to
be unlocked without acquiring it. This encouraged unorthodox patterns; in
Tornado, just use acquire.

Toro’s Event.wait raised a Timeout exception after a timeout. In
Tornado, Event.wait raises tornado.gen.TimeoutError.

Toro’s Condition.wait also raised Timeout, but in Tornado, the Future
returned by Condition.wait resolves to False after a timeout:

@gen.coroutine
def await_notification():
 if not (yield condition.wait(timeout=timedelta(seconds=1))):
 print('timed out')
 else:
 print('condition is true')

In lock and queue methods, wherever Toro accepted deadline as a keyword
argument, Tornado names the argument timeout instead.

Toro’s AsyncResult is not merged into Tornado, nor its exceptions
NotReady and AlreadySet. Use a Future instead. If you wrote code like
this:

from tornado import gen
import toro

result = toro.AsyncResult()

@gen.coroutine
def setter():
 result.set(1)

@gen.coroutine
def getter():
 value = yield result.get()
 print(value) # Prints "1".

Then the Tornado equivalent is:

from tornado import gen
from tornado.concurrent import Future

result = Future()

@gen.coroutine
def setter():
 result.set_result(1)

@gen.coroutine
def getter():
 value = yield result
 print(value) # Prints "1".

tornado.autoreload

	Improved compatibility with Windows.

	Fixed a bug in Python 3 if a module was imported during a reload check.

tornado.concurrent

	run_on_executor now accepts arguments to control which attributes
it uses to find the IOLoop and executor.

tornado.curl_httpclient

	Fixed a bug that would cause the client to stop processing requests
if an exception occurred in certain places while there is a queue.

tornado.escape

	xhtml_escape now supports numeric character references in hex
format ()

tornado.gen

	WaitIterator no longer uses weak references, which fixes several
garbage-collection-related bugs.

	tornado.gen.Multi and tornado.gen.multi_future (which are used when
yielding a list or dict in a coroutine) now log any exceptions after the
first if more than one Future fails (previously they would be logged
when the Future was garbage-collected, but this is more reliable).
Both have a new keyword argument quiet_exceptions to suppress
logging of certain exception types; to use this argument you must
call Multi or multi_future directly instead of simply yielding
a list.

	multi_future now works when given multiple copies of the same Future.

	On Python 3, catching an exception in a coroutine no longer leads to
leaks via Exception.__context__.

tornado.httpclient

	The raise_error argument now works correctly with the synchronous
HTTPClient.

	The synchronous HTTPClient no longer interferes with IOLoop.current().

tornado.httpserver

	HTTPServer is now a subclass of tornado.util.Configurable.

tornado.httputil

	HTTPHeaders can now be copied with copy.copy [https://docs.python.org/3.5/library/copy.html#copy.copy] and copy.deepcopy [https://docs.python.org/3.5/library/copy.html#copy.deepcopy].

tornado.ioloop

	The IOLoop constructor now has a make_current keyword argument
to control whether the new IOLoop becomes IOLoop.current().

	Third-party implementations of IOLoop should accept **kwargs
in their initialize methods and pass them to the superclass
implementation.

	PeriodicCallback is now more efficient when the clock jumps forward
by a large amount.

tornado.iostream

	SSLIOStream.connect and IOStream.start_tls now validate certificates
by default.

	New method SSLIOStream.wait_for_handshake allows server-side applications
to wait for the handshake to complete in order to verify client certificates
or use NPN/ALPN.

	The Future returned by SSLIOStream.connect now resolves after the
handshake is complete instead of as soon as the TCP connection is
established.

	Reduced logging of SSL errors.

	BaseIOStream.read_until_close now works correctly when a
streaming_callback is given but callback is None (i.e. when
it returns a Future)

tornado.locale

	New method GettextLocale.pgettext allows additional context to be
supplied for gettext translations.

tornado.log

	define_logging_options now works correctly when given a non-default
options object.

tornado.process

	New method Subprocess.wait_for_exit is a coroutine-friendly
version of Subprocess.set_exit_callback.

tornado.simple_httpclient

	Improved performance on Python 3 by reusing a single ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext].

	New constructor argument max_body_size controls the maximum response
size the client is willing to accept. It may be bigger than
max_buffer_size if streaming_callback is used.

tornado.tcpserver

	TCPServer.handle_stream may be a coroutine (so that any exceptions
it raises will be logged).

tornado.util

	import_object now supports unicode strings on Python 2.

	Configurable.initialize now supports positional arguments.

tornado.web

	Key versioning support for cookie signing. cookie_secret application
setting can now contain a dict of valid keys with version as key. The
current signing key then must be specified via key_version setting.

	Parsing of the If-None-Match header now follows the RFC and supports
weak validators.

	Passing secure=False or httponly=False to
RequestHandler.set_cookie now works as expected (previously only the
presence of the argument was considered and its value was ignored).

	RequestHandler.get_arguments now requires that its strip argument
be of type bool. This helps prevent errors caused by the slightly dissimilar
interfaces between the singular and plural methods.

	Errors raised in _handle_request_exception are now logged more reliably.

	RequestHandler.redirect now works correctly when called from a handler
whose path begins with two slashes.

	Passing messages containing % characters to tornado.web.HTTPError
no longer causes broken error messages.

tornado.websocket

	The on_close method will no longer be called more than once.

	When the other side closes a connection, we now echo the received close
code back instead of sending an empty close frame.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.1

Feb 7, 2015

Highlights

	If a Future contains an exception but that exception is never
examined or re-raised (e.g. by yielding the Future), a stack
trace will be logged when the Future is garbage-collected.

	New class tornado.gen.WaitIterator provides a way to iterate
over Futures in the order they resolve.

	The tornado.websocket module now supports compression via the
“permessage-deflate” extension. Override
WebSocketHandler.get_compression_options to enable on the server
side, and use the compression_options keyword argument to
websocket_connect on the client side.

	When the appropriate packages are installed, it is possible to yield
asyncio.Future [https://docs.python.org/3.5/library/asyncio-task.html#asyncio.Future] or Twisted Defered objects in Tornado coroutines.

Backwards-compatibility notes

	HTTPServer now calls start_request with the correct
arguments. This change is backwards-incompatible, affecting any
application which implemented HTTPServerConnectionDelegate by
following the example of Application instead of the documented
method signatures.

tornado.concurrent

	If a Future contains an exception but that exception is never
examined or re-raised (e.g. by yielding the Future), a stack
trace will be logged when the Future is garbage-collected.

	Future now catches and logs exceptions in its callbacks.

tornado.curl_httpclient

	tornado.curl_httpclient now supports request bodies for PATCH
and custom methods.

	tornado.curl_httpclient now supports resubmitting bodies after
following redirects for methods other than POST.

	curl_httpclient now runs the streaming and header callbacks on
the IOLoop.

	tornado.curl_httpclient now uses its own logger for debug output
so it can be filtered more easily.

tornado.gen

	New class tornado.gen.WaitIterator provides a way to iterate
over Futures in the order they resolve.

	When the singledispatch [https://docs.python.org/3.5/library/functools.html#functools.singledispatch] library is available (standard on
Python 3.4, available via pip install singledispatch on older versions),
the convert_yielded function can be used to make other kinds of objects
yieldable in coroutines.

	New function tornado.gen.sleep is a coroutine-friendly
analogue to time.sleep [https://docs.python.org/3.5/library/time.html#time.sleep].

	gen.engine now correctly captures the stack context for its callbacks.

tornado.httpclient

	tornado.httpclient.HTTPRequest accepts a new argument
raise_error=False to suppress the default behavior of raising an
error for non-200 response codes.

tornado.httpserver

	HTTPServer now calls start_request with the correct
arguments. This change is backwards-incompatible, afffecting any
application which implemented HTTPServerConnectionDelegate by
following the example of Application instead of the documented
method signatures.

	HTTPServer now tolerates extra newlines which are sometimes inserted
between requests on keep-alive connections.

	HTTPServer can now use keep-alive connections after a request
with a chunked body.

	HTTPServer now always reports HTTP/1.1 instead of echoing
the request version.

tornado.httputil

	New function tornado.httputil.split_host_and_port for parsing
the netloc portion of URLs.

	The context argument to HTTPServerRequest is now optional,
and if a context is supplied the remote_ip attribute is also optional.

	HTTPServerRequest.body is now always a byte string (previously the default
empty body would be a unicode string on python 3).

	Header parsing now works correctly when newline-like unicode characters
are present.

	Header parsing again supports both CRLF and bare LF line separators.

	Malformed multipart/form-data bodies will always be logged
quietly instead of raising an unhandled exception; previously
the behavior was inconsistent depending on the exact error.

tornado.ioloop

	The kqueue and select IOLoop implementations now report
writeability correctly, fixing flow control in IOStream.

	When a new IOLoop is created, it automatically becomes “current”
for the thread if there is not already a current instance.

	New method PeriodicCallback.is_running can be used to see
whether the PeriodicCallback has been started.

tornado.iostream

	IOStream.start_tls now uses the server_hostname parameter
for certificate validation.

	SSLIOStream will no longer consume 100% CPU after certain error conditions.

	SSLIOStream no longer logs EBADF errors during the handshake as they
can result from nmap scans in certain modes.

tornado.options

	parse_config_file now always decodes the config
file as utf8 on Python 3.

	tornado.options.define more accurately finds the module defining the
option.

tornado.platform.asyncio

	It is now possible to yield asyncio.Future objects in coroutines
when the singledispatch [https://docs.python.org/3.5/library/functools.html#functools.singledispatch] library is available and
tornado.platform.asyncio has been imported.

	New methods tornado.platform.asyncio.to_tornado_future and
to_asyncio_future convert between
the two libraries’ Future classes.

tornado.platform.twisted

	It is now possible to yield Deferred objects in coroutines
when the singledispatch [https://docs.python.org/3.5/library/functools.html#functools.singledispatch] library is available and
tornado.platform.twisted has been imported.

tornado.tcpclient

	TCPClient will no longer raise an exception due to an ill-timed
timeout.

tornado.tcpserver

	TCPServer no longer ignores its read_chunk_size argument.

tornado.testing

	AsyncTestCase has better support for multiple exceptions. Previously
it would silently swallow all but the last; now it raises the first
and logs all the rest.

	AsyncTestCase now cleans up Subprocess state on tearDown when
necessary.

tornado.web

	The asynchronous decorator now understands concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future]
in addition to tornado.concurrent.Future.

	StaticFileHandler no longer logs a stack trace if the connection is
closed while sending the file.

	RequestHandler.send_error now supports a reason keyword
argument, similar to tornado.web.HTTPError.

	RequestHandler.locale now has a property setter.

	Application.add_handlers hostname matching now works correctly with
IPv6 literals.

	Redirects for the Application default_host setting now match
the request protocol instead of redirecting HTTPS to HTTP.

	Malformed _xsrf cookies are now ignored instead of causing
uncaught exceptions.

	Application.start_request now has the same signature as
HTTPServerConnectionDelegate.start_request.

tornado.websocket

	The tornado.websocket module now supports compression via the
“permessage-deflate” extension. Override
WebSocketHandler.get_compression_options to enable on the server
side, and use the compression_options keyword argument to
websocket_connect on the client side.

	WebSocketHandler no longer logs stack traces when the connection
is closed.

	WebSocketHandler.open now accepts *args, **kw for consistency
with RequestHandler.get and related methods.

	The Sec-WebSocket-Version header now includes all supported versions.

	websocket_connect now has a on_message_callback keyword argument
for callback-style use without read_message().

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.0.2

Sept 10, 2014

Bug fixes

	Fixed a bug that could sometimes cause a timeout to fire after being
cancelled.

	AsyncTestCase once again passes along arguments to test methods,
making it compatible with extensions such as Nose’s test generators.

	StaticFileHandler can again compress its responses when gzip is enabled.

	simple_httpclient passes its max_buffer_size argument to the
underlying stream.

	Fixed a reference cycle that can lead to increased memory consumption.

	add_accept_handler will now limit the number of times it will call
accept [https://docs.python.org/3.5/library/socket.html#socket.socket.accept] per IOLoop iteration, addressing a potential
starvation issue.

	Improved error handling in IOStream.connect (primarily for FreeBSD
systems)

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.0.1

Aug 12, 2014

	The build will now fall back to pure-python mode if the C extension
fails to build for any reason (previously it would fall back for some
errors but not others).

	IOLoop.call_at and IOLoop.call_later now always return
a timeout handle for use with IOLoop.remove_timeout.

	If any callback of a PeriodicCallback or IOStream returns a
Future, any error raised in that future will now be logged
(similar to the behavior of IOLoop.add_callback).

	Fixed an exception in client-side websocket connections when the
connection is closed.

	simple_httpclient once again correctly handles 204 status
codes with no content-length header.

	Fixed a regression in simple_httpclient that would result in
timeouts for certain kinds of errors.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 4.0

July 15, 2014

Highlights

	The tornado.web.stream_request_body decorator allows large files to be
uploaded with limited memory usage.

	Coroutines are now faster and are used extensively throughout Tornado itself.
More methods now return Futures, including most IOStream
methods and RequestHandler.flush.

	Many user-overridden methods are now allowed to return a Future
for flow control.

	HTTP-related code is now shared between the tornado.httpserver,
tornado.simple_httpclient and tornado.wsgi modules, making support
for features such as chunked and gzip encoding more consistent.
HTTPServer now uses new delegate interfaces defined in tornado.httputil
in addition to its old single-callback interface.

	New module tornado.tcpclient creates TCP connections with non-blocking
DNS, SSL handshaking, and support for IPv6.

Backwards-compatibility notes

	tornado.concurrent.Future is no longer thread-safe; use
concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future] when thread-safety is needed.

	Tornado now depends on the certifi [https://pypi.python.org/pypi/certifi]
package instead of bundling its own copy of the Mozilla CA list. This will
be installed automatically when using pip or easy_install.

	This version includes the changes to the secure cookie format first
introduced in version 3.2.1, and the xsrf token change
in version 3.2.2. If you are upgrading from an earlier
version, see those versions’ release notes.

	WebSocket connections from other origin sites are now rejected by default.
To accept cross-origin websocket connections, override
the new method WebSocketHandler.check_origin.

	WebSocketHandler no longer supports the old draft 76 protocol
(this mainly affects Safari 5.x browsers). Applications should use
non-websocket workarounds for these browsers.

	Authors of alternative IOLoop implementations should see the changes
to IOLoop.add_handler in this release.

	The RequestHandler.async_callback and WebSocketHandler.async_callback
wrapper functions have been removed; they have been obsolete for a long
time due to stack contexts (and more recently coroutines).

	curl_httpclient now requires a minimum of libcurl version 7.21.1 and
pycurl 7.18.2.

	Support for RequestHandler.get_error_html has been removed;
override RequestHandler.write_error instead.

Other notes

	The git repository has moved to https://github.com/tornadoweb/tornado.
All old links should be redirected to the new location.

	An announcement mailing list [http://groups.google.com/group/python-tornado-announce] is now available.

	All Tornado modules are now importable on Google App Engine (although
the App Engine environment does not allow the system calls used
by IOLoop so many modules are still unusable).

tornado.auth

	Fixed a bug in .FacebookMixin on Python 3.

	When using the Future interface, exceptions are more reliably delivered
to the caller.

tornado.concurrent

	tornado.concurrent.Future is now always thread-unsafe (previously
it would be thread-safe if the concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] package was available).
This improves performance and provides more consistent semantics.
The parts of Tornado that accept Futures will accept both Tornado’s
thread-unsafe Futures and the thread-safe concurrent.futures.Future [https://docs.python.org/3.5/library/concurrent.futures.html#concurrent.futures.Future].

	tornado.concurrent.Future now includes all the functionality
of the old TracebackFuture class. TracebackFuture is now
simply an alias for Future.

tornado.curl_httpclient

	curl_httpclient now passes along the HTTP “reason” string
in response.reason.

tornado.gen

	Performance of coroutines has been improved.

	Coroutines no longer generate StackContexts by default, but they
will be created on demand when needed.

	The internals of the tornado.gen module have been rewritten to
improve performance when using Futures, at the expense of some
performance degradation for the older YieldPoint interfaces.

	New function with_timeout wraps a Future and raises an exception
if it doesn’t complete in a given amount of time.

	New object moment can be yielded to allow the IOLoop to run for
one iteration before resuming.

	Task is now a function returning a Future instead of a YieldPoint
subclass. This change should be transparent to application code, but
allows Task to take advantage of the newly-optimized Future
handling.

tornado.http1connection

	New module contains the HTTP implementation shared by tornado.httpserver
and tornado.simple_httpclient.

tornado.httpclient

	The command-line HTTP client (python -m tornado.httpclient $URL)
now works on Python 3.

	Fixed a memory leak in AsyncHTTPClient shutdown that affected
applications that created many HTTP clients and IOLoops.

	New client request parameter decompress_response replaces
the existing use_gzip parameter; both names are accepted.

tornado.httpserver

	tornado.httpserver.HTTPRequest has moved to
tornado.httputil.HTTPServerRequest.

	HTTP implementation has been unified with tornado.simple_httpclient
in tornado.http1connection.

	Now supports Transfer-Encoding: chunked for request bodies.

	Now supports Content-Encoding: gzip for request bodies if
decompress_request=True is passed to the HTTPServer constructor.

	The connection attribute of HTTPServerRequest is now documented
for public use; applications are expected to write their responses
via the HTTPConnection interface.

	The HTTPServerRequest.write and HTTPServerRequest.finish methods
are now deprecated. (RequestHandler.write and RequestHandler.finish
are not deprecated; this only applies to the methods on
HTTPServerRequest)

	HTTPServer now supports HTTPServerConnectionDelegate in addition to
the old request_callback interface. The delegate interface supports
streaming of request bodies.

	HTTPServer now detects the error of an application sending a
Content-Length error that is inconsistent with the actual content.

	New constructor arguments max_header_size and max_body_size
allow separate limits to be set for different parts of the request.
max_body_size is applied even in streaming mode.

	New constructor argument chunk_size can be used to limit the amount
of data read into memory at one time per request.

	New constructor arguments idle_connection_timeout and body_timeout
allow time limits to be placed on the reading of requests.

	Form-encoded message bodies are now parsed for all HTTP methods, not just
POST, PUT, and PATCH.

tornado.httputil

	HTTPServerRequest was moved to this module from tornado.httpserver.

	New base classes HTTPConnection, HTTPServerConnectionDelegate,
and HTTPMessageDelegate define the interaction between applications
and the HTTP implementation.

tornado.ioloop

	IOLoop.add_handler and related methods now accept file-like objects
in addition to raw file descriptors. Passing the objects is recommended
(when possible) to avoid a garbage-collection-related problem in unit tests.

	New method IOLoop.clear_instance makes it possible to uninstall the
singleton instance.

	Timeout scheduling is now more robust against slow callbacks.

	IOLoop.add_timeout is now a bit more efficient.

	When a function run by the IOLoop returns a Future and that Future
has an exception, the IOLoop will log the exception.

	New method IOLoop.spawn_callback simplifies the process of launching
a fire-and-forget callback that is separated from the caller’s stack context.

	New methods IOLoop.call_later and IOLoop.call_at simplify the
specification of relative or absolute timeouts (as opposed to
add_timeout, which used the type of its argument).

tornado.iostream

	The callback argument to most IOStream methods is now optional.
When called without a callback the method will return a Future
for use with coroutines.

	New method IOStream.start_tls converts an IOStream to an
SSLIOStream.

	No longer gets confused when an IOError or OSError without
an errno attribute is raised.

	BaseIOStream.read_bytes now accepts a partial keyword argument,
which can be used to return before the full amount has been read.
This is a more coroutine-friendly alternative to streaming_callback.

	BaseIOStream.read_until and read_until_regex now acept a
max_bytes keyword argument which will cause the request to fail if
it cannot be satisfied from the given number of bytes.

	IOStream no longer reads from the socket into memory if it does not
need data to satisfy a pending read. As a side effect, the close callback
will not be run immediately if the other side closes the connection
while there is unconsumed data in the buffer.

	The default chunk_size has been increased to 64KB (from 4KB)

	The IOStream constructor takes a new keyword argument
max_write_buffer_size (defaults to unlimited). Calls to
BaseIOStream.write will raise StreamBufferFullError if the amount
of unsent buffered data exceeds this limit.

	ETIMEDOUT errors are no longer logged. If you need to distinguish
timeouts from other forms of closed connections, examine stream.error
from a close callback.

tornado.netutil

	When bind_sockets chooses a port automatically, it will now use
the same port for IPv4 and IPv6.

	TLS compression is now disabled by default on Python 3.3 and higher
(it is not possible to change this option in older versions).

tornado.options

	It is now possible to disable the default logging configuration
by setting options.logging to None instead of the string "none".

tornado.platform.asyncio

	Now works on Python 2.6.

	Now works with Trollius version 0.3.

tornado.platform.twisted

	TwistedIOLoop now works on Python 3.3+ (with Twisted 14.0.0+).

tornado.simple_httpclient

	simple_httpclient has better support for IPv6, which is now enabled
by default.

	Improved default cipher suite selection (Python 2.7+).

	HTTP implementation has been unified with tornado.httpserver
in tornado.http1connection

	Streaming request bodies are now supported via the body_producer
keyword argument to tornado.httpclient.HTTPRequest.

	The expect_100_continue keyword argument to
tornado.httpclient.HTTPRequest allows the use of the HTTP Expect:
100-continue feature.

	simple_httpclient now raises the original exception (e.g. an IOError [https://docs.python.org/3.5/library/exceptions.html#IOError])
in more cases, instead of converting everything to HTTPError.

tornado.stack_context

	The stack context system now has less performance overhead when no
stack contexts are active.

tornado.tcpclient

	New module which creates TCP connections and IOStreams, including
name resolution, connecting, and SSL handshakes.

tornado.testing

	AsyncTestCase now attempts to detect test methods that are generators
but were not run with @gen_test or any similar decorator (this would
previously result in the test silently being skipped).

	Better stack traces are now displayed when a test times out.

	The @gen_test decorator now passes along *args, **kwargs so it
can be used on functions with arguments.

	Fixed the test suite when unittest2 is installed on Python 3.

tornado.web

	It is now possible to support streaming request bodies with the
stream_request_body decorator and the new RequestHandler.data_received
method.

	RequestHandler.flush now returns a Future if no callback is given.

	New exception Finish may be raised to finish a request without
triggering error handling.

	When gzip support is enabled, all text/* mime types will be compressed,
not just those on a whitelist.

	Application now implements the HTTPMessageDelegate interface.

	HEAD requests in StaticFileHandler no longer read the entire file.

	StaticFileHandler now streams response bodies to the client.

	New setting compress_response replaces the existing gzip
setting; both names are accepted.

	XSRF cookies that were not generated by this module (i.e. strings without
any particular formatting) are once again accepted (as long as the
cookie and body/header match). This pattern was common for
testing and non-browser clients but was broken by the changes in
Tornado 3.2.2.

tornado.websocket

	WebSocket connections from other origin sites are now rejected by default.
Browsers do not use the same-origin policy for WebSocket connections as they
do for most other browser-initiated communications. This can be surprising
and a security risk, so we disallow these connections on the server side
by default. To accept cross-origin websocket connections, override
the new method WebSocketHandler.check_origin.

	WebSocketHandler.close and WebSocketClientConnection.close now
support code and reason arguments to send a status code and
message to the other side of the connection when closing. Both classes
also have close_code and close_reason attributes to receive these
values when the other side closes.

	The C speedup module now builds correctly with MSVC, and can support
messages larger than 2GB on 64-bit systems.

	The fallback mechanism for detecting a missing C compiler now
works correctly on Mac OS X.

	Arguments to WebSocketHandler.open are now decoded in the same way
as arguments to RequestHandler.get and similar methods.

	It is now allowed to override prepare in a WebSocketHandler,
and this method may generate HTTP responses (error pages) in the usual
way. The HTTP response methods are still not allowed once the
WebSocket handshake has completed.

tornado.wsgi

	New class WSGIAdapter supports running a Tornado Application on
a WSGI server in a way that is more compatible with Tornado’s non-WSGI
HTTPServer. WSGIApplication is deprecated in favor of using
WSGIAdapter with a regular Application.

	WSGIAdapter now supports gzipped output.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.2.2

June 3, 2014

Security fixes

	The XSRF token is now encoded with a random mask on each request.
This makes it safe to include in compressed pages without being
vulnerable to the BREACH attack [http://breachattack.com].
This applies to most applications that use both the xsrf_cookies
and gzip options (or have gzip applied by a proxy).

Backwards-compatibility notes

	If Tornado 3.2.2 is run at the same time as older versions on the same
domain, there is some potential for issues with the differing cookie
versions. The Application setting xsrf_cookie_version=1 can
be used for a transitional period to generate the older cookie format
on newer servers.

Other changes

	tornado.platform.asyncio is now compatible with trollius version 0.3.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.2.1

May 5, 2014

Security fixes

	The signed-value format used by RequestHandler.set_secure_cookie
and RequestHandler.get_secure_cookie has changed to be more secure.
This is a disruptive change. The secure_cookie functions
take new version parameters to support transitions between cookie
formats.

	The new cookie format fixes a vulnerability that may be present in
applications that use multiple cookies where the name of one cookie
is a prefix of the name of another.

	To minimize disruption, cookies in the older format will be accepted
by default until they expire. Applications that may be vulnerable
can reject all cookies in the older format by passing min_version=2
to RequestHandler.get_secure_cookie.

	Thanks to Joost Pol of Certified Secure [https://www.certifiedsecure.com]
for reporting this issue.

Backwards-compatibility notes

	Signed cookies issued by RequestHandler.set_secure_cookie in Tornado
3.2.1 cannot be read by older releases. If you need to run 3.2.1
in parallel with older releases, you can pass version=1 to
RequestHandler.set_secure_cookie to issue cookies that are
backwards-compatible (but have a known weakness, so this option
should only be used for a transitional period).

Other changes

	The C extension used to speed up the websocket module now compiles
correctly on Windows with MSVC and 64-bit mode. The fallback to
the pure-Python alternative now works correctly on Mac OS X machines
with no C compiler installed.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.2

Jan 14, 2014

Installation

	Tornado now depends on the backports.ssl_match_hostname [https://pypi.python.org/pypi/backports.ssl_match_hostname] when
running on Python 2. This will be installed automatically when using pip
or easy_install

	Tornado now includes an optional C extension module, which greatly improves
performance of websockets. This extension will be built automatically
if a C compiler is found at install time.

New modules

	The tornado.platform.asyncio module provides integration with the
asyncio module introduced in Python 3.4 (also available for Python
3.3 with pip install asyncio).

tornado.auth

	Added GoogleOAuth2Mixin support authentication to Google services
with OAuth 2 instead of OpenID and OAuth 1.

	FacebookGraphMixin has been updated to use the current Facebook login
URL, which saves a redirect.

tornado.concurrent

	TracebackFuture now accepts a timeout keyword argument (although
it is still incorrect to use a non-zero timeout in non-blocking code).

tornado.curl_httpclient

	tornado.curl_httpclient now works on Python 3 with the
soon-to-be-released pycurl 7.19.3, which will officially support
Python 3 for the first time. Note that there are some unofficial
Python 3 ports of pycurl (Ubuntu has included one for its past
several releases); these are not supported for use with Tornado.

tornado.escape

	xhtml_escape now escapes apostrophes as well.

	tornado.escape.utf8, to_unicode, and native_str now raise
TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] instead of AssertionError [https://docs.python.org/3.5/library/exceptions.html#AssertionError] when given an invalid value.

tornado.gen

	Coroutines may now yield dicts in addition to lists to wait for
multiple tasks in parallel.

	Improved performance of tornado.gen when yielding a Future that is
already done.

tornado.httpclient

	tornado.httpclient.HTTPRequest now uses property setters so that
setting attributes after construction applies the same conversions
as __init__ (e.g. converting the body attribute to bytes).

tornado.httpserver

	Malformed x-www-form-urlencoded request bodies will now log a warning
and continue instead of causing the request to fail (similar to the existing
handling of malformed multipart/form-data bodies. This is done mainly
because some libraries send this content type by default even when the data
is not form-encoded.

	Fix some error messages for unix sockets (and other non-IP sockets)

tornado.ioloop

	IOLoop now uses handle_callback_exception consistently for
error logging.

	IOLoop now frees callback objects earlier, reducing memory usage
while idle.

	IOLoop will no longer call logging.basicConfig [https://docs.python.org/3.5/library/logging.html#logging.basicConfig] if there is a handler
defined for the root logger or for the tornado or tornado.application
loggers (previously it only looked at the root logger).

tornado.iostream

	IOStream now recognizes ECONNABORTED error codes in more places
(which was mainly an issue on Windows).

	IOStream now frees memory earlier if a connection is closed while
there is data in the write buffer.

	PipeIOStream now handles EAGAIN error codes correctly.

	SSLIOStream now initiates the SSL handshake automatically without
waiting for the application to try and read or write to the connection.

	Swallow a spurious exception from set_nodelay when a connection
has been reset.

tornado.locale

	Locale.format_date no longer forces the use of absolute
dates in Russian.

tornado.log

	Fix an error from tornado.log.enable_pretty_logging when
sys.stderr [https://docs.python.org/3.5/library/sys.html#sys.stderr] does not have an isatty method.

	tornado.log.LogFormatter now accepts keyword arguments fmt
and datefmt.

tornado.netutil

	is_valid_ip (and therefore HTTPRequest.remote_ip) now rejects
empty strings.

	Synchronously using ThreadedResolver at import time to resolve
a unicode hostname no longer deadlocks.

tornado.platform.twisted

	TwistedResolver now has better error handling.

tornado.process

	Subprocess no longer leaks file descriptors if subprocess.Popen [https://docs.python.org/3.5/library/subprocess.html#subprocess.Popen] fails.

tornado.simple_httpclient

	simple_httpclient now applies the connect_timeout to requests
that are queued and have not yet started.

	On Python 2.6, simple_httpclient now uses TLSv1 instead of SSLv3.

	simple_httpclient now enforces the connect timeout during DNS resolution.

	The embedded ca-certificates.crt file has been updated with the current
Mozilla CA list.

tornado.web

	StaticFileHandler no longer fails if the client requests a Range that
is larger than the entire file (Facebook has a crawler that does this).

	RequestHandler.on_connection_close now works correctly on subsequent
requests of a keep-alive connection.

	New application setting default_handler_class can be used to easily
set up custom 404 pages.

	New application settings autoreload, compiled_template_cache,
static_hash_cache, and serve_traceback can be used to control
individual aspects of debug mode.

	New methods RequestHandler.get_query_argument and
RequestHandler.get_body_argument and new attributes
HTTPRequest.query_arguments and HTTPRequest.body_arguments allow access
to arguments without intermingling those from the query string with those
from the request body.

	RequestHandler.decode_argument and related methods now raise
an HTTPError(400) instead of UnicodeDecodeError [https://docs.python.org/3.5/library/exceptions.html#UnicodeDecodeError] when the
argument could not be decoded.

	RequestHandler.clear_all_cookies now accepts domain and path
arguments, just like clear_cookie.

	It is now possible to specify handlers by name when using the URLSpec
class.

	Application now accepts 4-tuples to specify the name parameter
(which previously required constructing a URLSpec object instead of
a tuple).

	Fixed an incorrect error message when handler methods return a value
other than None or a Future.

	Exceptions will no longer be logged twice when using both @asynchronous
and @gen.coroutine

tornado.websocket

	WebSocketHandler.write_message now raises WebSocketClosedError instead
of AttributeError [https://docs.python.org/3.5/library/exceptions.html#AttributeError] when the connection has been closed.

	websocket_connect now accepts preconstructed HTTPRequest objects.

	Fix a bug with WebSocketHandler when used with some proxies that
unconditionally modify the Connection header.

	websocket_connect now returns an error immediately for refused connections
instead of waiting for the timeout.

	WebSocketClientConnection now has a close method.

tornado.wsgi

	WSGIContainer now calls the iterable’s close() method even if
an error is raised, in compliance with the spec.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.1.1

Sep 1, 2013

	StaticFileHandler no longer fails if the client requests a Range that
is larger than the entire file (Facebook has a crawler that does this).

	RequestHandler.on_connection_close now works correctly on subsequent
requests of a keep-alive connection.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.1

Jun 15, 2013

Multiple modules

	Many reference cycles have been broken up throughout the package,
allowing for more efficient garbage collection on CPython.

	Silenced some log messages when connections are opened and immediately
closed (i.e. port scans), or other situations related to closed
connections.

	Various small speedups: HTTPHeaders case normalization, UIModule
proxy objects, precompile some regexes.

tornado.auth

	OAuthMixin always sends oauth_version=1.0 in its
request as required by the spec.

	FacebookGraphMixin now uses self._FACEBOOK_BASE_URL
in facebook_request to allow the base url to be
overridden.

	The authenticate_redirect and authorize_redirect methods in the
tornado.auth mixin classes all now return Futures. These methods
are asynchronous in OAuthMixin and derived classes, although they
do not take a callback. The Future these methods return must be
yielded if they are called from a function decorated with gen.coroutine
(but not gen.engine).

	TwitterMixin now uses /account/verify_credentials to get information
about the logged-in user, which is more robust against changing screen
names.

	The demos directory (in the source distribution) has a new
twitter demo using TwitterMixin.

tornado.escape

	url_escape and url_unescape have a new plus argument (defaulting
to True for consistency with the previous behavior) which specifies
whether they work like urllib.parse.unquote [https://docs.python.org/3.5/library/urllib.parse.html#urllib.parse.unquote] or urllib.parse.unquote_plus [https://docs.python.org/3.5/library/urllib.parse.html#urllib.parse.unquote_plus].

tornado.gen

	Fixed a potential memory leak with long chains of tornado.gen coroutines.

tornado.httpclient

	tornado.httpclient.HTTPRequest takes a new argument auth_mode,
which can be either basic or digest. Digest authentication
is only supported with tornado.curl_httpclient.

	tornado.curl_httpclient no longer goes into an infinite loop when
pycurl returns a negative timeout.

	curl_httpclient now supports the PATCH and OPTIONS methods
without the use of allow_nonstandard_methods=True.

	Worked around a class of bugs in libcurl that would result in
errors from IOLoop.update_handler in various scenarios including
digest authentication and socks proxies.

	The TCP_NODELAY flag is now set when appropriate in simple_httpclient.

	simple_httpclient no longer logs exceptions, since those exceptions
are made available to the caller as HTTPResponse.error.

tornado.httpserver

	tornado.httpserver.HTTPServer handles malformed HTTP headers more
gracefully.

	HTTPServer now supports lists of IPs in X-Forwarded-For
(it chooses the last, i.e. nearest one).

	Memory is now reclaimed promptly on CPython when an HTTP request
fails because it exceeded the maximum upload size.

	The TCP_NODELAY flag is now set when appropriate in HTTPServer.

	The HTTPServer no_keep_alive option is now respected with
HTTP 1.0 connections that explicitly pass Connection: keep-alive.

	The Connection: keep-alive check for HTTP 1.0 connections is now
case-insensitive.

	The str [https://docs.python.org/3.5/library/stdtypes.html#str] and repr [https://docs.python.org/3.5/library/functions.html#repr] of tornado.httpserver.HTTPRequest no longer
include the request body, reducing log spam on errors (and potential
exposure/retention of private data).

tornado.httputil

	The cache used in HTTPHeaders will no longer grow without bound.

tornado.ioloop

	Some IOLoop implementations (such as pyzmq) accept objects
other than integer file descriptors; these objects will now have
their .close() method called when the IOLoop` is closed with
``all_fds=True.

	The stub handles left behind by IOLoop.remove_timeout will now get
cleaned up instead of waiting to expire.

tornado.iostream

	Fixed a bug in BaseIOStream.read_until_close that would sometimes
cause data to be passed to the final callback instead of the streaming
callback.

	The IOStream close callback is now run more reliably if there is
an exception in _try_inline_read.

	New method BaseIOStream.set_nodelay can be used to set the
TCP_NODELAY flag.

	Fixed a case where errors in SSLIOStream.connect (and
SimpleAsyncHTTPClient) were not being reported correctly.

tornado.locale

	Locale.format_date now works on Python 3.

tornado.netutil

	The default Resolver implementation now works on Solaris.

	Resolver now has a close method.

	Fixed a potential CPU DoS when tornado.netutil.ssl_match_hostname
is used on certificates with an abusive wildcard pattern.

	All instances of ThreadedResolver now share a single thread pool,
whose size is set by the first one to be created (or the static
Resolver.configure method).

	ExecutorResolver is now documented for public use.

	bind_sockets now works in configurations with incomplete IPv6 support.

tornado.options

	tornado.options.define with multiple=True now works on Python 3.

	tornado.options.options and other OptionParser instances support some
new dict-like methods: items(), iteration over keys,
and (read-only) access to options with square braket syntax.
OptionParser.group_dict returns all options with a given group
name, and OptionParser.as_dict returns all options.

tornado.process

	tornado.process.Subprocess no longer leaks file descriptors into
the child process, which fixes a problem in which the child could not
detect that the parent process had closed its stdin pipe.

	Subprocess.set_exit_callback now works for subprocesses created
without an explicit io_loop parameter.

tornado.stack_context

	tornado.stack_context has been rewritten and is now much faster.

	New function run_with_stack_context facilitates the use of stack
contexts with coroutines.

tornado.tcpserver

	The constructors of TCPServer and HTTPServer now take a
max_buffer_size keyword argument.

tornado.template

	Some internal names used by the template system have been changed;
now all “reserved” names in templates start with _tt_.

tornado.testing

	tornado.testing.AsyncTestCase.wait now raises the correct exception
when it has been modified by tornado.stack_context.

	tornado.testing.gen_test can now be called as @gen_test(timeout=60)
to give some tests a longer timeout than others.

	The environment variable ASYNC_TEST_TIMEOUT can now be set to
override the default timeout for AsyncTestCase.wait and gen_test.

	bind_unused_port now passes None instead of 0 as the port
to getaddrinfo, which works better with some unusual network
configurations.

tornado.util

	tornado.util.import_object now works with top-level module names that
do not contain a dot.

	tornado.util.import_object now consistently raises ImportError [https://docs.python.org/3.5/library/exceptions.html#ImportError]
instead of AttributeError [https://docs.python.org/3.5/library/exceptions.html#AttributeError] when it fails.

tornado.web

	The handlers list passed to the tornado.web.Application constructor
and add_handlers methods can now contain
lists in addition to tuples and URLSpec objects.

	tornado.web.StaticFileHandler now works on Windows when the client
passes an If-Modified-Since timestamp before 1970.

	New method RequestHandler.log_exception can be overridden to
customize the logging behavior when an exception is uncaught. Most
apps that currently override _handle_request_exception can now
use a combination of RequestHandler.log_exception and
write_error.

	RequestHandler.get_argument now raises MissingArgumentError
(a subclass of tornado.web.HTTPError, which is what it raised previously)
if the argument cannot be found.

	Application.reverse_url now uses url_escape with plus=False,
i.e. spaces are encoded as %20 instead of +.

	Arguments extracted from the url path are now decoded with
url_unescape with plus=False, so plus signs are left as-is
instead of being turned into spaces.

	RequestHandler.send_error will now only be called once per request,
even if multiple exceptions are caught by the stack context.

	The tornado.web.asynchronous decorator is no longer necessary for
methods that return a Future (i.e. those that use the gen.coroutine
or return_future decorators)

	RequestHandler.prepare may now be asynchronous if it returns a
Future. The asynchronous decorator is not used with
prepare; one of the Future-related decorators should be used instead.

	RequestHandler.current_user may now be assigned to normally.

	RequestHandler.redirect no longer silently strips control characters
and whitespace. It is now an error to pass control characters, newlines
or tabs.

	StaticFileHandler has been reorganized internally and now has additional
extension points that can be overridden in subclasses.

	StaticFileHandler now supports HTTP Range requests.
StaticFileHandler is still not suitable for files too large to
comfortably fit in memory, but Range support is necessary in some
browsers to enable seeking of HTML5 audio and video.

	StaticFileHandler now uses longer hashes by default, and uses the same
hashes for Etag as it does for versioned urls.

	StaticFileHandler.make_static_url and RequestHandler.static_url
now have an additional keyword argument include_version to suppress
the url versioning.

	StaticFileHandler now reads its file in chunks, which will reduce
memory fragmentation.

	Fixed a problem with the Date header and cookie expiration dates
when the system locale is set to a non-english configuration.

tornado.websocket

	WebSocketHandler now catches StreamClosedError and runs
on_close immediately instead of logging a
stack trace.

	New method WebSocketHandler.set_nodelay can be used to set the
TCP_NODELAY flag.

tornado.wsgi

	Fixed an exception in WSGIContainer when the connection is closed
while output is being written.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.0.2

Jun 2, 2013

	tornado.auth.TwitterMixin now defaults to version 1.1 of the
Twitter API, instead of version 1.0 which is being discontinued on
June 11 [https://dev.twitter.com/calendar]. It also now uses HTTPS
when talking to Twitter.

	Fixed a potential memory leak with a long chain of gen.coroutine
or gen.engine functions.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.0.1

Apr 8, 2013

	The interface of tornado.auth.FacebookGraphMixin is now consistent
with its documentation and the rest of the module. The
get_authenticated_user and facebook_request methods return a
Future and the callback argument is optional.

	The tornado.testing.gen_test decorator will no longer be recognized
as a (broken) test by nose.

	Work around a bug in Ubuntu 13.04 betas involving an incomplete backport
of the ssl.match_hostname [https://docs.python.org/3.5/library/ssl.html#ssl.match_hostname] function.

	tornado.websocket.websocket_connect now fails cleanly when it attempts
to connect to a non-websocket url.

	tornado.testing.LogTrapTestCase once again works with byte strings
on Python 2.

	The request attribute of tornado.httpclient.HTTPResponse is
now always an HTTPRequest, never a _RequestProxy.

	Exceptions raised by the tornado.gen module now have better messages
when tuples are used as callback keys.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 3.0

Mar 29, 2013

Highlights

	The callback argument to many asynchronous methods is now
optional, and these methods return a Future. The tornado.gen
module now understands Futures, and these methods can be used
directly without a gen.Task wrapper.

	New function IOLoop.current returns the IOLoop that is running
on the current thread (as opposed to IOLoop.instance, which
returns a specific thread’s (usually the main thread’s) IOLoop.

	New class tornado.netutil.Resolver provides an asynchronous
interface to DNS resolution. The default implementation is still
blocking, but non-blocking implementations are available using one
of three optional dependencies: ThreadedResolver
using the concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] thread pool,
tornado.platform.caresresolver.CaresResolver using the pycares
library, or tornado.platform.twisted.TwistedResolver using twisted

	Tornado’s logging is now less noisy, and it no longer goes directly
to the root logger, allowing for finer-grained configuration.

	New class tornado.process.Subprocess wraps subprocess.Popen [https://docs.python.org/3.5/library/subprocess.html#subprocess.Popen] with
PipeIOStream access to the child’s file descriptors.

	IOLoop now has a static configure
method like the one on AsyncHTTPClient, which can be used to
select an IOLoop implementation other than the default.

	IOLoop can now optionally use a monotonic clock if available
(see below for more details).

Backwards-incompatible changes

	Python 2.5 is no longer supported. Python 3 is now supported in a single
codebase instead of using 2to3

	The tornado.database module has been removed. It is now available
as a separate package, torndb [https://github.com/bdarnell/torndb]

	Functions that take an io_loop parameter now default to
IOLoop.current() instead of IOLoop.instance().

	Empty HTTP request arguments are no longer ignored. This applies to
HTTPRequest.arguments and RequestHandler.get_argument[s]
in WSGI and non-WSGI modes.

	On Python 3, tornado.escape.json_encode no longer accepts byte strings.

	On Python 3, the get_authenticated_user methods in tornado.auth
now return character strings instead of byte strings.

	tornado.netutil.TCPServer has moved to its own module,
tornado.tcpserver.

	The Tornado test suite now requires unittest2 when run on Python 2.6.

	tornado.options.options is no longer a subclass of dict [https://docs.python.org/3.5/library/stdtypes.html#dict]; attribute-style
access is now required.

Detailed changes by module

Multiple modules

	Tornado no longer logs to the root logger. Details on the new logging
scheme can be found under the tornado.log module. Note that in some
cases this will require that you add an explicit logging configuration
in order to see any output (perhaps just calling logging.basicConfig()),
although both IOLoop.start() and tornado.options.parse_command_line
will do this for you.

	On python 3.2+, methods that take an ssl_options argument (on
SSLIOStream, TCPServer, and HTTPServer) now accept either a
dictionary of options or an ssl.SSLContext [https://docs.python.org/3.5/library/ssl.html#ssl.SSLContext] object.

	New optional dependency on concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] to provide better support
for working with threads. concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] is in the standard library
for Python 3.2+, and can be installed on older versions with
pip install futures.

tornado.autoreload

	tornado.autoreload is now more reliable when there are errors at import
time.

	Calling tornado.autoreload.start (or creating an Application with
debug=True) twice on the same IOLoop now does nothing (instead of
creating multiple periodic callbacks). Starting autoreload on
more than one IOLoop in the same process now logs a warning.

	Scripts run by autoreload no longer inherit __future__ imports
used by Tornado.

tornado.auth

	On Python 3, the get_authenticated_user method family now returns
character strings instead of byte strings.

	Asynchronous methods defined in tornado.auth now return a
Future, and their callback argument is optional. The
Future interface is preferred as it offers better error handling
(the previous interface just logged a warning and returned None).

	The tornado.auth mixin classes now define a method
get_auth_http_client, which can be overridden to use a non-default
AsyncHTTPClient instance (e.g. to use a different IOLoop)

	Subclasses of OAuthMixin are encouraged to override
OAuthMixin._oauth_get_user_future instead of _oauth_get_user,
although both methods are still supported.

tornado.concurrent

	New module tornado.concurrent contains code to support working with
concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures], or to emulate future-based interface when that module
is not available.

tornado.curl_httpclient

	Preliminary support for tornado.curl_httpclient on Python 3. The latest
official release of pycurl only supports Python 2, but Ubuntu has a
port available in 12.10 (apt-get install python3-pycurl). This port
currently has bugs that prevent it from handling arbitrary binary data
but it should work for textual (utf8) resources.

	Fix a crash with libcurl 7.29.0 if a curl object is created and closed
without being used.

tornado.escape

	On Python 3, json_encode no longer accepts byte strings.
This mirrors the behavior of the underlying json module. Python 2 behavior
is unchanged but should be faster.

tornado.gen

	New decorator @gen.coroutine is available as an alternative to
@gen.engine. It automatically returns a
Future, and within the function instead of
calling a callback you return a value with raise
gen.Return(value) (or simply return value in Python 3.3).

	Generators may now yield Future objects.

	Callbacks produced by gen.Callback and gen.Task are now automatically
stack-context-wrapped, to minimize the risk of context leaks when used
with asynchronous functions that don’t do their own wrapping.

	Fixed a memory leak involving generators, RequestHandler.flush,
and clients closing connections while output is being written.

	Yielding a large list no longer has quadratic performance.

tornado.httpclient

	AsyncHTTPClient.fetch now returns a Future and its callback argument
is optional. When the future interface is used, any error will be raised
automatically, as if HTTPResponse.rethrow was called.

	AsyncHTTPClient.configure and all AsyncHTTPClient constructors
now take a defaults keyword argument. This argument should be a
dictionary, and its values will be used in place of corresponding
attributes of HTTPRequest that are not set.

	All unset attributes of tornado.httpclient.HTTPRequest are now
None. The default values of some attributes
(connect_timeout, request_timeout, follow_redirects,
max_redirects, use_gzip, proxy_password,
allow_nonstandard_methods, and validate_cert have been moved
from HTTPRequest to the client
implementations.

	The max_clients argument to AsyncHTTPClient is now a keyword-only
argument.

	Keyword arguments to AsyncHTTPClient.configure are no longer used
when instantiating an implementation subclass directly.

	Secondary AsyncHTTPClient callbacks (streaming_callback,
header_callback, and prepare_curl_callback) now respect
StackContext.

tornado.httpserver

	HTTPServer no longer logs an error when it is unable to read a second
request from an HTTP 1.1 keep-alive connection.

	HTTPServer now takes a protocol keyword argument which can be set
to https if the server is behind an SSL-decoding proxy that does not
set any supported X-headers.

	tornado.httpserver.HTTPConnection now has a set_close_callback
method that should be used instead of reaching into its stream
attribute.

	Empty HTTP request arguments are no longer ignored. This applies to
HTTPRequest.arguments and RequestHandler.get_argument[s]
in WSGI and non-WSGI modes.

tornado.ioloop

	New function IOLoop.current returns the IOLoop that is running
on the current thread (as opposed to IOLoop.instance, which returns a
specific thread’s (usually the main thread’s) IOLoop).

	New method IOLoop.add_future to run a callback on the IOLoop when
an asynchronous Future finishes.

	IOLoop now has a static configure
method like the one on AsyncHTTPClient, which can be used to
select an IOLoop implementation other than the default.

	The IOLoop poller implementations (select, epoll, kqueue)
are now available as distinct subclasses of IOLoop. Instantiating
IOLoop will continue to automatically choose the best available
implementation.

	The IOLoop constructor has a new keyword argument time_func,
which can be used to set the time function used when scheduling callbacks.
This is most useful with the time.monotonic [https://docs.python.org/3.5/library/time.html#time.monotonic] function, introduced
in Python 3.3 and backported to older versions via the monotime
module. Using a monotonic clock here avoids problems when the system
clock is changed.

	New function IOLoop.time returns the current time according to the
IOLoop. To use the new monotonic clock functionality, all calls to
IOLoop.add_timeout must be either pass a datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] or
a time relative to IOLoop.time, not time.time [https://docs.python.org/3.5/library/time.html#time.time]. (time.time [https://docs.python.org/3.5/library/time.html#time.time] will
continue to work only as long as the IOLoop’s time_func argument
is not used).

	New convenience method IOLoop.run_sync can be used to start an IOLoop
just long enough to run a single coroutine.

	New method IOLoop.add_callback_from_signal is safe to use in a signal
handler (the regular add_callback method may deadlock).

	IOLoop now uses signal.set_wakeup_fd [https://docs.python.org/3.5/library/signal.html#signal.set_wakeup_fd] where available (Python 2.6+
on Unix) to avoid a race condition that could result in Python signal
handlers being delayed.

	Method IOLoop.running() has been removed.

	IOLoop has been refactored to better support subclassing.

	IOLoop.add_callback and add_callback_from_signal now take
*args, **kwargs to pass along to the callback.

tornado.iostream

	IOStream.connect now has an optional server_hostname argument
which will be used for SSL certificate validation when applicable.
Additionally, when supported (on Python 3.2+), this hostname
will be sent via SNI (and this is supported by tornado.simple_httpclient)

	Much of IOStream has been refactored into a separate class
BaseIOStream.

	New class tornado.iostream.PipeIOStream provides the IOStream
interface on pipe file descriptors.

	IOStream now raises a new exception
tornado.iostream.StreamClosedError when you attempt to read or
write after the stream has been closed (by either side).

	IOStream now simply closes the connection when it gets an
ECONNRESET error, rather than logging it as an error.

	IOStream.error no longer picks up unrelated exceptions.

	BaseIOStream.close now has an exc_info argument (similar to the
one used in the logging [https://docs.python.org/3.5/library/logging.html#module-logging] module) that can be used to set the stream’s
error attribute when closing it.

	BaseIOStream.read_until_close now works correctly when it is called
while there is buffered data.

	Fixed a major performance regression when run on PyPy (introduced in
Tornado 2.3).

tornado.log

	New module containing enable_pretty_logging and LogFormatter,
moved from the options module.

	LogFormatter now handles non-ascii data in messages and tracebacks better.

tornado.netutil

	New class tornado.netutil.Resolver provides an asynchronous
interface to DNS resolution. The default implementation is still
blocking, but non-blocking implementations are available using one
of three optional dependencies: ThreadedResolver
using the concurrent.futures [https://docs.python.org/3.5/library/concurrent.futures.html#module-concurrent.futures] thread pool,
tornado.platform.caresresolver.CaresResolver using the pycares
library, or tornado.platform.twisted.TwistedResolver using twisted

	New function tornado.netutil.is_valid_ip returns true if a given string
is a valid IP (v4 or v6) address.

	tornado.netutil.bind_sockets has a new flags argument that can
be used to pass additional flags to getaddrinfo.

	tornado.netutil.bind_sockets no longer sets AI_ADDRCONFIG; this will
cause it to bind to both ipv4 and ipv6 more often than before.

	tornado.netutil.bind_sockets now works when Python was compiled
with --disable-ipv6 but IPv6 DNS resolution is available on the
system.

	tornado.netutil.TCPServer has moved to its own module, tornado.tcpserver.

tornado.options

	The class underlying the functions in tornado.options is now public
(tornado.options.OptionParser). This can be used to create multiple
independent option sets, such as for subcommands.

	tornado.options.parse_config_file now configures logging automatically
by default, in the same way that parse_command_line does.

	New function tornado.options.add_parse_callback schedules a callback
to be run after the command line or config file has been parsed. The
keyword argument final=False can be used on either parsing function
to supress these callbacks.

	tornado.options.define now takes a callback argument. This callback
will be run with the new value whenever the option is changed. This is
especially useful for options that set other options, such as by reading
from a config file.

	tornado.options.parse_command_line --help output now goes to stderr
rather than stdout.

	tornado.options.options is no longer a subclass of dict [https://docs.python.org/3.5/library/stdtypes.html#dict]; attribute-style
access is now required.

	tornado.options.options (and OptionParser instances generally) now
have a mockable() method that returns a wrapper object compatible with
mock.patch [https://docs.python.org/3.5/library/unittest.mock.html#unittest.mock.patch].

	Function tornado.options.enable_pretty_logging has been moved to the
tornado.log module.

tornado.platform.caresresolver

	New module containing an asynchronous implementation of the Resolver
interface, using the pycares library.

tornado.platform.twisted

	New class tornado.platform.twisted.TwistedIOLoop allows Tornado
code to be run on the Twisted reactor (as opposed to the existing
TornadoReactor, which bridges the gap in the other direction).

	New class tornado.platform.twisted.TwistedResolver is an asynchronous
implementation of the Resolver interface.

tornado.process

	New class tornado.process.Subprocess wraps subprocess.Popen [https://docs.python.org/3.5/library/subprocess.html#subprocess.Popen] with
PipeIOStream access to the child’s file descriptors.

tornado.simple_httpclient

	SimpleAsyncHTTPClient now takes a resolver keyword argument
(which may be passed to either the constructor or configure), to allow it to use the new non-blocking
tornado.netutil.Resolver.

	When following redirects, SimpleAsyncHTTPClient now treats a 302
response code the same as a 303. This is contrary to the HTTP spec
but consistent with all browsers and other major HTTP clients
(including CurlAsyncHTTPClient).

	The behavior of header_callback with SimpleAsyncHTTPClient has
changed and is now the same as that of CurlAsyncHTTPClient. The
header callback now receives the first line of the response (e.g.
HTTP/1.0 200 OK) and the final empty line.

	tornado.simple_httpclient now accepts responses with a 304
status code that include a Content-Length header.

	Fixed a bug in which SimpleAsyncHTTPClient callbacks were being run in the
client’s stack_context.

tornado.stack_context

	stack_context.wrap now runs the wrapped callback in a more consistent
environment by recreating contexts even if they already exist on the
stack.

	Fixed a bug in which stack contexts could leak from one callback
chain to another.

	Yield statements inside a with statement can cause stack
contexts to become inconsistent; an exception will now be raised
when this case is detected.

tornado.template

	Errors while rendering templates no longer log the generated code,
since the enhanced stack traces (from version 2.1) should make this
unnecessary.

	The {% apply %} directive now works properly with functions that return
both unicode strings and byte strings (previously only byte strings were
supported).

	Code in templates is no longer affected by Tornado’s __future__ imports
(which previously included absolute_import and division).

tornado.testing

	New function tornado.testing.bind_unused_port both chooses a port
and binds a socket to it, so there is no risk of another process
using the same port. get_unused_port is now deprecated.

	New decorator tornado.testing.gen_test can be used to allow for
yielding tornado.gen objects in tests, as an alternative to the
stop and wait methods of AsyncTestCase.

	tornado.testing.AsyncTestCase and friends now extend unittest2.TestCase
when it is available (and continue to use the standard unittest module
when unittest2 is not available)

	tornado.testing.ExpectLog can be used as a finer-grained alternative
to tornado.testing.LogTrapTestCase

	The command-line interface to tornado.testing.main now supports
additional arguments from the underlying unittest [https://docs.python.org/3.5/library/unittest.html#module-unittest] module:
verbose, quiet, failfast, catch, buffer.

	The deprecated --autoreload option of tornado.testing.main has
been removed. Use python -m tornado.autoreload as a prefix command
instead.

	The --httpclient option of tornado.testing.main has been moved
to tornado.test.runtests so as not to pollute the application
option namespace. The tornado.options module’s new callback
support now makes it easy to add options from a wrapper script
instead of putting all possible options in tornado.testing.main.

	AsyncHTTPTestCase no longer calls AsyncHTTPClient.close for tests
that use the singleton IOLoop.instance.

	LogTrapTestCase no longer fails when run in unknown logging
configurations. This allows tests to be run under nose, which does its
own log buffering (LogTrapTestCase doesn’t do anything useful in this
case, but at least it doesn’t break things any more).

tornado.util

	tornado.util.b (which was only intended for internal use) is gone.

tornado.web

	RequestHandler.set_header now overwrites previous header values
case-insensitively.

	tornado.web.RequestHandler has new attributes path_args and
path_kwargs, which contain the positional and keyword arguments
that are passed to the get/post/etc method. These attributes
are set before those methods are called, so they are available during
prepare()

	tornado.web.ErrorHandler no longer requires XSRF tokens on POST
requests, so posts to an unknown url will always return 404 instead of
complaining about XSRF tokens.

	Several methods related to HTTP status codes now take a reason keyword
argument to specify an alternate “reason” string (i.e. the “Not Found” in
“HTTP/1.1 404 Not Found”). It is now possible to set status codes other
than those defined in the spec, as long as a reason string is given.

	The Date HTTP header is now set by default on all responses.

	Etag/If-None-Match requests now work with StaticFileHandler.

	StaticFileHandler no longer sets Cache-Control: public unnecessarily.

	When gzip is enabled in a tornado.web.Application, appropriate
Vary: Accept-Encoding headers are now sent.

	It is no longer necessary to pass all handlers for a host in a single
Application.add_handlers call. Now the request will be matched
against the handlers for any host_pattern that includes the request’s
Host header.

tornado.websocket

	Client-side WebSocket support is now available:
tornado.websocket.websocket_connect

	WebSocketHandler has new methods ping and
on_pong to send pings to the browser (not
supported on the draft76 protocol)

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.4.1

Nov 24, 2012

Bug fixes

	Fixed a memory leak in tornado.stack_context that was especially likely
with long-running @gen.engine functions.

	tornado.auth.TwitterMixin now works on Python 3.

	Fixed a bug in which IOStream.read_until_close with a streaming callback
would sometimes pass the last chunk of data to the final callback instead
of the streaming callback.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.4

Sep 4, 2012

General

	Fixed Python 3 bugs in tornado.auth, tornado.locale, and tornado.wsgi.

HTTP clients

	Removed max_simultaneous_connections argument from tornado.httpclient
(both implementations). This argument hasn’t been useful for some time
(if you were using it you probably want max_clients instead)

	tornado.simple_httpclient now accepts and ignores HTTP 1xx status
responses.

tornado.ioloop and tornado.iostream

	Fixed a bug introduced in 2.3 that would cause IOStream close callbacks
to not run if there were pending reads.

	Improved error handling in SSLIOStream and SSL-enabled TCPServer.

	SSLIOStream.get_ssl_certificate now has a binary_form argument
which is passed to SSLSocket.getpeercert.

	SSLIOStream.write can now be called while the connection is in progress,
same as non-SSL IOStream (but be careful not to send sensitive data until
the connection has completed and the certificate has been verified).

	IOLoop.add_handler cannot be called more than once with the same file
descriptor. This was always true for epoll, but now the other
implementations enforce it too.

	On Windows, TCPServer uses SO_EXCLUSIVEADDRUSER instead of SO_REUSEADDR.

tornado.template

	{% break %} and {% continue %} can now be used looping constructs
in templates.

	It is no longer an error for an if/else/for/etc block in a template to
have an empty body.

tornado.testing

	New class tornado.testing.AsyncHTTPSTestCase is like AsyncHTTPTestCase.
but enables SSL for the testing server (by default using a self-signed
testing certificate).

	tornado.testing.main now accepts additional keyword arguments and forwards
them to unittest.main [https://docs.python.org/3.5/library/unittest.html#unittest.main].

tornado.web

	New method RequestHandler.get_template_namespace can be overridden to
add additional variables without modifying keyword arguments to
render_string.

	RequestHandler.add_header now works with WSGIApplication.

	RequestHandler.get_secure_cookie now handles a potential error case.

	RequestHandler.__init__ now calls super().__init__ to ensure that
all constructors are called when multiple inheritance is used.

	Docs have been updated with a description of all available
Application settings

Other modules

	OAuthMixin now accepts "oob" as a callback_uri.

	OpenIdMixin now also returns the claimed_id field for the user.

	tornado.platform.twisted shutdown sequence is now more compatible.

	The logging configuration used in tornado.options is now more tolerant
of non-ascii byte strings.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.3

May 31, 2012

HTTP clients

	tornado.httpclient.HTTPClient now supports the same constructor
keyword arguments as AsyncHTTPClient.

	The max_clients keyword argument to AsyncHTTPClient.configure now works.

	tornado.simple_httpclient now supports the OPTIONS and PATCH
HTTP methods.

	tornado.simple_httpclient is better about closing its sockets
instead of leaving them for garbage collection.

	tornado.simple_httpclient correctly verifies SSL certificates for
URLs containing IPv6 literals (This bug affected Python 2.5 and 2.6).

	tornado.simple_httpclient no longer includes basic auth credentials
in the Host header when those credentials are extracted from the URL.

	tornado.simple_httpclient no longer modifies the caller-supplied header
dictionary, which caused problems when following redirects.

	tornado.curl_httpclient now supports client SSL certificates (using
the same client_cert and client_key arguments as
tornado.simple_httpclient)

HTTP Server

	HTTPServer now works correctly with paths starting with //

	HTTPHeaders.copy (inherited from dict.copy [https://docs.python.org/3.5/library/stdtypes.html#dict.copy]) now works correctly.

	HTTPConnection.address is now always the socket address, even for non-IP
sockets. HTTPRequest.remote_ip is still always an IP-style address
(fake data is used for non-IP sockets)

	Extra data at the end of multipart form bodies is now ignored, which fixes
a compatibility problem with an iOS HTTP client library.

IOLoop and IOStream

	IOStream now has an error attribute that can be used to determine
why a socket was closed.

	tornado.iostream.IOStream.read_until and read_until_regex are much
faster with large input.

	IOStream.write performs better when given very large strings.

	IOLoop.instance() is now thread-safe.

tornado.options

	tornado.options options with multiple=True that are set more than
once now overwrite rather than append. This makes it possible to override
values set in parse_config_file with parse_command_line.

	tornado.options --help output is now prettier.

	tornado.options.options now supports attribute assignment.

tornado.template

	Template files containing non-ASCII (utf8) characters now work on Python 3
regardless of the locale environment variables.

	Templates now support else clauses in
try/except/finally/else blocks.

tornado.web

	tornado.web.RequestHandler now supports the PATCH HTTP method.
Note that this means any existing methods named patch in
RequestHandler subclasses will need to be renamed.

	tornado.web.addslash and removeslash decorators now send permanent
redirects (301) instead of temporary (302).

	RequestHandler.flush now invokes its callback whether there was any data
to flush or not.

	Repeated calls to RequestHandler.set_cookie with the same name now
overwrite the previous cookie instead of producing additional copies.

	tornado.web.OutputTransform.transform_first_chunk now takes and returns
a status code in addition to the headers and chunk. This is a
backwards-incompatible change to an interface that was never technically
private, but was not included in the documentation and does not appear
to have been used outside Tornado itself.

	Fixed a bug on python versions before 2.6.5 when URLSpec regexes
are constructed from unicode strings and keyword arguments are extracted.

	The reverse_url function in the template namespace now comes from
the RequestHandler rather than the Application. (Unless overridden,
RequestHandler.reverse_url is just an alias for the Application
method).

	The Etag header is now returned on 304 responses to an If-None-Match
request, improving compatibility with some caches.

	tornado.web will no longer produce responses with status code 304
that also have entity headers such as Content-Length.

Other modules

	tornado.auth.FacebookGraphMixin no longer sends post_args redundantly
in the url.

	The extra_params argument to tornado.escape.linkify may now be
a callable, to allow parameters to be chosen separately for each link.

	tornado.gen no longer leaks StackContexts when a @gen.engine wrapped
function is called repeatedly.

	tornado.locale.get_supported_locales no longer takes a meaningless
cls argument.

	StackContext instances now have a deactivation callback that can be
used to prevent further propagation.

	tornado.testing.AsyncTestCase.wait now resets its timeout on each call.

	tornado.wsgi.WSGIApplication now parses arguments correctly on Python 3.

	Exception handling on Python 3 has been improved; previously some exceptions
such as UnicodeDecodeError [https://docs.python.org/3.5/library/exceptions.html#UnicodeDecodeError] would generate TypeErrors

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.2.1

Apr 23, 2012

Security fixes

	tornado.web.RequestHandler.set_header now properly sanitizes input
values to protect against header injection, response splitting, etc.
(it has always attempted to do this, but the check was incorrect).
Note that redirects, the most likely source of such bugs, are protected
by a separate check in RequestHandler.redirect.

Bug fixes

	Colored logging configuration in tornado.options is compatible with
Python 3.2.3 (and 3.3).

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.2

Jan 30, 2012

Highlights

	Updated and expanded WebSocket support.

	Improved compatibility in the Twisted/Tornado bridge.

	Template errors now generate better stack traces.

	Better exception handling in tornado.gen.

Security fixes

	tornado.simple_httpclient now disables SSLv2 in all cases. Previously
SSLv2 would be allowed if the Python interpreter was linked against a
pre-1.0 version of OpenSSL.

Backwards-incompatible changes

	tornado.process.fork_processes now raises SystemExit [https://docs.python.org/3.5/library/exceptions.html#SystemExit] if all child
processes exit cleanly rather than returning None. The old behavior
was surprising and inconsistent with most of the documented examples
of this function (which did not check the return value).

	On Python 2.6, tornado.simple_httpclient only supports SSLv3. This
is because Python 2.6 does not expose a way to support both SSLv3 and TLSv1
without also supporting the insecure SSLv2.

	tornado.websocket no longer supports the older “draft 76” version
of the websocket protocol by default, although this version can
be enabled by overriding tornado.websocket.WebSocketHandler.allow_draft76.

tornado.httpclient

	SimpleAsyncHTTPClient no longer hangs on HEAD requests,
responses with no content, or empty POST/PUT response bodies.

	SimpleAsyncHTTPClient now supports 303 and 307 redirect codes.

	tornado.curl_httpclient now accepts non-integer timeouts.

	tornado.curl_httpclient now supports basic authentication with an
empty password.

tornado.httpserver

	HTTPServer with xheaders=True will no longer accept
X-Real-IP headers that don’t look like valid IP addresses.

	HTTPServer now treats the Connection request header as
case-insensitive.

tornado.ioloop and tornado.iostream

	IOStream.write now works correctly when given an empty string.

	IOStream.read_until (and read_until_regex) now perform better
when there is a lot of buffered data, which improves peformance of
SimpleAsyncHTTPClient when downloading files with lots of
chunks.

	SSLIOStream now works correctly when ssl_version is set to
a value other than SSLv23.

	Idle IOLoops no longer wake up several times a second.

	tornado.ioloop.PeriodicCallback no longer triggers duplicate callbacks
when stopped and started repeatedly.

tornado.template

	Exceptions in template code will now show better stack traces that
reference lines from the original template file.

	{# and #} can now be used for comments (and unlike the old
{% comment %} directive, these can wrap other template directives).

	Template directives may now span multiple lines.

tornado.web

	Now behaves better when given malformed Cookie headers

	RequestHandler.redirect now has a status argument to send
status codes other than 301 and 302.

	New method RequestHandler.on_finish may be overridden for post-request
processing (as a counterpart to RequestHandler.prepare)

	StaticFileHandler now outputs Content-Length and Etag headers
on HEAD requests.

	StaticFileHandler now has overridable get_version and
parse_url_path methods for use in subclasses.

	RequestHandler.static_url now takes an include_host parameter
(in addition to the old support for the RequestHandler.include_host
attribute).

tornado.websocket

	Updated to support the latest version of the protocol, as finalized
in RFC 6455.

	Many bugs were fixed in all supported protocol versions.

	tornado.websocket no longer supports the older “draft 76” version
of the websocket protocol by default, although this version can
be enabled by overriding tornado.websocket.WebSocketHandler.allow_draft76.

	WebSocketHandler.write_message now accepts a binary argument
to send binary messages.

	Subprotocols (i.e. the Sec-WebSocket-Protocol header) are now supported;
see the WebSocketHandler.select_subprotocol method for details.

	.WebSocketHandler.get_websocket_scheme can be used to select the
appropriate url scheme (ws:// or wss://) in cases where
HTTPRequest.protocol is not set correctly.

Other modules

	tornado.auth.TwitterMixin.authenticate_redirect now takes a
callback_uri parameter.

	tornado.auth.TwitterMixin.twitter_request now accepts both URLs and
partial paths (complete URLs are useful for the search API which follows
different patterns).

	Exception handling in tornado.gen has been improved. It is now possible
to catch exceptions thrown by a Task.

	tornado.netutil.bind_sockets now works when getaddrinfo returns
duplicate addresses.

	tornado.platform.twisted compatibility has been significantly improved.
Twisted version 11.1.0 is now supported in addition to 11.0.0.

	tornado.process.fork_processes correctly reseeds the random [https://docs.python.org/3.5/library/random.html#module-random] module
even when os.urandom [https://docs.python.org/3.5/library/os.html#os.urandom] is not implemented.

	tornado.testing.main supports a new flag --exception_on_interrupt,
which can be set to false to make Ctrl-C kill the process more
reliably (at the expense of stack traces when it does so).

	tornado.version_info is now a four-tuple so official releases can be
distinguished from development branches.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.1.1

Oct 4, 2011

Bug fixes

	Fixed handling of closed connections with the epoll (i.e. Linux)
IOLoop. Previously, closed connections could be shut down too early,
which most often manifested as “Stream is closed” exceptions in
SimpleAsyncHTTPClient.

	Fixed a case in which chunked responses could be closed prematurely,
leading to truncated output.

	IOStream.connect now reports errors more consistently via logging
and the close callback (this affects e.g. connections to localhost
on FreeBSD).

	IOStream.read_bytes again accepts both int and long arguments.

	PeriodicCallback no longer runs repeatedly when IOLoop iterations
complete faster than the resolution of time.time() (mainly a problem
on Windows).

Backwards-compatibility note

	Listening for IOLoop.ERROR alone is no longer sufficient for detecting
closed connections on an otherwise unused socket. IOLoop.ERROR must
always be used in combination with READ or WRITE.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.1

Sep 20, 2011

Backwards-incompatible changes

	Support for secure cookies written by pre-1.0 releases of Tornado has
been removed. The RequestHandler.get_secure_cookie method no longer
takes an include_name parameter.

	The debug application setting now causes stack traces to be displayed
in the browser on uncaught exceptions. Since this may leak sensitive
information, debug mode is not recommended for public-facing servers.

Security fixes

	Diginotar has been removed from the default CA certificates file used
by SimpleAsyncHTTPClient.

New modules

	tornado.gen: A generator-based interface to simplify writing
asynchronous functions.

	tornado.netutil: Parts of tornado.httpserver have been extracted into
a new module for use with non-HTTP protocols.

	tornado.platform.twisted: A bridge between the Tornado IOLoop and the
Twisted Reactor, allowing code written for Twisted to be run on Tornado.

	tornado.process: Multi-process mode has been improved, and can now restart
crashed child processes. A new entry point has been added at
tornado.process.fork_processes, although
tornado.httpserver.HTTPServer.start is still supported.

tornado.web

	tornado.web.RequestHandler.write_error replaces get_error_html as the
preferred way to generate custom error pages (get_error_html is still
supported, but deprecated)

	In tornado.web.Application, handlers may be specified by
(fully-qualified) name instead of importing and passing the class object
itself.

	It is now possible to use a custom subclass of StaticFileHandler
with the static_handler_class application setting, and this subclass
can override the behavior of the static_url method.

	StaticFileHandler subclasses can now override
get_cache_time to customize cache control behavior.

	tornado.web.RequestHandler.get_secure_cookie now has a max_age_days
parameter to allow applications to override the default one-month expiration.

	set_cookie now accepts a max_age keyword
argument to set the max-age cookie attribute (note underscore vs dash)

	tornado.web.RequestHandler.set_default_headers may be overridden to set
headers in a way that does not get reset during error handling.

	RequestHandler.add_header can now be used to set a header that can
appear multiple times in the response.

	RequestHandler.flush can now take a callback for flow control.

	The application/json content type can now be gzipped.

	The cookie-signing functions are now accessible as static functions
tornado.web.create_signed_value and tornado.web.decode_signed_value.

tornado.httpserver

	To facilitate some advanced multi-process scenarios, HTTPServer
has a new method add_sockets, and socket-opening code is
available separately as tornado.netutil.bind_sockets.

	The cookies property is now available on tornado.httpserver.HTTPRequest
(it is also available in its old location as a property of
RequestHandler)

	tornado.httpserver.HTTPServer.bind now takes a backlog argument with the
same meaning as socket.listen.

	HTTPServer can now be run on a unix socket as well
as TCP.

	Fixed exception at startup when socket.AI_ADDRCONFIG is not available,
as on Windows XP

IOLoop and IOStream

	IOStream performance has been improved, especially for
small synchronous requests.

	New methods tornado.iostream.IOStream.read_until_close and
tornado.iostream.IOStream.read_until_regex.

	IOStream.read_bytes and IOStream.read_until_close now take a
streaming_callback argument to return data as it is received rather
than all at once.

	IOLoop.add_timeout now accepts datetime.timedelta [https://docs.python.org/3.5/library/datetime.html#datetime.timedelta] objects in addition
to absolute timestamps.

	PeriodicCallback now sticks to the specified period
instead of creeping later due to accumulated errors.

	tornado.ioloop.IOLoop and tornado.httpclient.HTTPClient now have
close() methods that should be used in applications that create
and destroy many of these objects.

	IOLoop.install can now be used to use a custom subclass of IOLoop
as the singleton without monkey-patching.

	IOStream should now always call the close callback
instead of the connect callback on a connection error.

	The IOStream close callback will no longer be called while there
are pending read callbacks that can be satisfied with buffered data.

tornado.simple_httpclient

	Now supports client SSL certificates with the client_key and
client_cert parameters to tornado.httpclient.HTTPRequest

	Now takes a maximum buffer size, to allow reading files larger than 100MB

	Now works with HTTP 1.0 servers that don’t send a Content-Length header

	The allow_nonstandard_methods flag on HTTP client requests now
permits methods other than POST and PUT to contain bodies.

	Fixed file descriptor leaks and multiple callback invocations in
SimpleAsyncHTTPClient

	No longer consumes extra connection resources when following redirects.

	Now works with buggy web servers that separate headers with \n instead
of \r\n\r\n.

	Now sets response.request_time correctly.

	Connect timeouts now work correctly.

Other modules

	tornado.auth.OpenIdMixin now uses the correct realm when the
callback URI is on a different domain.

	tornado.autoreload has a new command-line interface which can be used
to wrap any script. This replaces the --autoreload argument to
tornado.testing.main and is more robust against syntax errors.

	tornado.autoreload.watch can be used to watch files other than
the sources of imported modules.

	tornado.database.Connection has new variants of execute and
executemany that return the number of rows affected instead of
the last inserted row id.

	tornado.locale.load_translations now accepts any properly-formatted
locale name, not just those in the predefined LOCALE_NAMES list.

	tornado.options.define now takes a group parameter to group options
in --help output.

	Template loaders now take a namespace constructor argument to add
entries to the template namespace.

	tornado.websocket now supports the latest (“hybi-10”) version of the
protocol (the old version, “hixie-76” is still supported; the correct
version is detected automatically).

	tornado.websocket now works on Python 3

Bug fixes

	Windows support has been improved. Windows is still not an officially
supported platform, but the test suite now passes and
tornado.autoreload works.

	Uploading files whose names contain special characters will now work.

	Cookie values containing special characters are now properly quoted
and unquoted.

	Multi-line headers are now supported.

	Repeated Content-Length headers (which may be added by certain proxies)
are now supported in HTTPServer.

	Unicode string literals now work in template expressions.

	The template {% module %} directive now works even if applications
use a template variable named modules.

	Requests with “Expect: 100-continue” now work on python 3

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 2.0

Jun 21, 2011

Major changes:
* Template output is automatically escaped by default; see backwards
 compatibility note below.
* The default AsyncHTTPClient implementation is now simple_httpclient.
* Python 3.2 is now supported.

Backwards compatibility:
* Template autoescaping is enabled by default. Applications upgrading from
 a previous release of Tornado must either disable autoescaping or adapt
 their templates to work with it. For most applications, the simplest
 way to do this is to pass autoescape=None to the Application constructor.
 Note that this affects certain built-in methods, e.g. xsrf_form_html
 and linkify, which must now be called with {% raw %} instead of {}
* Applications that wish to continue using curl_httpclient instead of
 simple_httpclient may do so by calling
 AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")
 at the beginning of the process. Users of Python 2.5 will probably want
 to use curl_httpclient as simple_httpclient only supports ssl on Python 2.6+.
* Python 3 compatibility involved many changes throughout the codebase,
 so users are encouraged to test their applications more thoroughly than
 usual when upgrading to this release.

Other changes in this release:
* Templates support several new directives:
 - {% autoescape ...%} to control escaping behavior
 - {% raw ... %} for unescaped output
 - {% module ... %} for calling UIModules
* {% module Template(path, **kwargs) %} may now be used to call another
 template with an independent namespace
* All IOStream callbacks are now run directly on the IOLoop via add_callback.
* HTTPServer now supports IPv6 where available. To disable, pass
 family=socket.AF_INET to HTTPServer.bind().
* HTTPClient now supports IPv6, configurable via allow_ipv6=bool on the
 HTTPRequest. allow_ipv6 defaults to false on simple_httpclient and true
 on curl_httpclient.
* RequestHandlers can use an encoding other than utf-8 for query parameters
 by overriding decode_argument()
* Performance improvements, especially for applications that use a lot of
 IOLoop timeouts
* HTTP OPTIONS method no longer requires an XSRF token.
* JSON output (RequestHandler.write(dict)) now sets Content-Type to
 application/json
* Etag computation can now be customized or disabled by overriding
 RequestHandler.compute_etag
* USE_SIMPLE_HTTPCLIENT environment variable is no longer supported.
 Use AsyncHTTPClient.configure instead.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.2.1

Mar 3, 2011

We are pleased to announce the release of Tornado 1.2.1, available from
https://github.com/downloads/facebook/tornado/tornado-1.2.1.tar.gz

This release contains only two small changes relative to version 1.2:
* FacebookGraphMixin has been updated to work with a recent change to the
 Facebook API.
* Running "setup.py install" will no longer attempt to automatically
 install pycurl. This wasn't working well on platforms where the best way
 to install pycurl is via something like apt-get instead of easy_install.

This is an important upgrade if you are using FacebookGraphMixin, but
otherwise it can be safely ignored.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.2

Feb 20, 2011

We are pleased to announce the release of Tornado 1.2, available from
https://github.com/downloads/facebook/tornado/tornado-1.2.tar.gz

Backwards compatibility notes:
* This release includes the backwards-incompatible security change from
 version 1.1.1. Users upgrading from 1.1 or earlier should read the
 release notes from that release:
 http://groups.google.com/group/python-tornado/browse_thread/thread/b36191c781580cde
* StackContexts that do something other than catch exceptions may need to
 be modified to be reentrant.
 https://github.com/tornadoweb/tornado/commit/7a7e24143e77481d140fb5579bc67e4c45cbcfad
* When XSRF tokens are used, the token must also be present on PUT and
 DELETE requests (anything but GET and HEAD)

New features:
* A new HTTP client implementation is available in the module
 tornado.simple_httpclient. This HTTP client does not depend on pycurl.
 It has not yet been tested extensively in production, but is intended
 to eventually replace the pycurl-based HTTP client in a future release of
 Tornado. To transparently replace tornado.httpclient.AsyncHTTPClient with
 this new implementation, you can set the environment variable
 USE_SIMPLE_HTTPCLIENT=1 (note that the next release of Tornado will
 likely include a different way to select HTTP client implementations)
* Request logging is now done by the Application rather than the
 RequestHandler. Logging behavior may be customized by either overriding
 Application.log_request in a subclass or by passing log_function
 as an Application setting
* Application.listen(port): Convenience method as an alternative to
 explicitly creating an HTTPServer
* tornado.escape.linkify(): Wrap urls in <a> tags
* RequestHandler.create_signed_value(): Create signatures like the
 secure_cookie methods without setting cookies.
* tornado.testing.get_unused_port(): Returns a port selected in the same
 way as inAsyncHTTPTestCase
* AsyncHTTPTestCase.fetch(): Convenience method for synchronous fetches
* IOLoop.set_blocking_signal_threshold(): Set a callback to be run when
 the IOLoop is blocked.
* IOStream.connect(): Asynchronously connect a client socket
* AsyncHTTPClient.handle_callback_exception(): May be overridden
 in subclass for custom error handling
* httpclient.HTTPRequest has two new keyword arguments, validate_cert and
 ca_certs. Setting validate_cert=False will disable all certificate checks
 when fetching https urls. ca_certs may be set to a filename containing
 trusted certificate authorities (defaults will be used if this is
 unspecified)
* HTTPRequest.get_ssl_certificate(): Returns the client's SSL certificate
 (if client certificates were requested in the server's ssl_options
* StaticFileHandler can be configured to return a default file (e.g.
 index.html) when a directory is requested
* Template directives of the form "{% from x import y %}" are now
 supported (in addition to the existing support for "{% import x
 %}"
* FacebookGraphMixin.get_authenticated_user now accepts a new
 parameter 'extra_fields' which may be used to request additional
 information about the user

Bug fixes:
* auth: Fixed KeyError with Facebook offline_access
* auth: Uses request.uri instead of request.path as the default redirect
 so that parameters are preserved.
* escape: xhtml_escape() now returns a unicode string, not
 utf8-encoded bytes
* ioloop: Callbacks added with add_callback are now run in the order they
 were added
* ioloop: PeriodicCallback.stop can now be called from inside the callback.
* iostream: Fixed several bugs in SSLIOStream
* iostream: Detect when the other side has closed the connection even with
 the select()-based IOLoop
* iostream: read_bytes(0) now works as expected
* iostream: Fixed bug when writing large amounts of data on windows
* iostream: Fixed infinite loop that could occur with unhandled exceptions
* httpclient: Fix bugs when some requests use proxies and others don't
* httpserver: HTTPRequest.protocol is now set correctly when using the
 built-in SSL support
* httpserver: When using multiple processes, the standard library's
 random number generator is re-seeded in each child process
* httpserver: With xheaders enabled, X-Forwarded-Proto is supported as an
 alternative to X-Scheme
* httpserver: Fixed bugs in multipart/form-data parsing
* locale: format_date() now behaves sanely with dates in the future
* locale: Updates to the language list
* stack_context: Fixed bug with contexts leaking through reused IOStreams
* stack_context: Simplified semantics and improved performance
* web: The order of css_files from UIModules is now preserved
* web: Fixed error with default_host redirect
* web: StaticFileHandler works when os.path.sep != '/' (i.e. on Windows)
* web: Fixed a caching-related bug in StaticFileHandler when a file's
 timestamp has changed but its contents have not.
* web: Fixed bugs with HEAD requests and e.g. Etag headers
* web: Fix bugs when different handlers have different static_paths
* web: @removeslash will no longer cause a redirect loop when applied to the
 root path
* websocket: Now works over SSL
* websocket: Improved compatibility with proxies

Many thanks to everyone who contributed patches, bug reports, and feedback
that went into this release!

-Ben

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.1.1

Feb 8, 2011

Tornado 1.1.1 is a BACKWARDS-INCOMPATIBLE security update that fixes an
XSRF vulnerability. It is available at
https://github.com/downloads/facebook/tornado/tornado-1.1.1.tar.gz

This is a backwards-incompatible change. Applications that previously
relied on a blanket exception for XMLHTTPRequest may need to be modified
to explicitly include the XSRF token when making ajax requests.

The tornado chat demo application demonstrates one way of adding this
token (specifically the function postJSON in demos/chat/static/chat.js).

More information about this change and its justification can be found at
http://www.djangoproject.com/weblog/2011/feb/08/security/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.1

Sep 7, 2010

We are pleased to announce the release of Tornado 1.1, available from
https://github.com/downloads/facebook/tornado/tornado-1.1.tar.gz

Changes in this release:
* RequestHandler.async_callback and related functions in other classes
 are no longer needed in most cases (although it's harmless to continue
 using them). Uncaught exceptions will now cause the request to be closed
 even in a callback. If you're curious how this works, see the new
 tornado.stack_context module.
* The new tornado.testing module contains support for unit testing
 asynchronous IOLoop-based code.
* AsyncHTTPClient has been rewritten (the new implementation was
 available as AsyncHTTPClient2 in Tornado 1.0; both names are
 supported for backwards compatibility).
* The tornado.auth module has had a number of updates, including support
 for OAuth 2.0 and the Facebook Graph API, and upgrading Twitter and
 Google support to OAuth 1.0a.
* The websocket module is back and supports the latest version (76) of the
 websocket protocol. Note that this module's interface is different
 from the websocket module that appeared in pre-1.0 versions of Tornado.
* New method RequestHandler.initialize() can be overridden in subclasses
 to simplify handling arguments from URLSpecs. The sequence of methods
 called during initialization is documented at
 http://tornadoweb.org/documentation#overriding-requesthandler-methods
* get_argument() and related methods now work on PUT requests in addition
 to POST.
* The httpclient module now supports HTTP proxies.
* When HTTPServer is run in SSL mode, the SSL handshake is now non-blocking.
* Many smaller bug fixes and documentation updates

Backwards-compatibility notes:
* While most users of Tornado should not have to deal with the stack_context
 module directly, users of worker thread pools and similar constructs may
 need to use stack_context.wrap and/or NullContext to avoid memory leaks.
* The new AsyncHTTPClient still works with libcurl version 7.16.x, but it
 performs better when both libcurl and pycurl are at least version 7.18.2.
* OAuth transactions started under previous versions of the auth module
 cannot be completed under the new module. This applies only to the
 initial authorization process; once an authorized token is issued that
 token works with either version.

Many thanks to everyone who contributed patches, bug reports, and feedback
that went into this release!

-Ben

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.0.1

Aug 13, 2010

This release fixes a bug with RequestHandler.get_secure_cookie, which would
in some circumstances allow an attacker to tamper with data stored in the
cookie.

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Tornado 4.5.dev1 documentation

 	Release notes

What’s new in Tornado 1.0

July 22, 2010

We are pleased to announce the release of Tornado 1.0, available
from
https://github.com/downloads/facebook/tornado/tornado-1.0.tar.gz.
There have been many changes since version 0.2; here are some of
the highlights:

New features:
* Improved support for running other WSGI applications in a
 Tornado server (tested with Django and CherryPy)
* Improved performance on Mac OS X and BSD (kqueue-based IOLoop),
 and experimental support for win32
* Rewritten AsyncHTTPClient available as
 tornado.httpclient.AsyncHTTPClient2 (this will become the
 default in a future release)
* Support for standard .mo files in addition to .csv in the locale
 module
* Pre-forking support for running multiple Tornado processes at
 once (see HTTPServer.start())
* SSL and gzip support in HTTPServer
* reverse_url() function refers to urls from the Application
 config by name from templates and RequestHandlers
* RequestHandler.on_connection_close() callback is called when the
 client has closed the connection (subject to limitations of the
 underlying network stack, any proxies, etc)
* Static files can now be served somewhere other than /static/ via
 the static_url_prefix application setting
* URL regexes can now use named groups ("(?P<name>)") to pass
 arguments to get()/post() via keyword instead of position
* HTTP header dictionary-like objects now support multiple values
 for the same header via the get_all() and add() methods.
* Several new options in the httpclient module, including
 prepare_curl_callback and header_callback
* Improved logging configuration in tornado.options.
* UIModule.html_body() can be used to return html to be inserted
 at the end of the document body.

Backwards-incompatible changes:
* RequestHandler.get_error_html() now receives the exception
 object as a keyword argument if the error was caused by an
 uncaught exception.
* Secure cookies are now more secure, but incompatible with
 cookies set by Tornado 0.2. To read cookies set by older
 versions of Tornado, pass include_name=False to
 RequestHandler.get_secure_cookie()
* Parameters passed to RequestHandler.get/post() by extraction
 from the path now have %-escapes decoded, for consistency with
 the processing that was already done with other query
 parameters.

Many thanks to everyone who contributed patches, bug reports, and
feedback that went into this release!

-Ben

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Tornado 4.5.dev1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tornado	

 	
 	
 tornado.auth	

 	
 	
 tornado.autoreload	

 	
 	
 tornado.concurrent	

 	
 	
 tornado.curl_httpclient	

 	
 	
 tornado.escape	

 	
 	
 tornado.gen	

 	
 	
 tornado.http1connection	

 	
 	
 tornado.httpclient	

 	
 	
 tornado.httpserver	

 	
 	
 tornado.httputil	

 	
 	
 tornado.ioloop	

 	
 	
 tornado.iostream	

 	
 	
 tornado.locale	

 	
 	
 tornado.locks	

 	
 	
 tornado.log	

 	
 	
 tornado.netutil	

 	
 	
 tornado.options	

 	
 	
 tornado.platform.caresresolver	

 	
 	
 tornado.platform.twisted	

 	
 	
 tornado.process	

 	
 	
 tornado.queues	

 	
 	
 tornado.simple_httpclient	

 	
 	
 tornado.stack_context	

 	
 	
 tornado.tcpclient	

 	
 	
 tornado.tcpserver	

 	
 	
 tornado.template	

 	
 	
 tornado.testing	

 	
 	
 tornado.util	

 	
 	
 tornado.web	

 	
 	
 tornado.websocket	

 	
 	
 tornado.wsgi	

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Tornado 4.5.dev1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	

 	_oauth_consumer_token() (tornado.auth.OAuthMixin method)

 	

 	_oauth_get_user_future() (tornado.auth.OAuthMixin method)

A

 	

 	acquire() (tornado.locks.BoundedSemaphore method)

 	

 	(tornado.locks.Lock method)

 	(tornado.locks.Semaphore method)

 	add() (tornado.httputil.HTTPHeaders method)

 	add_accept_handler() (in module tornado.netutil)

 	add_callback() (tornado.ioloop.IOLoop method)

 	add_callback_from_signal() (tornado.ioloop.IOLoop method)

 	add_done_callback() (tornado.concurrent.Future method)

 	add_future() (tornado.ioloop.IOLoop method)

 	add_handler() (tornado.ioloop.IOLoop method)

 	add_handlers() (tornado.web.Application method)

 	add_header() (tornado.web.RequestHandler method)

 	add_parse_callback() (in module tornado.options)

 	

 	(tornado.options.OptionParser method)

 	add_reload_hook() (in module tornado.autoreload)

 	add_socket() (tornado.tcpserver.TCPServer method)

 	add_sockets() (tornado.tcpserver.TCPServer method)

 	add_timeout() (tornado.ioloop.IOLoop method)

 	

 	addslash() (in module tornado.web)

 	Application (class in tornado.web)

 	application (tornado.web.RequestHandler attribute)

 	ArgReplacer (class in tornado.util)

 	Arguments (class in tornado.gen)

 	arguments (tornado.httputil.HTTPServerRequest attribute)

 	as_dict() (tornado.options.OptionParser method)

 	asynchronous() (in module tornado.web)

 	AsyncHTTPClient (class in tornado.httpclient)

 	AsyncHTTPSTestCase (class in tornado.testing)

 	AsyncHTTPTestCase (class in tornado.testing)

 	AsyncTestCase (class in tornado.testing)

 	authenticate_redirect() (tornado.auth.OpenIdMixin method)

 	

 	(tornado.auth.TwitterMixin method)

 	authenticated() (in module tornado.web)

 	authorize_redirect() (tornado.auth.OAuth2Mixin method)

 	

 	(tornado.auth.OAuthMixin method)

B

 	

 	BaseIOStream (class in tornado.iostream)

 	BaseLoader (class in tornado.template)

 	bind() (tornado.tcpserver.TCPServer method)

 	bind_sockets() (in module tornado.netutil)

 	bind_unix_socket() (in module tornado.netutil)

 	

 	bind_unused_port() (in module tornado.testing)

 	BlockingResolver (class in tornado.netutil)

 	body (tornado.httputil.HTTPServerRequest attribute)

 	body_arguments (tornado.httputil.HTTPServerRequest attribute)

 	BoundedSemaphore (class in tornado.locks)

C

 	

 	call_at() (tornado.ioloop.IOLoop method)

 	call_later() (tornado.ioloop.IOLoop method)

 	Callback (class in tornado.gen)

 	CalledProcessError

 	cancel() (tornado.concurrent.Future method)

 	cancelled() (tornado.concurrent.Future method)

 	CaresResolver (class in tornado.platform.caresresolver)

 	chain_future() (in module tornado.concurrent)

 	check_etag_header() (tornado.web.RequestHandler method)

 	check_origin() (tornado.websocket.WebSocketHandler method)

 	check_xsrf_cookie() (tornado.web.RequestHandler method)

 	clear() (tornado.locks.Event method)

 	

 	(tornado.web.RequestHandler method)

 	clear_all_cookies() (tornado.web.RequestHandler method)

 	clear_cookie() (tornado.web.RequestHandler method)

 	clear_header() (tornado.web.RequestHandler method)

 	clear_instance() (tornado.ioloop.IOLoop static method)

 	close() (tornado.http1connection.HTTP1ServerConnection method)

 	

 	(tornado.httpclient.AsyncHTTPClient method)

 	(tornado.httpclient.HTTPClient method)

 	(tornado.ioloop.IOLoop method)

 	(tornado.iostream.BaseIOStream method)

 	(tornado.netutil.Resolver method)

 	(tornado.websocket.WebSocketClientConnection method)

 	(tornado.websocket.WebSocketHandler method)

 	close_fd() (tornado.ioloop.IOLoop method)

 	

 	(tornado.iostream.BaseIOStream method)

 	closed() (tornado.iostream.BaseIOStream method)

 	code (tornado.httputil.ResponseStartLine attribute)

 	

 	compute_etag() (tornado.web.RequestHandler method)

 	

 	(tornado.web.StaticFileHandler method)

 	Condition (class in tornado.locks)

 	Configurable (class in tornado.util)

 	configurable_base() (tornado.util.Configurable class method)

 	configurable_default() (tornado.util.Configurable class method)

 	configure() (tornado.httpclient.AsyncHTTPClient class method)

 	

 	(tornado.util.Configurable class method)

 	configured_class() (tornado.util.Configurable class method)

 	connect() (tornado.iostream.IOStream method)

 	

 	(tornado.tcpclient.TCPClient method)

 	connection (tornado.httputil.HTTPServerRequest attribute)

 	convert_yielded() (in module tornado.gen)

 	cookies (tornado.httputil.HTTPServerRequest attribute)

 	

 	(tornado.web.RequestHandler attribute)

 	coroutine() (in module tornado.gen)

 	cpu_count() (in module tornado.process)

 	create_signed_value() (tornado.web.RequestHandler method)

 	create_template_loader() (tornado.web.RequestHandler method)

 	css_files() (tornado.web.UIModule method)

 	CSVLocale (class in tornado.locale)

 	CurlAsyncHTTPClient (class in tornado.curl_httpclient)

 	current() (tornado.ioloop.IOLoop static method)

 	current_user (tornado.web.RequestHandler attribute)

D

 	

 	data_received() (tornado.httputil.HTTPMessageDelegate method)

 	

 	(tornado.web.RequestHandler method)

 	decode_argument() (tornado.web.RequestHandler method)

 	decompress() (tornado.util.GzipDecompressor method)

 	DEFAULT_SIGNED_VALUE_MIN_VERSION (in module tornado.web)

 	DEFAULT_SIGNED_VALUE_VERSION (in module tornado.web)

 	define() (in module tornado.options)

 	

 	(tornado.options.OptionParser method)

 	

 	define_logging_options() (in module tornado.log)

 	delete() (tornado.web.RequestHandler method)

 	detach() (tornado.http1connection.HTTP1Connection method)

 	DictLoader (class in tornado.template)

 	done() (tornado.concurrent.Future method)

 	

 	(tornado.gen.WaitIterator method)

E

 	

 	embedded_css() (tornado.web.UIModule method)

 	embedded_javascript() (tornado.web.UIModule method)

 	enable_pretty_logging() (in module tornado.log)

 	engine() (in module tornado.gen)

 	environ() (tornado.wsgi.WSGIContainer static method)

 	errno_from_exception() (in module tornado.util)

 	Error

 	

 	ErrorHandler (class in tornado.web)

 	Event (class in tornado.locks)

 	exc_info() (tornado.concurrent.Future method)

 	exception() (tornado.concurrent.Future method)

 	ExceptionStackContext (class in tornado.stack_context)

 	ExecutorResolver (class in tornado.netutil)

 	ExpectLog (class in tornado.testing)

F

 	

 	facebook_request() (tornado.auth.FacebookGraphMixin method)

 	FacebookGraphMixin (class in tornado.auth)

 	FallbackHandler (class in tornado.web)

 	fetch() (tornado.httpclient.AsyncHTTPClient method)

 	

 	(tornado.httpclient.HTTPClient method)

 	(tornado.testing.AsyncHTTPTestCase method)

 	fileno() (tornado.iostream.BaseIOStream method)

 	files (tornado.httputil.HTTPServerRequest attribute)

 	filter_whitespace() (in module tornado.template)

 	Finish

 	finish() (tornado.http1connection.HTTP1Connection method)

 	

 	(tornado.httputil.HTTPConnection method)

 	(tornado.httputil.HTTPMessageDelegate method)

 	(tornado.httputil.HTTPServerRequest method)

 	(tornado.web.RequestHandler method)

 	

 	flush() (tornado.util.GzipDecompressor method)

 	

 	(tornado.web.RequestHandler method)

 	fork_processes() (in module tornado.process)

 	format_date() (tornado.locale.Locale method)

 	format_day() (tornado.locale.Locale method)

 	format_timestamp() (in module tornado.httputil)

 	friendly_number() (tornado.locale.Locale method)

 	full_url() (tornado.httputil.HTTPServerRequest method)

 	Future (class in tornado.concurrent)

 	FUTURES (in module tornado.concurrent)

G

 	

 	gen_test() (in module tornado.testing)

 	generate() (tornado.template.Template method)

 	get() (in module tornado.locale)

 	

 	(tornado.locale.Locale class method)

 	(tornado.queues.Queue method)

 	(tornado.web.RequestHandler method)

 	get_absolute_path() (tornado.web.StaticFileHandler class method)

 	get_all() (tornado.httputil.HTTPHeaders method)

 	get_app() (tornado.testing.AsyncHTTPTestCase method)

 	get_argument() (tornado.web.RequestHandler method)

 	get_arguments() (tornado.web.RequestHandler method)

 	get_async_test_timeout() (in module tornado.testing)

 	get_auth_http_client() (tornado.auth.OAuth2Mixin method)

 	

 	(tornado.auth.OAuthMixin method)

 	(tornado.auth.OpenIdMixin method)

 	get_authenticated_user() (tornado.auth.FacebookGraphMixin method)

 	

 	(tornado.auth.GoogleOAuth2Mixin method)

 	(tornado.auth.OAuthMixin method)

 	(tornado.auth.OpenIdMixin method)

 	get_body_argument() (tornado.web.RequestHandler method)

 	get_body_arguments() (tornado.web.RequestHandler method)

 	get_browser_locale() (tornado.web.RequestHandler method)

 	get_cache_time() (tornado.web.StaticFileHandler method)

 	get_closest() (tornado.locale.Locale class method)

 	get_compression_options() (tornado.websocket.WebSocketHandler method)

 	get_content() (tornado.web.StaticFileHandler class method)

 	get_content_size() (tornado.web.StaticFileHandler method)

 	get_content_type() (tornado.web.StaticFileHandler method)

 	get_content_version() (tornado.web.StaticFileHandler class method)

 	get_cookie() (tornado.web.RequestHandler method)

 	get_current_user() (tornado.web.RequestHandler method)

 	get_fd_error() (tornado.iostream.BaseIOStream method)

 	get_http_port() (tornado.testing.AsyncHTTPTestCase method)

 	get_httpserver_options() (tornado.testing.AsyncHTTPTestCase method)

 	

 	get_list() (tornado.httputil.HTTPHeaders method)

 	get_login_url() (tornado.web.RequestHandler method)

 	get_modified_time() (tornado.web.StaticFileHandler method)

 	get_new_ioloop() (tornado.testing.AsyncTestCase method)

 	get_nowait() (tornado.queues.Queue method)

 	get_old_value() (tornado.util.ArgReplacer method)

 	get_query_argument() (tornado.web.RequestHandler method)

 	get_query_arguments() (tornado.web.RequestHandler method)

 	get_result() (tornado.gen.YieldPoint method)

 	get_secure_cookie() (tornado.web.RequestHandler method)

 	get_secure_cookie_key_version() (tornado.web.RequestHandler method)

 	get_ssl_certificate() (tornado.httputil.HTTPServerRequest method)

 	get_ssl_options() (tornado.testing.AsyncHTTPSTestCase method)

 	get_status() (tornado.web.RequestHandler method)

 	get_supported_locales() (in module tornado.locale)

 	get_template_namespace() (tornado.web.RequestHandler method)

 	get_template_path() (tornado.web.RequestHandler method)

 	get_unused_port() (in module tornado.testing)

 	get_url() (tornado.testing.AsyncHTTPTestCase method)

 	get_user_locale() (tornado.web.RequestHandler method)

 	get_version() (tornado.web.StaticFileHandler class method)

 	GettextLocale (class in tornado.locale)

 	GoogleOAuth2Mixin (class in tornado.auth)

 	group_dict() (tornado.options.OptionParser method)

 	groups() (tornado.options.OptionParser method)

 	GzipDecompressor (class in tornado.util)

H

 	

 	handle_callback_exception() (tornado.ioloop.IOLoop method)

 	handle_stream() (tornado.tcpserver.TCPServer method)

 	head() (tornado.web.RequestHandler method)

 	headers (tornado.httputil.HTTPServerRequest attribute)

 	headers_received() (tornado.httputil.HTTPMessageDelegate method)

 	host (tornado.httputil.HTTPServerRequest attribute)

 	html_body() (tornado.web.UIModule method)

 	html_head() (tornado.web.UIModule method)

 	HTTP1Connection (class in tornado.http1connection)

 	HTTP1ConnectionParameters (class in tornado.http1connection)

 	HTTP1ServerConnection (class in tornado.http1connection)

 	HTTPClient (class in tornado.httpclient)

 	

 	HTTPConnection (class in tornado.httputil)

 	HTTPError, [1]

 	HTTPFile (class in tornado.httputil)

 	HTTPHeaders (class in tornado.httputil)

 	HTTPInputError

 	HTTPMessageDelegate (class in tornado.httputil)

 	HTTPOutputError

 	HTTPRequest (class in tornado.httpclient)

 	HTTPResponse (class in tornado.httpclient)

 	HTTPServer (class in tornado.httpserver)

 	HTTPServerConnectionDelegate (class in tornado.httputil)

 	HTTPServerRequest (class in tornado.httputil)

I

 	

 	import_object() (in module tornado.util)

 	initialize() (tornado.ioloop.IOLoop method)

 	

 	(tornado.process.Subprocess class method)

 	(tornado.simple_httpclient.SimpleAsyncHTTPClient method)

 	(tornado.util.Configurable method)

 	(tornado.web.RequestHandler method)

 	initialized() (tornado.ioloop.IOLoop static method)

 	install() (in module tornado.platform.twisted)

 	

 	(tornado.ioloop.IOLoop method)

 	instance() (tornado.ioloop.IOLoop static method)

 	IOLoop (class in tornado.ioloop)

 	

 	IOStream (class in tornado.iostream)

 	is_ready() (tornado.gen.YieldPoint method)

 	is_running() (tornado.ioloop.PeriodicCallback method)

 	is_set() (tornado.locks.Event method)

 	is_valid_ip() (in module tornado.netutil)

 	items() (tornado.options.OptionParser method)

J

 	

 	javascript_files() (tornado.web.UIModule method)

 	join() (tornado.queues.Queue method)

 	

 	json_decode() (in module tornado.escape)

 	json_encode() (in module tornado.escape)

L

 	

 	LifoQueue (class in tornado.queues)

 	linkify() (in module tornado.escape)

 	list() (tornado.locale.Locale method)

 	listen() (tornado.tcpserver.TCPServer method)

 	

 	(tornado.web.Application method)

 	load() (tornado.template.BaseLoader method)

 	load_gettext_translations() (in module tornado.locale)

 	load_translations() (in module tornado.locale)

 	Loader (class in tornado.template)

 	

 	Locale (class in tornado.locale)

 	locale (tornado.web.RequestHandler attribute)

 	Lock (class in tornado.locks)

 	log_exception() (tornado.web.RequestHandler method)

 	log_request() (tornado.web.Application method)

 	log_stack() (tornado.ioloop.IOLoop method)

 	LogFormatter (class in tornado.log)

 	LogTrapTestCase (class in tornado.testing)

M

 	

 	main() (in module tornado.autoreload)

 	

 	(in module tornado.testing)

 	make_current() (tornado.ioloop.IOLoop method)

 	make_static_url() (tornado.web.StaticFileHandler class method)

 	MAX_SUPPORTED_SIGNED_VALUE_VERSION (in module tornado.web)

 	maxsize (tornado.queues.Queue attribute)

 	maybe_future() (in module tornado.gen)

 	method (tornado.httputil.HTTPServerRequest attribute)

 	

 	(tornado.httputil.RequestStartLine attribute)

 	

 	MIN_SUPPORTED_SIGNED_VALUE_VERSION (in module tornado.web)

 	MissingArgumentError

 	mockable() (tornado.options.OptionParser method)

 	moment (in module tornado.gen)

 	multi() (in module tornado.gen)

 	multi_future() (in module tornado.gen)

 	MultiYieldPoint (class in tornado.gen)

N

 	

 	native_str() (in module tornado.escape)

 	next() (tornado.gen.WaitIterator method)

 	notify() (tornado.locks.Condition method)

 	

 	notify_all() (tornado.locks.Condition method)

 	NullContext (class in tornado.stack_context)

O

 	

 	oauth2_request() (tornado.auth.OAuth2Mixin method)

 	OAuth2Mixin (class in tornado.auth)

 	OAuthMixin (class in tornado.auth)

 	ObjectDict (class in tornado.util)

 	on_close() (tornado.httputil.HTTPServerConnectionDelegate method)

 	

 	(tornado.websocket.WebSocketHandler method)

 	on_connection_close() (tornado.httputil.HTTPMessageDelegate method)

 	

 	(tornado.web.RequestHandler method)

 	on_finish() (tornado.web.RequestHandler method)

 	on_message() (tornado.websocket.WebSocketHandler method)

 	

 	on_pong() (tornado.websocket.WebSocketHandler method)

 	open() (tornado.websocket.WebSocketHandler method)

 	OpenIdMixin (class in tornado.auth)

 	OptionParser (class in tornado.options)

 	options (in module tornado.options)

 	options() (tornado.web.RequestHandler method)

 	OverrideResolver (class in tornado.netutil)

P

 	

 	parse() (tornado.httputil.HTTPHeaders class method)

 	parse_body_arguments() (in module tornado.httputil)

 	parse_command_line() (in module tornado.options)

 	

 	(tornado.options.OptionParser method)

 	parse_config_file() (in module tornado.options)

 	

 	(tornado.options.OptionParser method)

 	parse_line() (tornado.httputil.HTTPHeaders method)

 	parse_multipart_form_data() (in module tornado.httputil)

 	parse_request_start_line() (in module tornado.httputil)

 	parse_response_start_line() (in module tornado.httputil)

 	parse_url_path() (tornado.web.StaticFileHandler method)

 	ParseError

 	patch() (tornado.web.RequestHandler method)

 	path (tornado.httputil.HTTPServerRequest attribute)

 	

 	(tornado.httputil.RequestStartLine attribute)

 	path_args (tornado.web.RequestHandler attribute)

 	

 	path_kwargs (tornado.web.RequestHandler attribute)

 	PeriodicCallback (class in tornado.ioloop)

 	pgettext() (tornado.locale.GettextLocale method)

 	ping() (tornado.websocket.WebSocketHandler method)

 	PipeIOStream (class in tornado.iostream)

 	post() (tornado.web.RequestHandler method)

 	prepare() (tornado.web.RequestHandler method)

 	print_help() (in module tornado.options)

 	

 	(tornado.options.OptionParser method)

 	PriorityQueue (class in tornado.queues)

 	protocol (tornado.httputil.HTTPServerRequest attribute)

 	put() (tornado.queues.Queue method)

 	

 	(tornado.web.RequestHandler method)

 	put_nowait() (tornado.queues.Queue method)

Q

 	

 	qsize() (tornado.queues.Queue method)

 	query (tornado.httputil.HTTPServerRequest attribute)

 	query_arguments (tornado.httputil.HTTPServerRequest attribute)

 	

 	Queue (class in tornado.queues)

 	QueueEmpty

 	QueueFull

R

 	

 	re_unescape() (in module tornado.util)

 	read_bytes() (tornado.iostream.BaseIOStream method)

 	read_from_fd() (tornado.iostream.BaseIOStream method)

 	read_message() (tornado.websocket.WebSocketClientConnection method)

 	read_response() (tornado.http1connection.HTTP1Connection method)

 	read_until() (tornado.iostream.BaseIOStream method)

 	read_until_close() (tornado.iostream.BaseIOStream method)

 	read_until_regex() (tornado.iostream.BaseIOStream method)

 	reading() (tornado.iostream.BaseIOStream method)

 	reason (tornado.httputil.ResponseStartLine attribute)

 	recursive_unicode() (in module tornado.escape)

 	redirect() (tornado.web.RequestHandler method)

 	RedirectHandler (class in tornado.web)

 	release() (tornado.locks.BoundedSemaphore method)

 	

 	(tornado.locks.Lock method)

 	(tornado.locks.Semaphore method)

 	remote_ip (tornado.httputil.HTTPServerRequest attribute)

 	remove_handler() (tornado.ioloop.IOLoop method)

 	remove_timeout() (tornado.ioloop.IOLoop method)

 	removeslash() (in module tornado.web)

 	render() (tornado.web.RequestHandler method)

 	

 	(tornado.web.UIModule method)

 	render_string() (tornado.web.RequestHandler method)

 	

 	(tornado.web.UIModule method)

 	

 	replace() (tornado.util.ArgReplacer method)

 	request (tornado.web.RequestHandler attribute)

 	request_time() (tornado.httputil.HTTPServerRequest method)

 	RequestHandler (class in tornado.web)

 	RequestStartLine (class in tornado.httputil)

 	require_setting() (tornado.web.RequestHandler method)

 	reset() (tornado.template.BaseLoader method)

 	resolve() (tornado.netutil.Resolver method)

 	resolve_path() (tornado.template.BaseLoader method)

 	Resolver (class in tornado.netutil)

 	ResponseStartLine (class in tornado.httputil)

 	result() (tornado.concurrent.Future method)

 	rethrow() (tornado.httpclient.HTTPResponse method)

 	Return

 	return_future() (in module tornado.concurrent)

 	reverse_url() (tornado.web.Application method)

 	

 	(tornado.web.RequestHandler method)

 	run_on_executor() (in module tornado.concurrent)

 	run_sync() (tornado.ioloop.IOLoop method)

 	run_with_stack_context() (in module tornado.stack_context)

 	running() (tornado.concurrent.Future method)

S

 	

 	select_subprotocol() (tornado.websocket.WebSocketHandler method)

 	Semaphore (class in tornado.locks)

 	send_error() (tornado.web.RequestHandler method)

 	set() (tornado.locks.Event method)

 	set_blocking_log_threshold() (tornado.ioloop.IOLoop method)

 	set_blocking_signal_threshold() (tornado.ioloop.IOLoop method)

 	set_body_timeout() (tornado.http1connection.HTTP1Connection method)

 	set_close_callback() (tornado.http1connection.HTTP1Connection method)

 	

 	(tornado.iostream.BaseIOStream method)

 	set_cookie() (tornado.web.RequestHandler method)

 	set_default_headers() (tornado.web.RequestHandler method)

 	set_default_locale() (in module tornado.locale)

 	set_etag_header() (tornado.web.RequestHandler method)

 	set_exc_info() (tornado.concurrent.Future method)

 	set_exception() (tornado.concurrent.Future method)

 	set_exit_callback() (tornado.process.Subprocess method)

 	set_extra_headers() (tornado.web.StaticFileHandler method)

 	set_header() (tornado.web.RequestHandler method)

 	set_headers() (tornado.web.StaticFileHandler method)

 	set_max_body_size() (tornado.http1connection.HTTP1Connection method)

 	set_nodelay() (tornado.iostream.BaseIOStream method)

 	

 	(tornado.websocket.WebSocketHandler method)

 	set_result() (tornado.concurrent.Future method)

 	set_secure_cookie() (tornado.web.RequestHandler method)

 	set_status() (tornado.web.RequestHandler method)

 	settings (tornado.web.Application attribute)

 	

 	(tornado.web.RequestHandler attribute)

 	

 	should_return_304() (tornado.web.StaticFileHandler method)

 	SimpleAsyncHTTPClient (class in tornado.simple_httpclient)

 	sleep() (in module tornado.gen)

 	spawn_callback() (tornado.ioloop.IOLoop method)

 	split_fd() (tornado.ioloop.IOLoop method)

 	split_host_and_port() (in module tornado.httputil)

 	squeeze() (in module tornado.escape)

 	ssl_options_to_context() (in module tornado.netutil)

 	ssl_wrap_socket() (in module tornado.netutil)

 	SSLIOStream (class in tornado.iostream)

 	StackContext (class in tornado.stack_context)

 	start() (in module tornado.autoreload)

 	

 	(tornado.gen.YieldPoint method)

 	(tornado.ioloop.IOLoop method)

 	(tornado.ioloop.PeriodicCallback method)

 	(tornado.tcpserver.TCPServer method)

 	start_request() (tornado.httputil.HTTPServerConnectionDelegate method)

 	start_serving() (tornado.http1connection.HTTP1ServerConnection method)

 	start_tls() (tornado.iostream.IOStream method)

 	static_url() (tornado.web.RequestHandler method)

 	StaticFileHandler (class in tornado.web)

 	stop() (tornado.ioloop.IOLoop method)

 	

 	(tornado.ioloop.PeriodicCallback method)

 	(tornado.tcpserver.TCPServer method)

 	(tornado.testing.AsyncTestCase method)

 	stream_request_body() (in module tornado.web)

 	StreamBufferFullError

 	StreamClosedError

 	Subprocess (class in tornado.process)

 	supports_http_1_1() (tornado.httputil.HTTPServerRequest method)

T

 	

 	Task() (in module tornado.gen)

 	task_done() (tornado.queues.Queue method)

 	task_id() (in module tornado.process)

 	TCPClient (class in tornado.tcpclient)

 	TCPServer (class in tornado.tcpserver)

 	Template (class in tornado.template)

 	ThreadedResolver (class in tornado.netutil)

 	time() (tornado.ioloop.IOLoop method)

 	timedelta_to_seconds() (in module tornado.util)

 	TimeoutError

 	to_basestring() (in module tornado.escape)

 	to_unicode() (in module tornado.escape)

 	tornado.auth (module)

 	tornado.autoreload (module)

 	tornado.concurrent (module)

 	tornado.curl_httpclient (module)

 	tornado.escape (module)

 	tornado.gen (module)

 	tornado.http1connection (module)

 	tornado.httpclient (module)

 	tornado.httpserver (module)

 	tornado.httputil (module)

 	tornado.ioloop (module)

 	tornado.iostream (module)

 	tornado.locale (module)

 	

 	tornado.locks (module)

 	tornado.log (module)

 	tornado.netutil (module)

 	tornado.options (module)

 	tornado.platform.caresresolver (module)

 	tornado.platform.twisted (module)

 	tornado.process (module)

 	tornado.queues (module)

 	tornado.simple_httpclient (module)

 	tornado.stack_context (module)

 	tornado.tcpclient (module)

 	tornado.tcpserver (module)

 	tornado.template (module)

 	tornado.testing (module)

 	tornado.util (module)

 	tornado.web (module)

 	tornado.websocket (module)

 	tornado.wsgi (module)

 	TornadoReactor (class in tornado.platform.twisted)

 	translate() (tornado.locale.Locale method)

 	TwistedIOLoop (class in tornado.platform.twisted)

 	TwistedResolver (class in tornado.platform.twisted)

 	twitter_request() (tornado.auth.TwitterMixin method)

 	TwitterMixin (class in tornado.auth)

U

 	

 	UIModule (class in tornado.web)

 	unconsumed_tail (tornado.util.GzipDecompressor attribute)

 	uninitialize() (tornado.process.Subprocess class method)

 	UnsatisfiableReadError

 	update_handler() (tornado.ioloop.IOLoop method)

 	uri (tornado.httputil.HTTPServerRequest attribute)

 	

 	url_concat() (in module tornado.httputil)

 	url_escape() (in module tornado.escape)

 	url_unescape() (in module tornado.escape)

 	URLSpec (class in tornado.web)

 	utf8() (in module tornado.escape)

V

 	

 	validate_absolute_path() (tornado.web.StaticFileHandler method)

 	

 	version (tornado.httputil.HTTPServerRequest attribute)

 	

 	(tornado.httputil.RequestStartLine attribute)

 	(tornado.httputil.ResponseStartLine attribute)

W

 	

 	Wait (class in tornado.gen)

 	wait() (in module tornado.autoreload)

 	

 	(tornado.locks.Condition method)

 	(tornado.locks.Event method)

 	(tornado.testing.AsyncTestCase method)

 	wait_for_exit() (tornado.process.Subprocess method)

 	wait_for_handshake() (tornado.iostream.SSLIOStream method)

 	WaitAll (class in tornado.gen)

 	WaitIterator (class in tornado.gen)

 	watch() (in module tornado.autoreload)

 	websocket_connect() (in module tornado.websocket)

 	WebSocketClientConnection (class in tornado.websocket)

 	WebSocketClosedError

 	WebSocketHandler (class in tornado.websocket)

 	

 	with_timeout() (in module tornado.gen)

 	wrap() (in module tornado.stack_context)

 	write() (tornado.http1connection.HTTP1Connection method)

 	

 	(tornado.httputil.HTTPConnection method)

 	(tornado.httputil.HTTPServerRequest method)

 	(tornado.iostream.BaseIOStream method)

 	(tornado.web.RequestHandler method)

 	write_error() (tornado.web.RequestHandler method)

 	write_headers() (tornado.http1connection.HTTP1Connection method)

 	

 	(tornado.httputil.HTTPConnection method)

 	write_message() (tornado.websocket.WebSocketClientConnection method)

 	

 	(tornado.websocket.WebSocketHandler method)

 	write_to_fd() (tornado.iostream.BaseIOStream method)

 	writing() (tornado.iostream.BaseIOStream method)

 	WSGIAdapter (class in tornado.wsgi)

 	WSGIApplication (class in tornado.wsgi)

 	WSGIContainer (class in tornado.wsgi)

X

 	

 	xhtml_escape() (in module tornado.escape)

 	xhtml_unescape() (in module tornado.escape)

 	

 	xsrf_form_html() (tornado.web.RequestHandler method)

 	xsrf_token (tornado.web.RequestHandler attribute)

Y

 	

 	YieldPoint (class in tornado.gen)

 Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 All modules for which code is available

		subprocess

		tornado.auth

		tornado.autoreload

		tornado.concurrent

		tornado.escape

		tornado.gen

		tornado.http1connection

		tornado.httpclient

		tornado.httpserver

		tornado.httputil

		tornado.ioloop

		tornado.iostream

		tornado.locale

		tornado.locks

		tornado.log

		tornado.netutil

		tornado.options

		tornado.platform.twisted

		tornado.process

		tornado.queues

		tornado.simple_httpclient

		tornado.stack_context

		tornado.tcpclient

		tornado.tcpserver

		tornado.template

		tornado.testing

		tornado.util

		tornado.web

		tornado.websocket

		tornado.wsgi

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/locks.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.locks

Copyright 2015 The Tornado Authors
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

from __future__ import absolute_import, division, print_function, with_statement

import collections

from tornado import gen, ioloop
from tornado.concurrent import Future

__all__ = ['Condition', 'Event', 'Semaphore', 'BoundedSemaphore', 'Lock']

class _TimeoutGarbageCollector(object):
 """Base class for objects that periodically clean up timed-out waiters.

 Avoids memory leak in a common pattern like:

 while True:
 yield condition.wait(short_timeout)
 print('looping....')
 """
 def __init__(self):
 self._waiters = collections.deque() # Futures.
 self._timeouts = 0

 def _garbage_collect(self):
 # Occasionally clear timed-out waiters.
 self._timeouts += 1
 if self._timeouts > 100:
 self._timeouts = 0
 self._waiters = collections.deque(
 w for w in self._waiters if not w.done())

[docs]class Condition(_TimeoutGarbageCollector):
 """A condition allows one or more coroutines to wait until notified.

 Like a standard `threading.Condition`, but does not need an underlying lock
 that is acquired and released.

 With a `Condition`, coroutines can wait to be notified by other coroutines:

 .. testcode::

 from tornado import gen
 from tornado.ioloop import IOLoop
 from tornado.locks import Condition

 condition = Condition()

 @gen.coroutine
 def waiter():
 print("I'll wait right here")
 yield condition.wait() # Yield a Future.
 print("I'm done waiting")

 @gen.coroutine
 def notifier():
 print("About to notify")
 condition.notify()
 print("Done notifying")

 @gen.coroutine
 def runner():
 # Yield two Futures; wait for waiter() and notifier() to finish.
 yield [waiter(), notifier()]

 IOLoop.current().run_sync(runner)

 .. testoutput::

 I'll wait right here
 About to notify
 Done notifying
 I'm done waiting

 `wait` takes an optional ``timeout`` argument, which is either an absolute
 timestamp::

 io_loop = IOLoop.current()

 # Wait up to 1 second for a notification.
 yield condition.wait(timeout=io_loop.time() + 1)

 ...or a `datetime.timedelta` for a timeout relative to the current time::

 # Wait up to 1 second.
 yield condition.wait(timeout=datetime.timedelta(seconds=1))

 The method raises `tornado.gen.TimeoutError` if there's no notification
 before the deadline.
 """

 def __init__(self):
 super(Condition, self).__init__()
 self.io_loop = ioloop.IOLoop.current()

 def __repr__(self):
 result = '<%s' % (self.__class__.__name__,)
 if self._waiters:
 result += ' waiters[%s]' % len(self._waiters)
 return result + '>'

[docs] def wait(self, timeout=None):
 """Wait for `.notify`.

 Returns a `.Future` that resolves ``True`` if the condition is notified,
 or ``False`` after a timeout.
 """
 waiter = Future()
 self._waiters.append(waiter)
 if timeout:
 def on_timeout():
 waiter.set_result(False)
 self._garbage_collect()
 io_loop = ioloop.IOLoop.current()
 timeout_handle = io_loop.add_timeout(timeout, on_timeout)
 waiter.add_done_callback(
 lambda _: io_loop.remove_timeout(timeout_handle))
 return waiter

[docs] def notify(self, n=1):
 """Wake ``n`` waiters."""
 waiters = [] # Waiters we plan to run right now.
 while n and self._waiters:
 waiter = self._waiters.popleft()
 if not waiter.done(): # Might have timed out.
 n -= 1
 waiters.append(waiter)

 for waiter in waiters:
 waiter.set_result(True)

[docs] def notify_all(self):
 """Wake all waiters."""
 self.notify(len(self._waiters))

[docs]class Event(object):
 """An event blocks coroutines until its internal flag is set to True.

 Similar to `threading.Event`.

 A coroutine can wait for an event to be set. Once it is set, calls to
 ``yield event.wait()`` will not block unless the event has been cleared:

 .. testcode::

 from tornado import gen
 from tornado.ioloop import IOLoop
 from tornado.locks import Event

 event = Event()

 @gen.coroutine
 def waiter():
 print("Waiting for event")
 yield event.wait()
 print("Not waiting this time")
 yield event.wait()
 print("Done")

 @gen.coroutine
 def setter():
 print("About to set the event")
 event.set()

 @gen.coroutine
 def runner():
 yield [waiter(), setter()]

 IOLoop.current().run_sync(runner)

 .. testoutput::

 Waiting for event
 About to set the event
 Not waiting this time
 Done
 """
 def __init__(self):
 self._future = Future()

 def __repr__(self):
 return '<%s %s>' % (
 self.__class__.__name__, 'set' if self.is_set() else 'clear')

[docs] def is_set(self):
 """Return ``True`` if the internal flag is true."""
 return self._future.done()

[docs] def set(self):
 """Set the internal flag to ``True``. All waiters are awakened.

 Calling `.wait` once the flag is set will not block.
 """
 if not self._future.done():
 self._future.set_result(None)

[docs] def clear(self):
 """Reset the internal flag to ``False``.

 Calls to `.wait` will block until `.set` is called.
 """
 if self._future.done():
 self._future = Future()

[docs] def wait(self, timeout=None):
 """Block until the internal flag is true.

 Returns a Future, which raises `tornado.gen.TimeoutError` after a
 timeout.
 """
 if timeout is None:
 return self._future
 else:
 return gen.with_timeout(timeout, self._future)

class _ReleasingContextManager(object):
 """Releases a Lock or Semaphore at the end of a "with" statement.

 with (yield semaphore.acquire()):
 pass

 # Now semaphore.release() has been called.
 """
 def __init__(self, obj):
 self._obj = obj

 def __enter__(self):
 pass

 def __exit__(self, exc_type, exc_val, exc_tb):
 self._obj.release()

[docs]class Semaphore(_TimeoutGarbageCollector):
 """A lock that can be acquired a fixed number of times before blocking.

 A Semaphore manages a counter representing the number of `.release` calls
 minus the number of `.acquire` calls, plus an initial value. The `.acquire`
 method blocks if necessary until it can return without making the counter
 negative.

 Semaphores limit access to a shared resource. To allow access for two
 workers at a time:

 .. testsetup:: semaphore

 from collections import deque

 from tornado import gen
 from tornado.ioloop import IOLoop
 from tornado.concurrent import Future

 # Ensure reliable doctest output: resolve Futures one at a time.
 futures_q = deque([Future() for _ in range(3)])

 @gen.coroutine
 def simulator(futures):
 for f in futures:
 yield gen.moment
 f.set_result(None)

 IOLoop.current().add_callback(simulator, list(futures_q))

 def use_some_resource():
 return futures_q.popleft()

 .. testcode:: semaphore

 from tornado import gen
 from tornado.ioloop import IOLoop
 from tornado.locks import Semaphore

 sem = Semaphore(2)

 @gen.coroutine
 def worker(worker_id):
 yield sem.acquire()
 try:
 print("Worker %d is working" % worker_id)
 yield use_some_resource()
 finally:
 print("Worker %d is done" % worker_id)
 sem.release()

 @gen.coroutine
 def runner():
 # Join all workers.
 yield [worker(i) for i in range(3)]

 IOLoop.current().run_sync(runner)

 .. testoutput:: semaphore

 Worker 0 is working
 Worker 1 is working
 Worker 0 is done
 Worker 2 is working
 Worker 1 is done
 Worker 2 is done

 Workers 0 and 1 are allowed to run concurrently, but worker 2 waits until
 the semaphore has been released once, by worker 0.

 `.acquire` is a context manager, so ``worker`` could be written as::

 @gen.coroutine
 def worker(worker_id):
 with (yield sem.acquire()):
 print("Worker %d is working" % worker_id)
 yield use_some_resource()

 # Now the semaphore has been released.
 print("Worker %d is done" % worker_id)

 In Python 3.5, the semaphore itself can be used as an async context
 manager::

 async def worker(worker_id):
 async with sem:
 print("Worker %d is working" % worker_id)
 await use_some_resource()

 # Now the semaphore has been released.
 print("Worker %d is done" % worker_id)

 .. versionchanged:: 4.3
 Added ``async with`` support in Python 3.5.
 """
 def __init__(self, value=1):
 super(Semaphore, self).__init__()
 if value < 0:
 raise ValueError('semaphore initial value must be >= 0')

 self._value = value

 def __repr__(self):
 res = super(Semaphore, self).__repr__()
 extra = 'locked' if self._value == 0 else 'unlocked,value:{0}'.format(
 self._value)
 if self._waiters:
 extra = '{0},waiters:{1}'.format(extra, len(self._waiters))
 return '<{0} [{1}]>'.format(res[1:-1], extra)

[docs] def release(self):
 """Increment the counter and wake one waiter."""
 self._value += 1
 while self._waiters:
 waiter = self._waiters.popleft()
 if not waiter.done():
 self._value -= 1

 # If the waiter is a coroutine paused at
 #
 # with (yield semaphore.acquire()):
 #
 # then the context manager's __exit__ calls release() at the end
 # of the "with" block.
 waiter.set_result(_ReleasingContextManager(self))
 break

[docs] def acquire(self, timeout=None):
 """Decrement the counter. Returns a Future.

 Block if the counter is zero and wait for a `.release`. The Future
 raises `.TimeoutError` after the deadline.
 """
 waiter = Future()
 if self._value > 0:
 self._value -= 1
 waiter.set_result(_ReleasingContextManager(self))
 else:
 self._waiters.append(waiter)
 if timeout:
 def on_timeout():
 waiter.set_exception(gen.TimeoutError())
 self._garbage_collect()
 io_loop = ioloop.IOLoop.current()
 timeout_handle = io_loop.add_timeout(timeout, on_timeout)
 waiter.add_done_callback(
 lambda _: io_loop.remove_timeout(timeout_handle))
 return waiter

 def __enter__(self):
 raise RuntimeError(
 "Use Semaphore like 'with (yield semaphore.acquire())', not like"
 " 'with semaphore'")

 __exit__ = __enter__

 @gen.coroutine
 def __aenter__(self):
 yield self.acquire()

 @gen.coroutine
 def __aexit__(self, typ, value, tb):
 self.release()

[docs]class BoundedSemaphore(Semaphore):
 """A semaphore that prevents release() being called too many times.

 If `.release` would increment the semaphore's value past the initial
 value, it raises `ValueError`. Semaphores are mostly used to guard
 resources with limited capacity, so a semaphore released too many times
 is a sign of a bug.
 """
 def __init__(self, value=1):
 super(BoundedSemaphore, self).__init__(value=value)
 self._initial_value = value

[docs] def release(self):
 """Increment the counter and wake one waiter."""
 if self._value >= self._initial_value:
 raise ValueError("Semaphore released too many times")
 super(BoundedSemaphore, self).release()

[docs]class Lock(object):
 """A lock for coroutines.

 A Lock begins unlocked, and `acquire` locks it immediately. While it is
 locked, a coroutine that yields `acquire` waits until another coroutine
 calls `release`.

 Releasing an unlocked lock raises `RuntimeError`.

 `acquire` supports the context manager protocol in all Python versions:

 >>> from tornado import gen, locks
 >>> lock = locks.Lock()
 >>>
 >>> @gen.coroutine
 ... def f():
 ... with (yield lock.acquire()):
 ... # Do something holding the lock.
 ... pass
 ...
 ... # Now the lock is released.

 In Python 3.5, `Lock` also supports the async context manager
 protocol. Note that in this case there is no `acquire`, because
 ``async with`` includes both the ``yield`` and the ``acquire``
 (just as it does with `threading.Lock`):

 >>> async def f(): # doctest: +SKIP
 ... async with lock:
 ... # Do something holding the lock.
 ... pass
 ...
 ... # Now the lock is released.

 .. versionchanged:: 4.3
 Added ``async with`` support in Python 3.5.

 """
 def __init__(self):
 self._block = BoundedSemaphore(value=1)

 def __repr__(self):
 return "<%s _block=%s>" % (
 self.__class__.__name__,
 self._block)

[docs] def acquire(self, timeout=None):
 """Attempt to lock. Returns a Future.

 Returns a Future, which raises `tornado.gen.TimeoutError` after a
 timeout.
 """
 return self._block.acquire(timeout)

[docs] def release(self):
 """Unlock.

 The first coroutine in line waiting for `acquire` gets the lock.

 If not locked, raise a `RuntimeError`.
 """
 try:
 self._block.release()
 except ValueError:
 raise RuntimeError('release unlocked lock')

 def __enter__(self):
 raise RuntimeError(
 "Use Lock like 'with (yield lock)', not like 'with lock'")

 __exit__ = __enter__

 @gen.coroutine
 def __aenter__(self):
 yield self.acquire()

 @gen.coroutine
 def __aexit__(self, typ, value, tb):
 self.release()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_images/tornado.png
© Tornado

_modules/subprocess.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for subprocess

subprocess - Subprocesses with accessible I/O streams
#
For more information about this module, see PEP 324.
#
Copyright (c) 2003-2005 by Peter Astrand <astrand@lysator.liu.se>
#
Licensed to PSF under a Contributor Agreement.
See http://www.python.org/2.4/license for licensing details.

r"""subprocess - Subprocesses with accessible I/O streams

This module allows you to spawn processes, connect to their
input/output/error pipes, and obtain their return codes. This module
intends to replace several older modules and functions:

os.system
os.spawn*
os.popen*
popen2.*
commands.*

Information about how the subprocess module can be used to replace these
modules and functions can be found below.

Using the subprocess module
===========================
This module defines one class called Popen:

class Popen(args, bufsize=0, executable=None,
 stdin=None, stdout=None, stderr=None,
 preexec_fn=None, close_fds=False, shell=False,
 cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0):

Arguments are:

args should be a string, or a sequence of program arguments. The
program to execute is normally the first item in the args sequence or
string, but can be explicitly set by using the executable argument.

On UNIX, with shell=False (default): In this case, the Popen class
uses os.execvp() to execute the child program. args should normally
be a sequence. A string will be treated as a sequence with the string
as the only item (the program to execute).

On UNIX, with shell=True: If args is a string, it specifies the
command string to execute through the shell. If args is a sequence,
the first item specifies the command string, and any additional items
will be treated as additional shell arguments.

On Windows: the Popen class uses CreateProcess() to execute the child
program, which operates on strings. If args is a sequence, it will be
converted to a string using the list2cmdline method. Please note that
not all MS Windows applications interpret the command line the same
way: The list2cmdline is designed for applications using the same
rules as the MS C runtime.

bufsize, if given, has the same meaning as the corresponding argument
to the built-in open() function: 0 means unbuffered, 1 means line
buffered, any other positive value means use a buffer of
(approximately) that size. A negative bufsize means to use the system
default, which usually means fully buffered. The default value for
bufsize is 0 (unbuffered).

stdin, stdout and stderr specify the executed programs' standard
input, standard output and standard error file handles, respectively.
Valid values are PIPE, an existing file descriptor (a positive
integer), an existing file object, and None. PIPE indicates that a
new pipe to the child should be created. With None, no redirection
will occur; the child's file handles will be inherited from the
parent. Additionally, stderr can be STDOUT, which indicates that the
stderr data from the applications should be captured into the same
file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called
in the child process just before the child is executed.

If close_fds is true, all file descriptors except 0, 1 and 2 will be
closed before the child process is executed.

if shell is true, the specified command will be executed through the
shell.

If cwd is not None, the current directory will be changed to cwd
before the child is executed.

If env is not None, it defines the environment variables for the new
process.

If universal_newlines is true, the file objects stdout and stderr are
opened as a text files, but lines may be terminated by any of '\n',
the Unix end-of-line convention, '\r', the Macintosh convention or
'\r\n', the Windows convention. All of these external representations
are seen as '\n' by the Python program. Note: This feature is only
available if Python is built with universal newline support (the
default). Also, the newlines attribute of the file objects stdout,
stdin and stderr are not updated by the communicate() method.

The startupinfo and creationflags, if given, will be passed to the
underlying CreateProcess() function. They can specify things such as
appearance of the main window and priority for the new process.
(Windows only)

This module also defines some shortcut functions:

call(*popenargs, **kwargs):
 Run command with arguments. Wait for command to complete, then
 return the returncode attribute.

 The arguments are the same as for the Popen constructor. Example:

 retcode = call(["ls", "-l"])

check_call(*popenargs, **kwargs):
 Run command with arguments. Wait for command to complete. If the
 exit code was zero then return, otherwise raise
 CalledProcessError. The CalledProcessError object will have the
 return code in the returncode attribute.

 The arguments are the same as for the Popen constructor. Example:

 check_call(["ls", "-l"])

check_output(*popenargs, **kwargs):
 Run command with arguments and return its output as a byte string.

 If the exit code was non-zero it raises a CalledProcessError. The
 CalledProcessError object will have the return code in the returncode
 attribute and output in the output attribute.

 The arguments are the same as for the Popen constructor. Example:

 output = check_output(["ls", "-l", "/dev/null"])

Exceptions

Exceptions raised in the child process, before the new program has
started to execute, will be re-raised in the parent. Additionally,
the exception object will have one extra attribute called
'child_traceback', which is a string containing traceback information
from the child's point of view.

The most common exception raised is OSError. This occurs, for
example, when trying to execute a non-existent file. Applications
should prepare for OSErrors.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() and check_output() will raise CalledProcessError, if the
called process returns a non-zero return code.

Security

Unlike some other popen functions, this implementation will never call
/bin/sh implicitly. This means that all characters, including shell
metacharacters, can safely be passed to child processes.

Popen objects
=============
Instances of the Popen class have the following methods:

poll()
 Check if child process has terminated. Returns returncode
 attribute.

wait()
 Wait for child process to terminate. Returns returncode attribute.

communicate(input=None)
 Interact with process: Send data to stdin. Read data from stdout
 and stderr, until end-of-file is reached. Wait for process to
 terminate. The optional input argument should be a string to be
 sent to the child process, or None, if no data should be sent to
 the child.

 communicate() returns a tuple (stdout, stderr).

 Note: The data read is buffered in memory, so do not use this
 method if the data size is large or unlimited.

The following attributes are also available:

stdin
 If the stdin argument is PIPE, this attribute is a file object
 that provides input to the child process. Otherwise, it is None.

stdout
 If the stdout argument is PIPE, this attribute is a file object
 that provides output from the child process. Otherwise, it is
 None.

stderr
 If the stderr argument is PIPE, this attribute is file object that
 provides error output from the child process. Otherwise, it is
 None.

pid
 The process ID of the child process.

returncode
 The child return code. A None value indicates that the process
 hasn't terminated yet. A negative value -N indicates that the
 child was terminated by signal N (UNIX only).

Replacing older functions with the subprocess module
==
In this section, "a ==> b" means that b can be used as a replacement
for a.

Note: All functions in this section fail (more or less) silently if
the executed program cannot be found; this module raises an OSError
exception.

In the following examples, we assume that the subprocess module is
imported with "from subprocess import *".

Replacing /bin/sh shell backquote

output=`mycmd myarg`
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]

Replacing shell pipe line

output=`dmesg | grep hda`
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
output = p2.communicate()[0]

Replacing os.system()

sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
pid, sts = os.waitpid(p.pid, 0)

Note:

* Calling the program through the shell is usually not required.

* It's easier to look at the returncode attribute than the
 exitstatus.

A more real-world example would look like this:

try:
 retcode = call("mycmd" + " myarg", shell=True)
 if retcode < 0:
 print >>sys.stderr, "Child was terminated by signal", -retcode
 else:
 print >>sys.stderr, "Child returned", retcode
except OSError, e:
 print >>sys.stderr, "Execution failed:", e

Replacing os.spawn*

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen*

pipe = os.popen("cmd", mode='r', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdout=PIPE).stdout

pipe = os.popen("cmd", mode='w', bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdin=PIPE).stdin

(child_stdin, child_stdout) = os.popen2("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
 child_stdout,
 child_stderr) = os.popen3("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
 child_stdout,
 child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4("cmd", mode,
 bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

On Unix, os.popen2, os.popen3 and os.popen4 also accept a sequence as
the command to execute, in which case arguments will be passed
directly to the program without shell intervention. This usage can be
replaced as follows:

(child_stdin, child_stdout) = os.popen2(["/bin/ls", "-l"], mode,
 bufsize)
==>
p = Popen(["/bin/ls", "-l"], bufsize=bufsize, stdin=PIPE, stdout=PIPE)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen("cmd", 'w')
...
rc = pipe.close()
if rc is not None and rc % 256:
 print "There were some errors"
==>
process = Popen("cmd", 'w', shell=True, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
 print "There were some errors"

Replacing popen2.*

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

On Unix, popen2 also accepts a sequence as the command to execute, in
which case arguments will be passed directly to the program without
shell intervention. This usage can be replaced as follows:

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize,
 mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
 stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

The popen2.Popen3 and popen2.Popen4 basically works as subprocess.Popen,
except that:

* subprocess.Popen raises an exception if the execution fails
* the capturestderr argument is replaced with the stderr argument.
* stdin=PIPE and stdout=PIPE must be specified.
* popen2 closes all filedescriptors by default, but you have to specify
 close_fds=True with subprocess.Popen.
"""

import sys
mswindows = (sys.platform == "win32")

import os
import types
import traceback
import gc
import signal
import errno

Exception classes used by this module.
[docs]class CalledProcessError(Exception):
 """This exception is raised when a process run by check_call() or
 check_output() returns a non-zero exit status.
 The exit status will be stored in the returncode attribute;
 check_output() will also store the output in the output attribute.
 """
 def __init__(self, returncode, cmd, output=None):
 self.returncode = returncode
 self.cmd = cmd
 self.output = output
 def __str__(self):
 return "Command '%s' returned non-zero exit status %d" % (self.cmd, self.returncode)

if mswindows:
 import threading
 import msvcrt
 import _subprocess
 class STARTUPINFO:
 dwFlags = 0
 hStdInput = None
 hStdOutput = None
 hStdError = None
 wShowWindow = 0
 class pywintypes:
 error = IOError
else:
 import select
 _has_poll = hasattr(select, 'poll')
 import fcntl
 import pickle

 # When select or poll has indicated that the file is writable,
 # we can write up to _PIPE_BUF bytes without risk of blocking.
 # POSIX defines PIPE_BUF as >= 512.
 _PIPE_BUF = getattr(select, 'PIPE_BUF', 512)

__all__ = ["Popen", "PIPE", "STDOUT", "call", "check_call",
 "check_output", "CalledProcessError"]

if mswindows:
 from _subprocess import (CREATE_NEW_CONSOLE, CREATE_NEW_PROCESS_GROUP,
 STD_INPUT_HANDLE, STD_OUTPUT_HANDLE,
 STD_ERROR_HANDLE, SW_HIDE,
 STARTF_USESTDHANDLES, STARTF_USESHOWWINDOW)

 __all__.extend(["CREATE_NEW_CONSOLE", "CREATE_NEW_PROCESS_GROUP",
 "STD_INPUT_HANDLE", "STD_OUTPUT_HANDLE",
 "STD_ERROR_HANDLE", "SW_HIDE",
 "STARTF_USESTDHANDLES", "STARTF_USESHOWWINDOW"])
try:
 MAXFD = os.sysconf("SC_OPEN_MAX")
except:
 MAXFD = 256

_active = []

def _cleanup():
 for inst in _active[:]:
 res = inst._internal_poll(_deadstate=sys.maxint)
 if res is not None:
 try:
 _active.remove(inst)
 except ValueError:
 # This can happen if two threads create a new Popen instance.
 # It's harmless that it was already removed, so ignore.
 pass

PIPE = -1
STDOUT = -2

def _eintr_retry_call(func, *args):
 while True:
 try:
 return func(*args)
 except (OSError, IOError) as e:
 if e.errno == errno.EINTR:
 continue
 raise

XXX This function is only used by multiprocessing and the test suite,
but it's here so that it can be imported when Python is compiled without
threads.

def _args_from_interpreter_flags():
 """Return a list of command-line arguments reproducing the current
 settings in sys.flags and sys.warnoptions."""
 flag_opt_map = {
 'debug': 'd',
 # 'inspect': 'i',
 # 'interactive': 'i',
 'optimize': 'O',
 'dont_write_bytecode': 'B',
 'no_user_site': 's',
 'no_site': 'S',
 'ignore_environment': 'E',
 'verbose': 'v',
 'bytes_warning': 'b',
 'hash_randomization': 'R',
 'py3k_warning': '3',
 }
 args = []
 for flag, opt in flag_opt_map.items():
 v = getattr(sys.flags, flag)
 if v > 0:
 args.append('-' + opt * v)
 for opt in sys.warnoptions:
 args.append('-W' + opt)
 return args

def call(*popenargs, **kwargs):
 """Run command with arguments. Wait for command to complete, then
 return the returncode attribute.

 The arguments are the same as for the Popen constructor. Example:

 retcode = call(["ls", "-l"])
 """
 return Popen(*popenargs, **kwargs).wait()

def check_call(*popenargs, **kwargs):
 """Run command with arguments. Wait for command to complete. If
 the exit code was zero then return, otherwise raise
 CalledProcessError. The CalledProcessError object will have the
 return code in the returncode attribute.

 The arguments are the same as for the Popen constructor. Example:

 check_call(["ls", "-l"])
 """
 retcode = call(*popenargs, **kwargs)
 if retcode:
 cmd = kwargs.get("args")
 if cmd is None:
 cmd = popenargs[0]
 raise CalledProcessError(retcode, cmd)
 return 0

def check_output(*popenargs, **kwargs):
 r"""Run command with arguments and return its output as a byte string.

 If the exit code was non-zero it raises a CalledProcessError. The
 CalledProcessError object will have the return code in the returncode
 attribute and output in the output attribute.

 The arguments are the same as for the Popen constructor. Example:

 >>> check_output(["ls", "-l", "/dev/null"])
 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n'

 The stdout argument is not allowed as it is used internally.
 To capture standard error in the result, use stderr=STDOUT.

 >>> check_output(["/bin/sh", "-c",
 ... "ls -l non_existent_file ; exit 0"],
 ... stderr=STDOUT)
 'ls: non_existent_file: No such file or directory\n'
 """
 if 'stdout' in kwargs:
 raise ValueError('stdout argument not allowed, it will be overridden.')
 process = Popen(stdout=PIPE, *popenargs, **kwargs)
 output, unused_err = process.communicate()
 retcode = process.poll()
 if retcode:
 cmd = kwargs.get("args")
 if cmd is None:
 cmd = popenargs[0]
 raise CalledProcessError(retcode, cmd, output=output)
 return output

def list2cmdline(seq):
 """
 Translate a sequence of arguments into a command line
 string, using the same rules as the MS C runtime:

 1) Arguments are delimited by white space, which is either a
 space or a tab.

 2) A string surrounded by double quotation marks is
 interpreted as a single argument, regardless of white space
 contained within. A quoted string can be embedded in an
 argument.

 3) A double quotation mark preceded by a backslash is
 interpreted as a literal double quotation mark.

 4) Backslashes are interpreted literally, unless they
 immediately precede a double quotation mark.

 5) If backslashes immediately precede a double quotation mark,
 every pair of backslashes is interpreted as a literal
 backslash. If the number of backslashes is odd, the last
 backslash escapes the next double quotation mark as
 described in rule 3.
 """

 # See
 # http://msdn.microsoft.com/en-us/library/17w5ykft.aspx
 # or search http://msdn.microsoft.com for
 # "Parsing C++ Command-Line Arguments"
 result = []
 needquote = False
 for arg in seq:
 bs_buf = []

 # Add a space to separate this argument from the others
 if result:
 result.append(' ')

 needquote = (" " in arg) or ("\t" in arg) or not arg
 if needquote:
 result.append('"')

 for c in arg:
 if c == '\\':
 # Don't know if we need to double yet.
 bs_buf.append(c)
 elif c == '"':
 # Double backslashes.
 result.append('\\' * len(bs_buf)*2)
 bs_buf = []
 result.append('\\"')
 else:
 # Normal char
 if bs_buf:
 result.extend(bs_buf)
 bs_buf = []
 result.append(c)

 # Add remaining backslashes, if any.
 if bs_buf:
 result.extend(bs_buf)

 if needquote:
 result.extend(bs_buf)
 result.append('"')

 return ''.join(result)

class Popen(object):
 _child_created = False # Set here since __del__ checks it

 def __init__(self, args, bufsize=0, executable=None,
 stdin=None, stdout=None, stderr=None,
 preexec_fn=None, close_fds=False, shell=False,
 cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0):
 """Create new Popen instance."""
 _cleanup()

 if not isinstance(bufsize, (int, long)):
 raise TypeError("bufsize must be an integer")

 if mswindows:
 if preexec_fn is not None:
 raise ValueError("preexec_fn is not supported on Windows "
 "platforms")
 if close_fds and (stdin is not None or stdout is not None or
 stderr is not None):
 raise ValueError("close_fds is not supported on Windows "
 "platforms if you redirect stdin/stdout/stderr")
 else:
 # POSIX
 if startupinfo is not None:
 raise ValueError("startupinfo is only supported on Windows "
 "platforms")
 if creationflags != 0:
 raise ValueError("creationflags is only supported on Windows "
 "platforms")

 self.stdin = None
 self.stdout = None
 self.stderr = None
 self.pid = None
 self.returncode = None
 self.universal_newlines = universal_newlines

 # Input and output objects. The general principle is like
 # this:
 #
 # Parent Child
 # ------ -----
 # p2cwrite ---stdin---> p2cread
 # c2pread <--stdout--- c2pwrite
 # errread <--stderr--- errwrite
 #
 # On POSIX, the child objects are file descriptors. On
 # Windows, these are Windows file handles. The parent objects
 # are file descriptors on both platforms. The parent objects
 # are None when not using PIPEs. The child objects are None
 # when not redirecting.

 (p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite), to_close = self._get_handles(stdin, stdout, stderr)

 try:
 self._execute_child(args, executable, preexec_fn, close_fds,
 cwd, env, universal_newlines,
 startupinfo, creationflags, shell, to_close,
 p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite)
 except Exception:
 # Preserve original exception in case os.close raises.
 exc_type, exc_value, exc_trace = sys.exc_info()

 for fd in to_close:
 try:
 if mswindows:
 fd.Close()
 else:
 os.close(fd)
 except EnvironmentError:
 pass

 raise exc_type, exc_value, exc_trace

 if mswindows:
 if p2cwrite is not None:
 p2cwrite = msvcrt.open_osfhandle(p2cwrite.Detach(), 0)
 if c2pread is not None:
 c2pread = msvcrt.open_osfhandle(c2pread.Detach(), 0)
 if errread is not None:
 errread = msvcrt.open_osfhandle(errread.Detach(), 0)

 if p2cwrite is not None:
 self.stdin = os.fdopen(p2cwrite, 'wb', bufsize)
 if c2pread is not None:
 if universal_newlines:
 self.stdout = os.fdopen(c2pread, 'rU', bufsize)
 else:
 self.stdout = os.fdopen(c2pread, 'rb', bufsize)
 if errread is not None:
 if universal_newlines:
 self.stderr = os.fdopen(errread, 'rU', bufsize)
 else:
 self.stderr = os.fdopen(errread, 'rb', bufsize)

 def _translate_newlines(self, data):
 data = data.replace("\r\n", "\n")
 data = data.replace("\r", "\n")
 return data

 def __del__(self, _maxint=sys.maxint):
 # If __init__ hasn't had a chance to execute (e.g. if it
 # was passed an undeclared keyword argument), we don't
 # have a _child_created attribute at all.
 if not self._child_created:
 # We didn't get to successfully create a child process.
 return
 # In case the child hasn't been waited on, check if it's done.
 self._internal_poll(_deadstate=_maxint)
 if self.returncode is None and _active is not None:
 # Child is still running, keep us alive until we can wait on it.
 _active.append(self)

 def communicate(self, input=None):
 """Interact with process: Send data to stdin. Read data from
 stdout and stderr, until end-of-file is reached. Wait for
 process to terminate. The optional input argument should be a
 string to be sent to the child process, or None, if no data
 should be sent to the child.

 communicate() returns a tuple (stdout, stderr)."""

 # Optimization: If we are only using one pipe, or no pipe at
 # all, using select() or threads is unnecessary.
 if [self.stdin, self.stdout, self.stderr].count(None) >= 2:
 stdout = None
 stderr = None
 if self.stdin:
 if input:
 try:
 self.stdin.write(input)
 except IOError as e:
 if e.errno != errno.EPIPE and e.errno != errno.EINVAL:
 raise
 self.stdin.close()
 elif self.stdout:
 stdout = _eintr_retry_call(self.stdout.read)
 self.stdout.close()
 elif self.stderr:
 stderr = _eintr_retry_call(self.stderr.read)
 self.stderr.close()
 self.wait()
 return (stdout, stderr)

 return self._communicate(input)

 def poll(self):
 return self._internal_poll()

 if mswindows:
 #
 # Windows methods
 #
 def _get_handles(self, stdin, stdout, stderr):
 """Construct and return tuple with IO objects:
 p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite
 """
 to_close = set()
 if stdin is None and stdout is None and stderr is None:
 return (None, None, None, None, None, None), to_close

 p2cread, p2cwrite = None, None
 c2pread, c2pwrite = None, None
 errread, errwrite = None, None

 if stdin is None:
 p2cread = _subprocess.GetStdHandle(_subprocess.STD_INPUT_HANDLE)
 if p2cread is None:
 p2cread, _ = _subprocess.CreatePipe(None, 0)
 elif stdin == PIPE:
 p2cread, p2cwrite = _subprocess.CreatePipe(None, 0)
 elif isinstance(stdin, int):
 p2cread = msvcrt.get_osfhandle(stdin)
 else:
 # Assuming file-like object
 p2cread = msvcrt.get_osfhandle(stdin.fileno())
 p2cread = self._make_inheritable(p2cread)
 # We just duplicated the handle, it has to be closed at the end
 to_close.add(p2cread)
 if stdin == PIPE:
 to_close.add(p2cwrite)

 if stdout is None:
 c2pwrite = _subprocess.GetStdHandle(_subprocess.STD_OUTPUT_HANDLE)
 if c2pwrite is None:
 _, c2pwrite = _subprocess.CreatePipe(None, 0)
 elif stdout == PIPE:
 c2pread, c2pwrite = _subprocess.CreatePipe(None, 0)
 elif isinstance(stdout, int):
 c2pwrite = msvcrt.get_osfhandle(stdout)
 else:
 # Assuming file-like object
 c2pwrite = msvcrt.get_osfhandle(stdout.fileno())
 c2pwrite = self._make_inheritable(c2pwrite)
 # We just duplicated the handle, it has to be closed at the end
 to_close.add(c2pwrite)
 if stdout == PIPE:
 to_close.add(c2pread)

 if stderr is None:
 errwrite = _subprocess.GetStdHandle(_subprocess.STD_ERROR_HANDLE)
 if errwrite is None:
 _, errwrite = _subprocess.CreatePipe(None, 0)
 elif stderr == PIPE:
 errread, errwrite = _subprocess.CreatePipe(None, 0)
 elif stderr == STDOUT:
 errwrite = c2pwrite
 elif isinstance(stderr, int):
 errwrite = msvcrt.get_osfhandle(stderr)
 else:
 # Assuming file-like object
 errwrite = msvcrt.get_osfhandle(stderr.fileno())
 errwrite = self._make_inheritable(errwrite)
 # We just duplicated the handle, it has to be closed at the end
 to_close.add(errwrite)
 if stderr == PIPE:
 to_close.add(errread)

 return (p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite), to_close

 def _make_inheritable(self, handle):
 """Return a duplicate of handle, which is inheritable"""
 return _subprocess.DuplicateHandle(_subprocess.GetCurrentProcess(),
 handle, _subprocess.GetCurrentProcess(), 0, 1,
 _subprocess.DUPLICATE_SAME_ACCESS)

 def _find_w9xpopen(self):
 """Find and return absolut path to w9xpopen.exe"""
 w9xpopen = os.path.join(
 os.path.dirname(_subprocess.GetModuleFileName(0)),
 "w9xpopen.exe")
 if not os.path.exists(w9xpopen):
 # Eeek - file-not-found - possibly an embedding
 # situation - see if we can locate it in sys.exec_prefix
 w9xpopen = os.path.join(os.path.dirname(sys.exec_prefix),
 "w9xpopen.exe")
 if not os.path.exists(w9xpopen):
 raise RuntimeError("Cannot locate w9xpopen.exe, which is "
 "needed for Popen to work with your "
 "shell or platform.")
 return w9xpopen

 def _execute_child(self, args, executable, preexec_fn, close_fds,
 cwd, env, universal_newlines,
 startupinfo, creationflags, shell, to_close,
 p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite):
 """Execute program (MS Windows version)"""

 if not isinstance(args, types.StringTypes):
 args = list2cmdline(args)

 # Process startup details
 if startupinfo is None:
 startupinfo = STARTUPINFO()
 if None not in (p2cread, c2pwrite, errwrite):
 startupinfo.dwFlags |= _subprocess.STARTF_USESTDHANDLES
 startupinfo.hStdInput = p2cread
 startupinfo.hStdOutput = c2pwrite
 startupinfo.hStdError = errwrite

 if shell:
 startupinfo.dwFlags |= _subprocess.STARTF_USESHOWWINDOW
 startupinfo.wShowWindow = _subprocess.SW_HIDE
 comspec = os.environ.get("COMSPEC", "cmd.exe")
 args = '{} /c "{}"'.format (comspec, args)
 if (_subprocess.GetVersion() >= 0x80000000 or
 os.path.basename(comspec).lower() == "command.com"):
 # Win9x, or using command.com on NT. We need to
 # use the w9xpopen intermediate program. For more
 # information, see KB Q150956
 # (http://web.archive.org/web/20011105084002/http://support.microsoft.com/support/kb/articles/Q150/9/56.asp)
 w9xpopen = self._find_w9xpopen()
 args = '"%s" %s' % (w9xpopen, args)
 # Not passing CREATE_NEW_CONSOLE has been known to
 # cause random failures on win9x. Specifically a
 # dialog: "Your program accessed mem currently in
 # use at xxx" and a hopeful warning about the
 # stability of your system. Cost is Ctrl+C wont
 # kill children.
 creationflags |= _subprocess.CREATE_NEW_CONSOLE

 def _close_in_parent(fd):
 fd.Close()
 to_close.remove(fd)

 # Start the process
 try:
 hp, ht, pid, tid = _subprocess.CreateProcess(executable, args,
 # no special security
 None, None,
 int(not close_fds),
 creationflags,
 env,
 cwd,
 startupinfo)
 except pywintypes.error, e:
 # Translate pywintypes.error to WindowsError, which is
 # a subclass of OSError. FIXME: We should really
 # translate errno using _sys_errlist (or similar), but
 # how can this be done from Python?
 raise WindowsError(*e.args)
 finally:
 # Child is launched. Close the parent's copy of those pipe
 # handles that only the child should have open. You need
 # to make sure that no handles to the write end of the
 # output pipe are maintained in this process or else the
 # pipe will not close when the child process exits and the
 # ReadFile will hang.
 if p2cread is not None:
 _close_in_parent(p2cread)
 if c2pwrite is not None:
 _close_in_parent(c2pwrite)
 if errwrite is not None:
 _close_in_parent(errwrite)

 # Retain the process handle, but close the thread handle
 self._child_created = True
 self._handle = hp
 self.pid = pid
 ht.Close()

 def _internal_poll(self, _deadstate=None,
 _WaitForSingleObject=_subprocess.WaitForSingleObject,
 _WAIT_OBJECT_0=_subprocess.WAIT_OBJECT_0,
 _GetExitCodeProcess=_subprocess.GetExitCodeProcess):
 """Check if child process has terminated. Returns returncode
 attribute.

 This method is called by __del__, so it can only refer to objects
 in its local scope.

 """
 if self.returncode is None:
 if _WaitForSingleObject(self._handle, 0) == _WAIT_OBJECT_0:
 self.returncode = _GetExitCodeProcess(self._handle)
 return self.returncode

 def wait(self):
 """Wait for child process to terminate. Returns returncode
 attribute."""
 if self.returncode is None:
 _subprocess.WaitForSingleObject(self._handle,
 _subprocess.INFINITE)
 self.returncode = _subprocess.GetExitCodeProcess(self._handle)
 return self.returncode

 def _readerthread(self, fh, buffer):
 buffer.append(fh.read())

 def _communicate(self, input):
 stdout = None # Return
 stderr = None # Return

 if self.stdout:
 stdout = []
 stdout_thread = threading.Thread(target=self._readerthread,
 args=(self.stdout, stdout))
 stdout_thread.setDaemon(True)
 stdout_thread.start()
 if self.stderr:
 stderr = []
 stderr_thread = threading.Thread(target=self._readerthread,
 args=(self.stderr, stderr))
 stderr_thread.setDaemon(True)
 stderr_thread.start()

 if self.stdin:
 if input is not None:
 try:
 self.stdin.write(input)
 except IOError as e:
 if e.errno != errno.EPIPE:
 raise
 self.stdin.close()

 if self.stdout:
 stdout_thread.join()
 if self.stderr:
 stderr_thread.join()

 # All data exchanged. Translate lists into strings.
 if stdout is not None:
 stdout = stdout[0]
 if stderr is not None:
 stderr = stderr[0]

 # Translate newlines, if requested. We cannot let the file
 # object do the translation: It is based on stdio, which is
 # impossible to combine with select (unless forcing no
 # buffering).
 if self.universal_newlines and hasattr(file, 'newlines'):
 if stdout:
 stdout = self._translate_newlines(stdout)
 if stderr:
 stderr = self._translate_newlines(stderr)

 self.wait()
 return (stdout, stderr)

 def send_signal(self, sig):
 """Send a signal to the process
 """
 if sig == signal.SIGTERM:
 self.terminate()
 elif sig == signal.CTRL_C_EVENT:
 os.kill(self.pid, signal.CTRL_C_EVENT)
 elif sig == signal.CTRL_BREAK_EVENT:
 os.kill(self.pid, signal.CTRL_BREAK_EVENT)
 else:
 raise ValueError("Unsupported signal: {}".format(sig))

 def terminate(self):
 """Terminates the process
 """
 try:
 _subprocess.TerminateProcess(self._handle, 1)
 except OSError as e:
 # ERROR_ACCESS_DENIED (winerror 5) is received when the
 # process already died.
 if e.winerror != 5:
 raise
 rc = _subprocess.GetExitCodeProcess(self._handle)
 if rc == _subprocess.STILL_ACTIVE:
 raise
 self.returncode = rc

 kill = terminate

 else:
 #
 # POSIX methods
 #
 def _get_handles(self, stdin, stdout, stderr):
 """Construct and return tuple with IO objects:
 p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite
 """
 to_close = set()
 p2cread, p2cwrite = None, None
 c2pread, c2pwrite = None, None
 errread, errwrite = None, None

 if stdin is None:
 pass
 elif stdin == PIPE:
 p2cread, p2cwrite = self.pipe_cloexec()
 to_close.update((p2cread, p2cwrite))
 elif isinstance(stdin, int):
 p2cread = stdin
 else:
 # Assuming file-like object
 p2cread = stdin.fileno()

 if stdout is None:
 pass
 elif stdout == PIPE:
 c2pread, c2pwrite = self.pipe_cloexec()
 to_close.update((c2pread, c2pwrite))
 elif isinstance(stdout, int):
 c2pwrite = stdout
 else:
 # Assuming file-like object
 c2pwrite = stdout.fileno()

 if stderr is None:
 pass
 elif stderr == PIPE:
 errread, errwrite = self.pipe_cloexec()
 to_close.update((errread, errwrite))
 elif stderr == STDOUT:
 errwrite = c2pwrite
 elif isinstance(stderr, int):
 errwrite = stderr
 else:
 # Assuming file-like object
 errwrite = stderr.fileno()

 return (p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite), to_close

 def _set_cloexec_flag(self, fd, cloexec=True):
 try:
 cloexec_flag = fcntl.FD_CLOEXEC
 except AttributeError:
 cloexec_flag = 1

 old = fcntl.fcntl(fd, fcntl.F_GETFD)
 if cloexec:
 fcntl.fcntl(fd, fcntl.F_SETFD, old | cloexec_flag)
 else:
 fcntl.fcntl(fd, fcntl.F_SETFD, old & ~cloexec_flag)

 def pipe_cloexec(self):
 """Create a pipe with FDs set CLOEXEC."""
 # Pipes' FDs are set CLOEXEC by default because we don't want them
 # to be inherited by other subprocesses: the CLOEXEC flag is removed
 # from the child's FDs by _dup2(), between fork() and exec().
 # This is not atomic: we would need the pipe2() syscall for that.
 r, w = os.pipe()
 self._set_cloexec_flag(r)
 self._set_cloexec_flag(w)
 return r, w

 def _close_fds(self, but):
 if hasattr(os, 'closerange'):
 os.closerange(3, but)
 os.closerange(but + 1, MAXFD)
 else:
 for i in xrange(3, MAXFD):
 if i == but:
 continue
 try:
 os.close(i)
 except:
 pass

 def _execute_child(self, args, executable, preexec_fn, close_fds,
 cwd, env, universal_newlines,
 startupinfo, creationflags, shell, to_close,
 p2cread, p2cwrite,
 c2pread, c2pwrite,
 errread, errwrite):
 """Execute program (POSIX version)"""

 if isinstance(args, types.StringTypes):
 args = [args]
 else:
 args = list(args)

 if shell:
 args = ["/bin/sh", "-c"] + args
 if executable:
 args[0] = executable

 if executable is None:
 executable = args[0]

 def _close_in_parent(fd):
 os.close(fd)
 to_close.remove(fd)

 # For transferring possible exec failure from child to parent
 # The first char specifies the exception type: 0 means
 # OSError, 1 means some other error.
 errpipe_read, errpipe_write = self.pipe_cloexec()
 try:
 try:
 gc_was_enabled = gc.isenabled()
 # Disable gc to avoid bug where gc -> file_dealloc ->
 # write to stderr -> hang. http://bugs.python.org/issue1336
 gc.disable()
 try:
 self.pid = os.fork()
 except:
 if gc_was_enabled:
 gc.enable()
 raise
 self._child_created = True
 if self.pid == 0:
 # Child
 try:
 # Close parent's pipe ends
 if p2cwrite is not None:
 os.close(p2cwrite)
 if c2pread is not None:
 os.close(c2pread)
 if errread is not None:
 os.close(errread)
 os.close(errpipe_read)

 # When duping fds, if there arises a situation
 # where one of the fds is either 0, 1 or 2, it
 # is possible that it is overwritten (#12607).
 if c2pwrite == 0:
 c2pwrite = os.dup(c2pwrite)
 if errwrite == 0 or errwrite == 1:
 errwrite = os.dup(errwrite)

 # Dup fds for child
 def _dup2(a, b):
 # dup2() removes the CLOEXEC flag but
 # we must do it ourselves if dup2()
 # would be a no-op (issue #10806).
 if a == b:
 self._set_cloexec_flag(a, False)
 elif a is not None:
 os.dup2(a, b)
 _dup2(p2cread, 0)
 _dup2(c2pwrite, 1)
 _dup2(errwrite, 2)

 # Close pipe fds. Make sure we don't close the
 # same fd more than once, or standard fds.
 closed = { None }
 for fd in [p2cread, c2pwrite, errwrite]:
 if fd not in closed and fd > 2:
 os.close(fd)
 closed.add(fd)

 if cwd is not None:
 os.chdir(cwd)

 if preexec_fn:
 preexec_fn()

 # Close all other fds, if asked for - after
 # preexec_fn(), which may open FDs.
 if close_fds:
 self._close_fds(but=errpipe_write)

 if env is None:
 os.execvp(executable, args)
 else:
 os.execvpe(executable, args, env)

 except:
 exc_type, exc_value, tb = sys.exc_info()
 # Save the traceback and attach it to the exception object
 exc_lines = traceback.format_exception(exc_type,
 exc_value,
 tb)
 exc_value.child_traceback = ''.join(exc_lines)
 os.write(errpipe_write, pickle.dumps(exc_value))

 # This exitcode won't be reported to applications, so it
 # really doesn't matter what we return.
 os._exit(255)

 # Parent
 if gc_was_enabled:
 gc.enable()
 finally:
 # be sure the FD is closed no matter what
 os.close(errpipe_write)

 # Wait for exec to fail or succeed; possibly raising exception
 # Exception limited to 1M
 data = _eintr_retry_call(os.read, errpipe_read, 1048576)
 finally:
 if p2cread is not None and p2cwrite is not None:
 _close_in_parent(p2cread)
 if c2pwrite is not None and c2pread is not None:
 _close_in_parent(c2pwrite)
 if errwrite is not None and errread is not None:
 _close_in_parent(errwrite)

 # be sure the FD is closed no matter what
 os.close(errpipe_read)

 if data != "":
 try:
 _eintr_retry_call(os.waitpid, self.pid, 0)
 except OSError as e:
 if e.errno != errno.ECHILD:
 raise
 child_exception = pickle.loads(data)
 raise child_exception

 def _handle_exitstatus(self, sts, _WIFSIGNALED=os.WIFSIGNALED,
 _WTERMSIG=os.WTERMSIG, _WIFEXITED=os.WIFEXITED,
 _WEXITSTATUS=os.WEXITSTATUS):
 # This method is called (indirectly) by __del__, so it cannot
 # refer to anything outside of its local scope.
 if _WIFSIGNALED(sts):
 self.returncode = -_WTERMSIG(sts)
 elif _WIFEXITED(sts):
 self.returncode = _WEXITSTATUS(sts)
 else:
 # Should never happen
 raise RuntimeError("Unknown child exit status!")

 def _internal_poll(self, _deadstate=None, _waitpid=os.waitpid,
 _WNOHANG=os.WNOHANG, _os_error=os.error, _ECHILD=errno.ECHILD):
 """Check if child process has terminated. Returns returncode
 attribute.

 This method is called by __del__, so it cannot reference anything
 outside of the local scope (nor can any methods it calls).

 """
 if self.returncode is None:
 try:
 pid, sts = _waitpid(self.pid, _WNOHANG)
 if pid == self.pid:
 self._handle_exitstatus(sts)
 except _os_error as e:
 if _deadstate is not None:
 self.returncode = _deadstate
 if e.errno == _ECHILD:
 # This happens if SIGCLD is set to be ignored or
 # waiting for child processes has otherwise been
 # disabled for our process. This child is dead, we
 # can't get the status.
 # http://bugs.python.org/issue15756
 self.returncode = 0
 return self.returncode

 def wait(self):
 """Wait for child process to terminate. Returns returncode
 attribute."""
 while self.returncode is None:
 try:
 pid, sts = _eintr_retry_call(os.waitpid, self.pid, 0)
 except OSError as e:
 if e.errno != errno.ECHILD:
 raise
 # This happens if SIGCLD is set to be ignored or waiting
 # for child processes has otherwise been disabled for our
 # process. This child is dead, we can't get the status.
 pid = self.pid
 sts = 0
 # Check the pid and loop as waitpid has been known to return
 # 0 even without WNOHANG in odd situations. issue14396.
 if pid == self.pid:
 self._handle_exitstatus(sts)
 return self.returncode

 def _communicate(self, input):
 if self.stdin:
 # Flush stdio buffer. This might block, if the user has
 # been writing to .stdin in an uncontrolled fashion.
 self.stdin.flush()
 if not input:
 self.stdin.close()

 if _has_poll:
 stdout, stderr = self._communicate_with_poll(input)
 else:
 stdout, stderr = self._communicate_with_select(input)

 # All data exchanged. Translate lists into strings.
 if stdout is not None:
 stdout = ''.join(stdout)
 if stderr is not None:
 stderr = ''.join(stderr)

 # Translate newlines, if requested. We cannot let the file
 # object do the translation: It is based on stdio, which is
 # impossible to combine with select (unless forcing no
 # buffering).
 if self.universal_newlines and hasattr(file, 'newlines'):
 if stdout:
 stdout = self._translate_newlines(stdout)
 if stderr:
 stderr = self._translate_newlines(stderr)

 self.wait()
 return (stdout, stderr)

 def _communicate_with_poll(self, input):
 stdout = None # Return
 stderr = None # Return
 fd2file = {}
 fd2output = {}

 poller = select.poll()
 def register_and_append(file_obj, eventmask):
 poller.register(file_obj.fileno(), eventmask)
 fd2file[file_obj.fileno()] = file_obj

 def close_unregister_and_remove(fd):
 poller.unregister(fd)
 fd2file[fd].close()
 fd2file.pop(fd)

 if self.stdin and input:
 register_and_append(self.stdin, select.POLLOUT)

 select_POLLIN_POLLPRI = select.POLLIN | select.POLLPRI
 if self.stdout:
 register_and_append(self.stdout, select_POLLIN_POLLPRI)
 fd2output[self.stdout.fileno()] = stdout = []
 if self.stderr:
 register_and_append(self.stderr, select_POLLIN_POLLPRI)
 fd2output[self.stderr.fileno()] = stderr = []

 input_offset = 0
 while fd2file:
 try:
 ready = poller.poll()
 except select.error, e:
 if e.args[0] == errno.EINTR:
 continue
 raise

 for fd, mode in ready:
 if mode & select.POLLOUT:
 chunk = input[input_offset : input_offset + _PIPE_BUF]
 try:
 input_offset += os.write(fd, chunk)
 except OSError as e:
 if e.errno == errno.EPIPE:
 close_unregister_and_remove(fd)
 else:
 raise
 else:
 if input_offset >= len(input):
 close_unregister_and_remove(fd)
 elif mode & select_POLLIN_POLLPRI:
 data = os.read(fd, 4096)
 if not data:
 close_unregister_and_remove(fd)
 fd2output[fd].append(data)
 else:
 # Ignore hang up or errors.
 close_unregister_and_remove(fd)

 return (stdout, stderr)

 def _communicate_with_select(self, input):
 read_set = []
 write_set = []
 stdout = None # Return
 stderr = None # Return

 if self.stdin and input:
 write_set.append(self.stdin)
 if self.stdout:
 read_set.append(self.stdout)
 stdout = []
 if self.stderr:
 read_set.append(self.stderr)
 stderr = []

 input_offset = 0
 while read_set or write_set:
 try:
 rlist, wlist, xlist = select.select(read_set, write_set, [])
 except select.error, e:
 if e.args[0] == errno.EINTR:
 continue
 raise

 if self.stdin in wlist:
 chunk = input[input_offset : input_offset + _PIPE_BUF]
 try:
 bytes_written = os.write(self.stdin.fileno(), chunk)
 except OSError as e:
 if e.errno == errno.EPIPE:
 self.stdin.close()
 write_set.remove(self.stdin)
 else:
 raise
 else:
 input_offset += bytes_written
 if input_offset >= len(input):
 self.stdin.close()
 write_set.remove(self.stdin)

 if self.stdout in rlist:
 data = os.read(self.stdout.fileno(), 1024)
 if data == "":
 self.stdout.close()
 read_set.remove(self.stdout)
 stdout.append(data)

 if self.stderr in rlist:
 data = os.read(self.stderr.fileno(), 1024)
 if data == "":
 self.stderr.close()
 read_set.remove(self.stderr)
 stderr.append(data)

 return (stdout, stderr)

 def send_signal(self, sig):
 """Send a signal to the process
 """
 os.kill(self.pid, sig)

 def terminate(self):
 """Terminate the process with SIGTERM
 """
 self.send_signal(signal.SIGTERM)

 def kill(self):
 """Kill the process with SIGKILL
 """
 self.send_signal(signal.SIGKILL)

def _demo_posix():
 #
 # Example 1: Simple redirection: Get process list
 #
 plist = Popen(["ps"], stdout=PIPE).communicate()[0]
 print "Process list:"
 print plist

 #
 # Example 2: Change uid before executing child
 #
 if os.getuid() == 0:
 p = Popen(["id"], preexec_fn=lambda: os.setuid(100))
 p.wait()

 #
 # Example 3: Connecting several subprocesses
 #
 print "Looking for 'hda'..."
 p1 = Popen(["dmesg"], stdout=PIPE)
 p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
 print repr(p2.communicate()[0])

 #
 # Example 4: Catch execution error
 #
 print
 print "Trying a weird file..."
 try:
 print Popen(["/this/path/does/not/exist"]).communicate()
 except OSError, e:
 if e.errno == errno.ENOENT:
 print "The file didn't exist. I thought so..."
 print "Child traceback:"
 print e.child_traceback
 else:
 print "Error", e.errno
 else:
 print >>sys.stderr, "Gosh. No error."

def _demo_windows():
 #
 # Example 1: Connecting several subprocesses
 #
 print "Looking for 'PROMPT' in set output..."
 p1 = Popen("set", stdout=PIPE, shell=True)
 p2 = Popen('find "PROMPT"', stdin=p1.stdout, stdout=PIPE)
 print repr(p2.communicate()[0])

 #
 # Example 2: Simple execution of program
 #
 print "Executing calc..."
 p = Popen("calc")
 p.wait()

if __name__ == "__main__":
 if mswindows:
 _demo_windows()
 else:
 _demo_posix()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/wsgi.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.wsgi

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""WSGI support for the Tornado web framework.

WSGI is the Python standard for web servers, and allows for interoperability
between Tornado and other Python web frameworks and servers. This module
provides WSGI support in two ways:

* `WSGIAdapter` converts a `tornado.web.Application` to the WSGI application
 interface. This is useful for running a Tornado app on another
 HTTP server, such as Google App Engine. See the `WSGIAdapter` class
 documentation for limitations that apply.
* `WSGIContainer` lets you run other WSGI applications and frameworks on the
 Tornado HTTP server. For example, with this class you can mix Django
 and Tornado handlers in a single server.
"""

from __future__ import absolute_import, division, print_function, with_statement

import sys
from io import BytesIO
import tornado

from tornado.concurrent import Future
from tornado import escape
from tornado import httputil
from tornado.log import access_log
from tornado import web
from tornado.escape import native_str
from tornado.util import unicode_type, PY3

if PY3:
 import urllib.parse as urllib_parse # py3
else:
 import urllib as urllib_parse

PEP 3333 specifies that WSGI on python 3 generally deals with byte strings
that are smuggled inside objects of type unicode (via the latin1 encoding).
These functions are like those in the tornado.escape module, but defined
here to minimize the temptation to use them in non-wsgi contexts.
if str is unicode_type:
 def to_wsgi_str(s):
 assert isinstance(s, bytes)
 return s.decode('latin1')

 def from_wsgi_str(s):
 assert isinstance(s, str)
 return s.encode('latin1')
else:
 def to_wsgi_str(s):
 assert isinstance(s, bytes)
 return s

 def from_wsgi_str(s):
 assert isinstance(s, str)
 return s

[docs]class WSGIApplication(web.Application):
 """A WSGI equivalent of `tornado.web.Application`.

 .. deprecated:: 4.0

 Use a regular `.Application` and wrap it in `WSGIAdapter` instead.
 """
 def __call__(self, environ, start_response):
 return WSGIAdapter(self)(environ, start_response)

WSGI has no facilities for flow control, so just return an already-done
Future when the interface requires it.
_dummy_future = Future()
_dummy_future.set_result(None)

class _WSGIConnection(httputil.HTTPConnection):
 def __init__(self, method, start_response, context):
 self.method = method
 self.start_response = start_response
 self.context = context
 self._write_buffer = []
 self._finished = False
 self._expected_content_remaining = None
 self._error = None

 def set_close_callback(self, callback):
 # WSGI has no facility for detecting a closed connection mid-request,
 # so we can simply ignore the callback.
 pass

 def write_headers(self, start_line, headers, chunk=None, callback=None):
 if self.method == 'HEAD':
 self._expected_content_remaining = 0
 elif 'Content-Length' in headers:
 self._expected_content_remaining = int(headers['Content-Length'])
 else:
 self._expected_content_remaining = None
 self.start_response(
 '%s %s' % (start_line.code, start_line.reason),
 [(native_str(k), native_str(v)) for (k, v) in headers.get_all()])
 if chunk is not None:
 self.write(chunk, callback)
 elif callback is not None:
 callback()
 return _dummy_future

 def write(self, chunk, callback=None):
 if self._expected_content_remaining is not None:
 self._expected_content_remaining -= len(chunk)
 if self._expected_content_remaining < 0:
 self._error = httputil.HTTPOutputError(
 "Tried to write more data than Content-Length")
 raise self._error
 self._write_buffer.append(chunk)
 if callback is not None:
 callback()
 return _dummy_future

 def finish(self):
 if (self._expected_content_remaining is not None and
 self._expected_content_remaining != 0):
 self._error = httputil.HTTPOutputError(
 "Tried to write %d bytes less than Content-Length" %
 self._expected_content_remaining)
 raise self._error
 self._finished = True

class _WSGIRequestContext(object):
 def __init__(self, remote_ip, protocol):
 self.remote_ip = remote_ip
 self.protocol = protocol

 def __str__(self):
 return self.remote_ip

[docs]class WSGIAdapter(object):
 """Converts a `tornado.web.Application` instance into a WSGI application.

 Example usage::

 import tornado.web
 import tornado.wsgi
 import wsgiref.simple_server

 class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

 if __name__ == "__main__":
 application = tornado.web.Application([
 (r"/", MainHandler),
])
 wsgi_app = tornado.wsgi.WSGIAdapter(application)
 server = wsgiref.simple_server.make_server('', 8888, wsgi_app)
 server.serve_forever()

 See the `appengine demo
 <https://github.com/tornadoweb/tornado/tree/stable/demos/appengine>`_
 for an example of using this module to run a Tornado app on Google
 App Engine.

 In WSGI mode asynchronous methods are not supported. This means
 that it is not possible to use `.AsyncHTTPClient`, or the
 `tornado.auth` or `tornado.websocket` modules.

 .. versionadded:: 4.0
 """
 def __init__(self, application):
 if isinstance(application, WSGIApplication):
 self.application = lambda request: web.Application.__call__(
 application, request)
 else:
 self.application = application

 def __call__(self, environ, start_response):
 method = environ["REQUEST_METHOD"]
 uri = urllib_parse.quote(from_wsgi_str(environ.get("SCRIPT_NAME", "")))
 uri += urllib_parse.quote(from_wsgi_str(environ.get("PATH_INFO", "")))
 if environ.get("QUERY_STRING"):
 uri += "?" + environ["QUERY_STRING"]
 headers = httputil.HTTPHeaders()
 if environ.get("CONTENT_TYPE"):
 headers["Content-Type"] = environ["CONTENT_TYPE"]
 if environ.get("CONTENT_LENGTH"):
 headers["Content-Length"] = environ["CONTENT_LENGTH"]
 for key in environ:
 if key.startswith("HTTP_"):
 headers[key[5:].replace("_", "-")] = environ[key]
 if headers.get("Content-Length"):
 body = environ["wsgi.input"].read(
 int(headers["Content-Length"]))
 else:
 body = b""
 protocol = environ["wsgi.url_scheme"]
 remote_ip = environ.get("REMOTE_ADDR", "")
 if environ.get("HTTP_HOST"):
 host = environ["HTTP_HOST"]
 else:
 host = environ["SERVER_NAME"]
 connection = _WSGIConnection(method, start_response,
 _WSGIRequestContext(remote_ip, protocol))
 request = httputil.HTTPServerRequest(
 method, uri, "HTTP/1.1", headers=headers, body=body,
 host=host, connection=connection)
 request._parse_body()
 self.application(request)
 if connection._error:
 raise connection._error
 if not connection._finished:
 raise Exception("request did not finish synchronously")
 return connection._write_buffer

[docs]class WSGIContainer(object):
 r"""Makes a WSGI-compatible function runnable on Tornado's HTTP server.

 .. warning::

 WSGI is a *synchronous* interface, while Tornado's concurrency model
 is based on single-threaded asynchronous execution. This means that
 running a WSGI app with Tornado's `WSGIContainer` is *less scalable*
 than running the same app in a multi-threaded WSGI server like
 ``gunicorn`` or ``uwsgi``. Use `WSGIContainer` only when there are
 benefits to combining Tornado and WSGI in the same process that
 outweigh the reduced scalability.

 Wrap a WSGI function in a `WSGIContainer` and pass it to `.HTTPServer` to
 run it. For example::

 def simple_app(environ, start_response):
 status = "200 OK"
 response_headers = [("Content-type", "text/plain")]
 start_response(status, response_headers)
 return ["Hello world!\n"]

 container = tornado.wsgi.WSGIContainer(simple_app)
 http_server = tornado.httpserver.HTTPServer(container)
 http_server.listen(8888)
 tornado.ioloop.IOLoop.current().start()

 This class is intended to let other frameworks (Django, web.py, etc)
 run on the Tornado HTTP server and I/O loop.

 The `tornado.web.FallbackHandler` class is often useful for mixing
 Tornado and WSGI apps in the same server. See
 https://github.com/bdarnell/django-tornado-demo for a complete example.
 """
 def __init__(self, wsgi_application):
 self.wsgi_application = wsgi_application

 def __call__(self, request):
 data = {}
 response = []

 def start_response(status, response_headers, exc_info=None):
 data["status"] = status
 data["headers"] = response_headers
 return response.append
 app_response = self.wsgi_application(
 WSGIContainer.environ(request), start_response)
 try:
 response.extend(app_response)
 body = b"".join(response)
 finally:
 if hasattr(app_response, "close"):
 app_response.close()
 if not data:
 raise Exception("WSGI app did not call start_response")

 status_code, reason = data["status"].split(' ', 1)
 status_code = int(status_code)
 headers = data["headers"]
 header_set = set(k.lower() for (k, v) in headers)
 body = escape.utf8(body)
 if status_code != 304:
 if "content-length" not in header_set:
 headers.append(("Content-Length", str(len(body))))
 if "content-type" not in header_set:
 headers.append(("Content-Type", "text/html; charset=UTF-8"))
 if "server" not in header_set:
 headers.append(("Server", "TornadoServer/%s" % tornado.version))

 start_line = httputil.ResponseStartLine("HTTP/1.1", status_code, reason)
 header_obj = httputil.HTTPHeaders()
 for key, value in headers:
 header_obj.add(key, value)
 request.connection.write_headers(start_line, header_obj, chunk=body)
 request.connection.finish()
 self._log(status_code, request)

 @staticmethod
[docs] def environ(request):
 """Converts a `tornado.httputil.HTTPServerRequest` to a WSGI environment.
 """
 hostport = request.host.split(":")
 if len(hostport) == 2:
 host = hostport[0]
 port = int(hostport[1])
 else:
 host = request.host
 port = 443 if request.protocol == "https" else 80
 environ = {
 "REQUEST_METHOD": request.method,
 "SCRIPT_NAME": "",
 "PATH_INFO": to_wsgi_str(escape.url_unescape(
 request.path, encoding=None, plus=False)),
 "QUERY_STRING": request.query,
 "REMOTE_ADDR": request.remote_ip,
 "SERVER_NAME": host,
 "SERVER_PORT": str(port),
 "SERVER_PROTOCOL": request.version,
 "wsgi.version": (1, 0),
 "wsgi.url_scheme": request.protocol,
 "wsgi.input": BytesIO(escape.utf8(request.body)),
 "wsgi.errors": sys.stderr,
 "wsgi.multithread": False,
 "wsgi.multiprocess": True,
 "wsgi.run_once": False,
 }
 if "Content-Type" in request.headers:
 environ["CONTENT_TYPE"] = request.headers.pop("Content-Type")
 if "Content-Length" in request.headers:
 environ["CONTENT_LENGTH"] = request.headers.pop("Content-Length")
 for key, value in request.headers.items():
 environ["HTTP_" + key.replace("-", "_").upper()] = value
 return environ

 def _log(self, status_code, request):
 if status_code < 400:
 log_method = access_log.info
 elif status_code < 500:
 log_method = access_log.warning
 else:
 log_method = access_log.error
 request_time = 1000.0 * request.request_time()
 summary = request.method + " " + request.uri + " (" + \
 request.remote_ip + ")"
 log_method("%d %s %.2fms", status_code, summary, request_time)

HTTPRequest = httputil.HTTPServerRequest

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/simple_httpclient.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.simple_httpclient

#!/usr/bin/env python
from __future__ import absolute_import, division, print_function, with_statement

from tornado.escape import utf8, _unicode
from tornado import gen
from tornado.httpclient import HTTPResponse, HTTPError, AsyncHTTPClient, main, _RequestProxy
from tornado import httputil
from tornado.http1connection import HTTP1Connection, HTTP1ConnectionParameters
from tornado.iostream import StreamClosedError
from tornado.netutil import Resolver, OverrideResolver, _client_ssl_defaults
from tornado.log import gen_log
from tornado import stack_context
from tornado.tcpclient import TCPClient
from tornado.util import PY3

import base64
import collections
import copy
import functools
import re
import socket
import sys
from io import BytesIO

if PY3:
 import urllib.parse as urlparse
else:
 import urlparse

try:
 import ssl
except ImportError:
 # ssl is not available on Google App Engine.
 ssl = None

try:
 import certifi
except ImportError:
 certifi = None

def _default_ca_certs():
 if certifi is None:
 raise Exception("The 'certifi' package is required to use https "
 "in simple_httpclient")
 return certifi.where()

[docs]class SimpleAsyncHTTPClient(AsyncHTTPClient):
 """Non-blocking HTTP client with no external dependencies.

 This class implements an HTTP 1.1 client on top of Tornado's IOStreams.
 Some features found in the curl-based AsyncHTTPClient are not yet
 supported. In particular, proxies are not supported, connections
 are not reused, and callers cannot select the network interface to be
 used.
 """
[docs] def initialize(self, io_loop, max_clients=10,
 hostname_mapping=None, max_buffer_size=104857600,
 resolver=None, defaults=None, max_header_size=None,
 max_body_size=None):
 """Creates a AsyncHTTPClient.

 Only a single AsyncHTTPClient instance exists per IOLoop
 in order to provide limitations on the number of pending connections.
 ``force_instance=True`` may be used to suppress this behavior.

 Note that because of this implicit reuse, unless ``force_instance``
 is used, only the first call to the constructor actually uses
 its arguments. It is recommended to use the ``configure`` method
 instead of the constructor to ensure that arguments take effect.

 ``max_clients`` is the number of concurrent requests that can be
 in progress; when this limit is reached additional requests will be
 queued. Note that time spent waiting in this queue still counts
 against the ``request_timeout``.

 ``hostname_mapping`` is a dictionary mapping hostnames to IP addresses.
 It can be used to make local DNS changes when modifying system-wide
 settings like ``/etc/hosts`` is not possible or desirable (e.g. in
 unittests).

 ``max_buffer_size`` (default 100MB) is the number of bytes
 that can be read into memory at once. ``max_body_size``
 (defaults to ``max_buffer_size``) is the largest response body
 that the client will accept. Without a
 ``streaming_callback``, the smaller of these two limits
 applies; with a ``streaming_callback`` only ``max_body_size``
 does.

 .. versionchanged:: 4.2
 Added the ``max_body_size`` argument.
 """
 super(SimpleAsyncHTTPClient, self).initialize(io_loop,
 defaults=defaults)
 self.max_clients = max_clients
 self.queue = collections.deque()
 self.active = {}
 self.waiting = {}
 self.max_buffer_size = max_buffer_size
 self.max_header_size = max_header_size
 self.max_body_size = max_body_size
 # TCPClient could create a Resolver for us, but we have to do it
 # ourselves to support hostname_mapping.
 if resolver:
 self.resolver = resolver
 self.own_resolver = False
 else:
 self.resolver = Resolver(io_loop=io_loop)
 self.own_resolver = True
 if hostname_mapping is not None:
 self.resolver = OverrideResolver(resolver=self.resolver,
 mapping=hostname_mapping)
 self.tcp_client = TCPClient(resolver=self.resolver, io_loop=io_loop)

 def close(self):
 super(SimpleAsyncHTTPClient, self).close()
 if self.own_resolver:
 self.resolver.close()
 self.tcp_client.close()

 def fetch_impl(self, request, callback):
 key = object()
 self.queue.append((key, request, callback))
 if not len(self.active) < self.max_clients:
 timeout_handle = self.io_loop.add_timeout(
 self.io_loop.time() + min(request.connect_timeout,
 request.request_timeout),
 functools.partial(self._on_timeout, key, "in request queue"))
 else:
 timeout_handle = None
 self.waiting[key] = (request, callback, timeout_handle)
 self._process_queue()
 if self.queue:
 gen_log.debug("max_clients limit reached, request queued. "
 "%d active, %d queued requests." % (
 len(self.active), len(self.queue)))

 def _process_queue(self):
 with stack_context.NullContext():
 while self.queue and len(self.active) < self.max_clients:
 key, request, callback = self.queue.popleft()
 if key not in self.waiting:
 continue
 self._remove_timeout(key)
 self.active[key] = (request, callback)
 release_callback = functools.partial(self._release_fetch, key)
 self._handle_request(request, release_callback, callback)

 def _connection_class(self):
 return _HTTPConnection

 def _handle_request(self, request, release_callback, final_callback):
 self._connection_class()(
 self.io_loop, self, request, release_callback,
 final_callback, self.max_buffer_size, self.tcp_client,
 self.max_header_size, self.max_body_size)

 def _release_fetch(self, key):
 del self.active[key]
 self._process_queue()

 def _remove_timeout(self, key):
 if key in self.waiting:
 request, callback, timeout_handle = self.waiting[key]
 if timeout_handle is not None:
 self.io_loop.remove_timeout(timeout_handle)
 del self.waiting[key]

 def _on_timeout(self, key, info=None):
 """Timeout callback of request.

 Construct a timeout HTTPResponse when a timeout occurs.

 :arg object key: A simple object to mark the request.
 :info string key: More detailed timeout information.
 """
 request, callback, timeout_handle = self.waiting[key]
 self.queue.remove((key, request, callback))

 error_message = "Timeout {0}".format(info) if info else "Timeout"
 timeout_response = HTTPResponse(
 request, 599, error=HTTPError(599, error_message),
 request_time=self.io_loop.time() - request.start_time)
 self.io_loop.add_callback(callback, timeout_response)
 del self.waiting[key]

class _HTTPConnection(httputil.HTTPMessageDelegate):
 _SUPPORTED_METHODS = set(["GET", "HEAD", "POST", "PUT", "DELETE", "PATCH", "OPTIONS"])

 def __init__(self, io_loop, client, request, release_callback,
 final_callback, max_buffer_size, tcp_client,
 max_header_size, max_body_size):
 self.start_time = io_loop.time()
 self.io_loop = io_loop
 self.client = client
 self.request = request
 self.release_callback = release_callback
 self.final_callback = final_callback
 self.max_buffer_size = max_buffer_size
 self.tcp_client = tcp_client
 self.max_header_size = max_header_size
 self.max_body_size = max_body_size
 self.code = None
 self.headers = None
 self.chunks = []
 self._decompressor = None
 # Timeout handle returned by IOLoop.add_timeout
 self._timeout = None
 self._sockaddr = None
 with stack_context.ExceptionStackContext(self._handle_exception):
 self.parsed = urlparse.urlsplit(_unicode(self.request.url))
 if self.parsed.scheme not in ("http", "https"):
 raise ValueError("Unsupported url scheme: %s" %
 self.request.url)
 # urlsplit results have hostname and port results, but they
 # didn't support ipv6 literals until python 2.7.
 netloc = self.parsed.netloc
 if "@" in netloc:
 userpass, _, netloc = netloc.rpartition("@")
 host, port = httputil.split_host_and_port(netloc)
 if port is None:
 port = 443 if self.parsed.scheme == "https" else 80
 if re.match(r'^\[.*\]$', host):
 # raw ipv6 addresses in urls are enclosed in brackets
 host = host[1:-1]
 self.parsed_hostname = host # save final host for _on_connect

 if request.allow_ipv6 is False:
 af = socket.AF_INET
 else:
 af = socket.AF_UNSPEC

 ssl_options = self._get_ssl_options(self.parsed.scheme)

 timeout = min(self.request.connect_timeout, self.request.request_timeout)
 if timeout:
 self._timeout = self.io_loop.add_timeout(
 self.start_time + timeout,
 stack_context.wrap(functools.partial(self._on_timeout, "while connecting")))
 self.tcp_client.connect(host, port, af=af,
 ssl_options=ssl_options,
 max_buffer_size=self.max_buffer_size,
 callback=self._on_connect)

 def _get_ssl_options(self, scheme):
 if scheme == "https":
 if self.request.ssl_options is not None:
 return self.request.ssl_options
 # If we are using the defaults, don't construct a
 # new SSLContext.
 if (self.request.validate_cert and
 self.request.ca_certs is None and
 self.request.client_cert is None and
 self.request.client_key is None):
 return _client_ssl_defaults
 ssl_options = {}
 if self.request.validate_cert:
 ssl_options["cert_reqs"] = ssl.CERT_REQUIRED
 if self.request.ca_certs is not None:
 ssl_options["ca_certs"] = self.request.ca_certs
 elif not hasattr(ssl, 'create_default_context'):
 # When create_default_context is present,
 # we can omit the "ca_certs" parameter entirely,
 # which avoids the dependency on "certifi" for py34.
 ssl_options["ca_certs"] = _default_ca_certs()
 if self.request.client_key is not None:
 ssl_options["keyfile"] = self.request.client_key
 if self.request.client_cert is not None:
 ssl_options["certfile"] = self.request.client_cert

 # SSL interoperability is tricky. We want to disable
 # SSLv2 for security reasons; it wasn't disabled by default
 # until openssl 1.0. The best way to do this is to use
 # the SSL_OP_NO_SSLv2, but that wasn't exposed to python
 # until 3.2. Python 2.7 adds the ciphers argument, which
 # can also be used to disable SSLv2. As a last resort
 # on python 2.6, we set ssl_version to TLSv1. This is
 # more narrow than we'd like since it also breaks
 # compatibility with servers configured for SSLv3 only,
 # but nearly all servers support both SSLv3 and TLSv1:
 # http://blog.ivanristic.com/2011/09/ssl-survey-protocol-support.html
 if sys.version_info >= (2, 7):
 # In addition to disabling SSLv2, we also exclude certain
 # classes of insecure ciphers.
 ssl_options["ciphers"] = "DEFAULT:!SSLv2:!EXPORT:!DES"
 else:
 # This is really only necessary for pre-1.0 versions
 # of openssl, but python 2.6 doesn't expose version
 # information.
 ssl_options["ssl_version"] = ssl.PROTOCOL_TLSv1
 return ssl_options
 return None

 def _on_timeout(self, info=None):
 """Timeout callback of _HTTPConnection instance.

 Raise a timeout HTTPError when a timeout occurs.

 :info string key: More detailed timeout information.
 """
 self._timeout = None
 error_message = "Timeout {0}".format(info) if info else "Timeout"
 if self.final_callback is not None:
 raise HTTPError(599, error_message)

 def _remove_timeout(self):
 if self._timeout is not None:
 self.io_loop.remove_timeout(self._timeout)
 self._timeout = None

 def _on_connect(self, stream):
 if self.final_callback is None:
 # final_callback is cleared if we've hit our timeout.
 stream.close()
 return
 self.stream = stream
 self.stream.set_close_callback(self.on_connection_close)
 self._remove_timeout()
 if self.final_callback is None:
 return
 if self.request.request_timeout:
 self._timeout = self.io_loop.add_timeout(
 self.start_time + self.request.request_timeout,
 stack_context.wrap(functools.partial(self._on_timeout, "during request")))
 if (self.request.method not in self._SUPPORTED_METHODS and
 not self.request.allow_nonstandard_methods):
 raise KeyError("unknown method %s" % self.request.method)
 for key in ('network_interface',
 'proxy_host', 'proxy_port',
 'proxy_username', 'proxy_password',
 'proxy_auth_mode'):
 if getattr(self.request, key, None):
 raise NotImplementedError('%s not supported' % key)
 if "Connection" not in self.request.headers:
 self.request.headers["Connection"] = "close"
 if "Host" not in self.request.headers:
 if '@' in self.parsed.netloc:
 self.request.headers["Host"] = self.parsed.netloc.rpartition('@')[-1]
 else:
 self.request.headers["Host"] = self.parsed.netloc
 username, password = None, None
 if self.parsed.username is not None:
 username, password = self.parsed.username, self.parsed.password
 elif self.request.auth_username is not None:
 username = self.request.auth_username
 password = self.request.auth_password or ''
 if username is not None:
 if self.request.auth_mode not in (None, "basic"):
 raise ValueError("unsupported auth_mode %s",
 self.request.auth_mode)
 auth = utf8(username) + b":" + utf8(password)
 self.request.headers["Authorization"] = (b"Basic " +
 base64.b64encode(auth))
 if self.request.user_agent:
 self.request.headers["User-Agent"] = self.request.user_agent
 if not self.request.allow_nonstandard_methods:
 # Some HTTP methods nearly always have bodies while others
 # almost never do. Fail in this case unless the user has
 # opted out of sanity checks with allow_nonstandard_methods.
 body_expected = self.request.method in ("POST", "PATCH", "PUT")
 body_present = (self.request.body is not None or
 self.request.body_producer is not None)
 if ((body_expected and not body_present) or
 (body_present and not body_expected)):
 raise ValueError(
 'Body must %sbe None for method %s (unless '
 'allow_nonstandard_methods is true)' %
 ('not ' if body_expected else '', self.request.method))
 if self.request.expect_100_continue:
 self.request.headers["Expect"] = "100-continue"
 if self.request.body is not None:
 # When body_producer is used the caller is responsible for
 # setting Content-Length (or else chunked encoding will be used).
 self.request.headers["Content-Length"] = str(len(
 self.request.body))
 if (self.request.method == "POST" and
 "Content-Type" not in self.request.headers):
 self.request.headers["Content-Type"] = "application/x-www-form-urlencoded"
 if self.request.decompress_response:
 self.request.headers["Accept-Encoding"] = "gzip"
 req_path = ((self.parsed.path or '/') +
 (('?' + self.parsed.query) if self.parsed.query else ''))
 self.connection = self._create_connection(stream)
 start_line = httputil.RequestStartLine(self.request.method,
 req_path, '')
 self.connection.write_headers(start_line, self.request.headers)
 if self.request.expect_100_continue:
 self._read_response()
 else:
 self._write_body(True)

 def _create_connection(self, stream):
 stream.set_nodelay(True)
 connection = HTTP1Connection(
 stream, True,
 HTTP1ConnectionParameters(
 no_keep_alive=True,
 max_header_size=self.max_header_size,
 max_body_size=self.max_body_size,
 decompress=self.request.decompress_response),
 self._sockaddr)
 return connection

 def _write_body(self, start_read):
 if self.request.body is not None:
 self.connection.write(self.request.body)
 elif self.request.body_producer is not None:
 fut = self.request.body_producer(self.connection.write)
 if fut is not None:
 fut = gen.convert_yielded(fut)

 def on_body_written(fut):
 fut.result()
 self.connection.finish()
 if start_read:
 self._read_response()
 self.io_loop.add_future(fut, on_body_written)
 return
 self.connection.finish()
 if start_read:
 self._read_response()

 def _read_response(self):
 # Ensure that any exception raised in read_response ends up in our
 # stack context.
 self.io_loop.add_future(
 self.connection.read_response(self),
 lambda f: f.result())

 def _release(self):
 if self.release_callback is not None:
 release_callback = self.release_callback
 self.release_callback = None
 release_callback()

 def _run_callback(self, response):
 self._release()
 if self.final_callback is not None:
 final_callback = self.final_callback
 self.final_callback = None
 self.io_loop.add_callback(final_callback, response)

 def _handle_exception(self, typ, value, tb):
 if self.final_callback:
 self._remove_timeout()
 if isinstance(value, StreamClosedError):
 if value.real_error is None:
 value = HTTPError(599, "Stream closed")
 else:
 value = value.real_error
 self._run_callback(HTTPResponse(self.request, 599, error=value,
 request_time=self.io_loop.time() - self.start_time,
))

 if hasattr(self, "stream"):
 # TODO: this may cause a StreamClosedError to be raised
 # by the connection's Future. Should we cancel the
 # connection more gracefully?
 self.stream.close()
 return True
 else:
 # If our callback has already been called, we are probably
 # catching an exception that is not caused by us but rather
 # some child of our callback. Rather than drop it on the floor,
 # pass it along, unless it's just the stream being closed.
 return isinstance(value, StreamClosedError)

 def on_connection_close(self):
 if self.final_callback is not None:
 message = "Connection closed"
 if self.stream.error:
 raise self.stream.error
 try:
 raise HTTPError(599, message)
 except HTTPError:
 self._handle_exception(*sys.exc_info())

 def headers_received(self, first_line, headers):
 if self.request.expect_100_continue and first_line.code == 100:
 self._write_body(False)
 return
 self.code = first_line.code
 self.reason = first_line.reason
 self.headers = headers

 if self._should_follow_redirect():
 return

 if self.request.header_callback is not None:
 # Reassemble the start line.
 self.request.header_callback('%s %s %s\r\n' % first_line)
 for k, v in self.headers.get_all():
 self.request.header_callback("%s: %s\r\n" % (k, v))
 self.request.header_callback('\r\n')

 def _should_follow_redirect(self):
 return (self.request.follow_redirects and
 self.request.max_redirects > 0 and
 self.code in (301, 302, 303, 307))

 def finish(self):
 data = b''.join(self.chunks)
 self._remove_timeout()
 original_request = getattr(self.request, "original_request",
 self.request)
 if self._should_follow_redirect():
 assert isinstance(self.request, _RequestProxy)
 new_request = copy.copy(self.request.request)
 new_request.url = urlparse.urljoin(self.request.url,
 self.headers["Location"])
 new_request.max_redirects = self.request.max_redirects - 1
 del new_request.headers["Host"]
 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
 # Client SHOULD make a GET request after a 303.
 # According to the spec, 302 should be followed by the same
 # method as the original request, but in practice browsers
 # treat 302 the same as 303, and many servers use 302 for
 # compatibility with pre-HTTP/1.1 user agents which don't
 # understand the 303 status.
 if self.code in (302, 303):
 new_request.method = "GET"
 new_request.body = None
 for h in ["Content-Length", "Content-Type",
 "Content-Encoding", "Transfer-Encoding"]:
 try:
 del self.request.headers[h]
 except KeyError:
 pass
 new_request.original_request = original_request
 final_callback = self.final_callback
 self.final_callback = None
 self._release()
 self.client.fetch(new_request, final_callback)
 self._on_end_request()
 return
 if self.request.streaming_callback:
 buffer = BytesIO()
 else:
 buffer = BytesIO(data) # TODO: don't require one big string?
 response = HTTPResponse(original_request,
 self.code, reason=getattr(self, 'reason', None),
 headers=self.headers,
 request_time=self.io_loop.time() - self.start_time,
 buffer=buffer,
 effective_url=self.request.url)
 self._run_callback(response)
 self._on_end_request()

 def _on_end_request(self):
 self.stream.close()

 def data_received(self, chunk):
 if self._should_follow_redirect():
 # We're going to follow a redirect so just discard the body.
 return
 if self.request.streaming_callback is not None:
 self.request.streaming_callback(chunk)
 else:
 self.chunks.append(chunk)

if __name__ == "__main__":
 AsyncHTTPClient.configure(SimpleAsyncHTTPClient)
 main()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/http1connection.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.http1connection

#!/usr/bin/env python
#
Copyright 2014 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Client and server implementations of HTTP/1.x.

.. versionadded:: 4.0
"""

from __future__ import absolute_import, division, print_function, with_statement

import re

from tornado.concurrent import Future
from tornado.escape import native_str, utf8
from tornado import gen
from tornado import httputil
from tornado import iostream
from tornado.log import gen_log, app_log
from tornado import stack_context
from tornado.util import GzipDecompressor, PY3

class _QuietException(Exception):
 def __init__(self):
 pass

class _ExceptionLoggingContext(object):
 """Used with the ``with`` statement when calling delegate methods to
 log any exceptions with the given logger. Any exceptions caught are
 converted to _QuietException
 """
 def __init__(self, logger):
 self.logger = logger

 def __enter__(self):
 pass

 def __exit__(self, typ, value, tb):
 if value is not None:
 self.logger.error("Uncaught exception", exc_info=(typ, value, tb))
 raise _QuietException

[docs]class HTTP1ConnectionParameters(object):
 """Parameters for `.HTTP1Connection` and `.HTTP1ServerConnection`.
 """
 def __init__(self, no_keep_alive=False, chunk_size=None,
 max_header_size=None, header_timeout=None, max_body_size=None,
 body_timeout=None, decompress=False):
 """
 :arg bool no_keep_alive: If true, always close the connection after
 one request.
 :arg int chunk_size: how much data to read into memory at once
 :arg int max_header_size: maximum amount of data for HTTP headers
 :arg float header_timeout: how long to wait for all headers (seconds)
 :arg int max_body_size: maximum amount of data for body
 :arg float body_timeout: how long to wait while reading body (seconds)
 :arg bool decompress: if true, decode incoming
 ``Content-Encoding: gzip``
 """
 self.no_keep_alive = no_keep_alive
 self.chunk_size = chunk_size or 65536
 self.max_header_size = max_header_size or 65536
 self.header_timeout = header_timeout
 self.max_body_size = max_body_size
 self.body_timeout = body_timeout
 self.decompress = decompress

[docs]class HTTP1Connection(httputil.HTTPConnection):
 """Implements the HTTP/1.x protocol.

 This class can be on its own for clients, or via `HTTP1ServerConnection`
 for servers.
 """
 def __init__(self, stream, is_client, params=None, context=None):
 """
 :arg stream: an `.IOStream`
 :arg bool is_client: client or server
 :arg params: a `.HTTP1ConnectionParameters` instance or ``None``
 :arg context: an opaque application-defined object that can be accessed
 as ``connection.context``.
 """
 self.is_client = is_client
 self.stream = stream
 if params is None:
 params = HTTP1ConnectionParameters()
 self.params = params
 self.context = context
 self.no_keep_alive = params.no_keep_alive
 # The body limits can be altered by the delegate, so save them
 # here instead of just referencing self.params later.
 self._max_body_size = (self.params.max_body_size or
 self.stream.max_buffer_size)
 self._body_timeout = self.params.body_timeout
 # _write_finished is set to True when finish() has been called,
 # i.e. there will be no more data sent. Data may still be in the
 # stream's write buffer.
 self._write_finished = False
 # True when we have read the entire incoming body.
 self._read_finished = False
 # _finish_future resolves when all data has been written and flushed
 # to the IOStream.
 self._finish_future = Future()
 # If true, the connection should be closed after this request
 # (after the response has been written in the server side,
 # and after it has been read in the client)
 self._disconnect_on_finish = False
 self._clear_callbacks()
 # Save the start lines after we read or write them; they
 # affect later processing (e.g. 304 responses and HEAD methods
 # have content-length but no bodies)
 self._request_start_line = None
 self._response_start_line = None
 self._request_headers = None
 # True if we are writing output with chunked encoding.
 self._chunking_output = None
 # While reading a body with a content-length, this is the
 # amount left to read.
 self._expected_content_remaining = None
 # A Future for our outgoing writes, returned by IOStream.write.
 self._pending_write = None

[docs] def read_response(self, delegate):
 """Read a single HTTP response.

 Typical client-mode usage is to write a request using `write_headers`,
 `write`, and `finish`, and then call ``read_response``.

 :arg delegate: a `.HTTPMessageDelegate`

 Returns a `.Future` that resolves to None after the full response has
 been read.
 """
 if self.params.decompress:
 delegate = _GzipMessageDelegate(delegate, self.params.chunk_size)
 return self._read_message(delegate)

 @gen.coroutine
 def _read_message(self, delegate):
 need_delegate_close = False
 try:
 header_future = self.stream.read_until_regex(
 b"\r?\n\r?\n",
 max_bytes=self.params.max_header_size)
 if self.params.header_timeout is None:
 header_data = yield header_future
 else:
 try:
 header_data = yield gen.with_timeout(
 self.stream.io_loop.time() + self.params.header_timeout,
 header_future,
 io_loop=self.stream.io_loop,
 quiet_exceptions=iostream.StreamClosedError)
 except gen.TimeoutError:
 self.close()
 raise gen.Return(False)
 start_line, headers = self._parse_headers(header_data)
 if self.is_client:
 start_line = httputil.parse_response_start_line(start_line)
 self._response_start_line = start_line
 else:
 start_line = httputil.parse_request_start_line(start_line)
 self._request_start_line = start_line
 self._request_headers = headers

 self._disconnect_on_finish = not self._can_keep_alive(
 start_line, headers)
 need_delegate_close = True
 with _ExceptionLoggingContext(app_log):
 header_future = delegate.headers_received(start_line, headers)
 if header_future is not None:
 yield header_future
 if self.stream is None:
 # We've been detached.
 need_delegate_close = False
 raise gen.Return(False)
 skip_body = False
 if self.is_client:
 if (self._request_start_line is not None and
 self._request_start_line.method == 'HEAD'):
 skip_body = True
 code = start_line.code
 if code == 304:
 # 304 responses may include the content-length header
 # but do not actually have a body.
 # http://tools.ietf.org/html/rfc7230#section-3.3
 skip_body = True
 if code >= 100 and code < 200:
 # 1xx responses should never indicate the presence of
 # a body.
 if ('Content-Length' in headers or
 'Transfer-Encoding' in headers):
 raise httputil.HTTPInputError(
 "Response code %d cannot have body" % code)
 # TODO: client delegates will get headers_received twice
 # in the case of a 100-continue. Document or change?
 yield self._read_message(delegate)
 else:
 if (headers.get("Expect") == "100-continue" and
 not self._write_finished):
 self.stream.write(b"HTTP/1.1 100 (Continue)\r\n\r\n")
 if not skip_body:
 body_future = self._read_body(
 start_line.code if self.is_client else 0, headers, delegate)
 if body_future is not None:
 if self._body_timeout is None:
 yield body_future
 else:
 try:
 yield gen.with_timeout(
 self.stream.io_loop.time() + self._body_timeout,
 body_future, self.stream.io_loop,
 quiet_exceptions=iostream.StreamClosedError)
 except gen.TimeoutError:
 gen_log.info("Timeout reading body from %s",
 self.context)
 self.stream.close()
 raise gen.Return(False)
 self._read_finished = True
 if not self._write_finished or self.is_client:
 need_delegate_close = False
 with _ExceptionLoggingContext(app_log):
 delegate.finish()
 # If we're waiting for the application to produce an asynchronous
 # response, and we're not detached, register a close callback
 # on the stream (we didn't need one while we were reading)
 if (not self._finish_future.done() and
 self.stream is not None and
 not self.stream.closed()):
 self.stream.set_close_callback(self._on_connection_close)
 yield self._finish_future
 if self.is_client and self._disconnect_on_finish:
 self.close()
 if self.stream is None:
 raise gen.Return(False)
 except httputil.HTTPInputError as e:
 gen_log.info("Malformed HTTP message from %s: %s",
 self.context, e)
 self.close()
 raise gen.Return(False)
 finally:
 if need_delegate_close:
 with _ExceptionLoggingContext(app_log):
 delegate.on_connection_close()
 self._clear_callbacks()
 raise gen.Return(True)

 def _clear_callbacks(self):
 """Clears the callback attributes.

 This allows the request handler to be garbage collected more
 quickly in CPython by breaking up reference cycles.
 """
 self._write_callback = None
 self._write_future = None
 self._close_callback = None
 if self.stream is not None:
 self.stream.set_close_callback(None)

[docs] def set_close_callback(self, callback):
 """Sets a callback that will be run when the connection is closed.

 .. deprecated:: 4.0
 Use `.HTTPMessageDelegate.on_connection_close` instead.
 """
 self._close_callback = stack_context.wrap(callback)

 def _on_connection_close(self):
 # Note that this callback is only registered on the IOStream
 # when we have finished reading the request and are waiting for
 # the application to produce its response.
 if self._close_callback is not None:
 callback = self._close_callback
 self._close_callback = None
 callback()
 if not self._finish_future.done():
 self._finish_future.set_result(None)
 self._clear_callbacks()

 def close(self):
 if self.stream is not None:
 self.stream.close()
 self._clear_callbacks()
 if not self._finish_future.done():
 self._finish_future.set_result(None)

[docs] def detach(self):
 """Take control of the underlying stream.

 Returns the underlying `.IOStream` object and stops all further
 HTTP processing. May only be called during
 `.HTTPMessageDelegate.headers_received`. Intended for implementing
 protocols like websockets that tunnel over an HTTP handshake.
 """
 self._clear_callbacks()
 stream = self.stream
 self.stream = None
 if not self._finish_future.done():
 self._finish_future.set_result(None)
 return stream

[docs] def set_body_timeout(self, timeout):
 """Sets the body timeout for a single request.

 Overrides the value from `.HTTP1ConnectionParameters`.
 """
 self._body_timeout = timeout

[docs] def set_max_body_size(self, max_body_size):
 """Sets the body size limit for a single request.

 Overrides the value from `.HTTP1ConnectionParameters`.
 """
 self._max_body_size = max_body_size

[docs] def write_headers(self, start_line, headers, chunk=None, callback=None):
 """Implements `.HTTPConnection.write_headers`."""
 lines = []
 if self.is_client:
 self._request_start_line = start_line
 lines.append(utf8('%s %s HTTP/1.1' % (start_line[0], start_line[1])))
 # Client requests with a non-empty body must have either a
 # Content-Length or a Transfer-Encoding.
 self._chunking_output = (
 start_line.method in ('POST', 'PUT', 'PATCH') and
 'Content-Length' not in headers and
 'Transfer-Encoding' not in headers)
 else:
 self._response_start_line = start_line
 lines.append(utf8('HTTP/1.1 %d %s' % (start_line[1], start_line[2])))
 self._chunking_output = (
 # TODO: should this use
 # self._request_start_line.version or
 # start_line.version?
 self._request_start_line.version == 'HTTP/1.1' and
 # 304 responses have no body (not even a zero-length body), and so
 # should not have either Content-Length or Transfer-Encoding.
 # headers.
 start_line.code not in (204, 304) and
 # No need to chunk the output if a Content-Length is specified.
 'Content-Length' not in headers and
 # Applications are discouraged from touching Transfer-Encoding,
 # but if they do, leave it alone.
 'Transfer-Encoding' not in headers)
 # If a 1.0 client asked for keep-alive, add the header.
 if (self._request_start_line.version == 'HTTP/1.0' and
 (self._request_headers.get('Connection', '').lower() ==
 'keep-alive')):
 headers['Connection'] = 'Keep-Alive'
 if self._chunking_output:
 headers['Transfer-Encoding'] = 'chunked'
 if (not self.is_client and
 (self._request_start_line.method == 'HEAD' or
 start_line.code == 304)):
 self._expected_content_remaining = 0
 elif 'Content-Length' in headers:
 self._expected_content_remaining = int(headers['Content-Length'])
 else:
 self._expected_content_remaining = None
 # TODO: headers are supposed to be of type str, but we still have some
 # cases that let bytes slip through. Remove these native_str calls when those
 # are fixed.
 header_lines = (native_str(n) + ": " + native_str(v) for n, v in headers.get_all())
 if PY3:
 lines.extend(l.encode('latin1') for l in header_lines)
 else:
 lines.extend(header_lines)
 for line in lines:
 if b'\n' in line:
 raise ValueError('Newline in header: ' + repr(line))
 future = None
 if self.stream.closed():
 future = self._write_future = Future()
 future.set_exception(iostream.StreamClosedError())
 future.exception()
 else:
 if callback is not None:
 self._write_callback = stack_context.wrap(callback)
 else:
 future = self._write_future = Future()
 data = b"\r\n".join(lines) + b"\r\n\r\n"
 if chunk:
 data += self._format_chunk(chunk)
 self._pending_write = self.stream.write(data)
 self._pending_write.add_done_callback(self._on_write_complete)
 return future

 def _format_chunk(self, chunk):
 if self._expected_content_remaining is not None:
 self._expected_content_remaining -= len(chunk)
 if self._expected_content_remaining < 0:
 # Close the stream now to stop further framing errors.
 self.stream.close()
 raise httputil.HTTPOutputError(
 "Tried to write more data than Content-Length")
 if self._chunking_output and chunk:
 # Don't write out empty chunks because that means END-OF-STREAM
 # with chunked encoding
 return utf8("%x" % len(chunk)) + b"\r\n" + chunk + b"\r\n"
 else:
 return chunk

[docs] def write(self, chunk, callback=None):
 """Implements `.HTTPConnection.write`.

 For backwards compatibility is is allowed but deprecated to
 skip `write_headers` and instead call `write()` with a
 pre-encoded header block.
 """
 future = None
 if self.stream.closed():
 future = self._write_future = Future()
 self._write_future.set_exception(iostream.StreamClosedError())
 self._write_future.exception()
 else:
 if callback is not None:
 self._write_callback = stack_context.wrap(callback)
 else:
 future = self._write_future = Future()
 self._pending_write = self.stream.write(self._format_chunk(chunk))
 self._pending_write.add_done_callback(self._on_write_complete)
 return future

[docs] def finish(self):
 """Implements `.HTTPConnection.finish`."""
 if (self._expected_content_remaining is not None and
 self._expected_content_remaining != 0 and
 not self.stream.closed()):
 self.stream.close()
 raise httputil.HTTPOutputError(
 "Tried to write %d bytes less than Content-Length" %
 self._expected_content_remaining)
 if self._chunking_output:
 if not self.stream.closed():
 self._pending_write = self.stream.write(b"0\r\n\r\n")
 self._pending_write.add_done_callback(self._on_write_complete)
 self._write_finished = True
 # If the app finished the request while we're still reading,
 # divert any remaining data away from the delegate and
 # close the connection when we're done sending our response.
 # Closing the connection is the only way to avoid reading the
 # whole input body.
 if not self._read_finished:
 self._disconnect_on_finish = True
 # No more data is coming, so instruct TCP to send any remaining
 # data immediately instead of waiting for a full packet or ack.
 self.stream.set_nodelay(True)
 if self._pending_write is None:
 self._finish_request(None)
 else:
 self._pending_write.add_done_callback(self._finish_request)

 def _on_write_complete(self, future):
 exc = future.exception()
 if exc is not None and not isinstance(exc, iostream.StreamClosedError):
 future.result()
 if self._write_callback is not None:
 callback = self._write_callback
 self._write_callback = None
 self.stream.io_loop.add_callback(callback)
 if self._write_future is not None:
 future = self._write_future
 self._write_future = None
 future.set_result(None)

 def _can_keep_alive(self, start_line, headers):
 if self.params.no_keep_alive:
 return False
 connection_header = headers.get("Connection")
 if connection_header is not None:
 connection_header = connection_header.lower()
 if start_line.version == "HTTP/1.1":
 return connection_header != "close"
 elif ("Content-Length" in headers or
 headers.get("Transfer-Encoding", "").lower() == "chunked" or
 getattr(start_line, 'method', None) in ("HEAD", "GET")):
 # start_line may be a request or reponse start line; only
 # the former has a method attribute.
 return connection_header == "keep-alive"
 return False

 def _finish_request(self, future):
 self._clear_callbacks()
 if not self.is_client and self._disconnect_on_finish:
 self.close()
 return
 # Turn Nagle's algorithm back on, leaving the stream in its
 # default state for the next request.
 self.stream.set_nodelay(False)
 if not self._finish_future.done():
 self._finish_future.set_result(None)

 def _parse_headers(self, data):
 # The lstrip removes newlines that some implementations sometimes
 # insert between messages of a reused connection. Per RFC 7230,
 # we SHOULD ignore at least one empty line before the request.
 # http://tools.ietf.org/html/rfc7230#section-3.5
 data = native_str(data.decode('latin1')).lstrip("\r\n")
 # RFC 7230 section allows for both CRLF and bare LF.
 eol = data.find("\n")
 start_line = data[:eol].rstrip("\r")
 try:
 headers = httputil.HTTPHeaders.parse(data[eol:])
 except ValueError:
 # probably form split() if there was no ':' in the line
 raise httputil.HTTPInputError("Malformed HTTP headers: %r" %
 data[eol:100])
 return start_line, headers

 def _read_body(self, code, headers, delegate):
 if "Content-Length" in headers:
 if "Transfer-Encoding" in headers:
 # Response cannot contain both Content-Length and
 # Transfer-Encoding headers.
 # http://tools.ietf.org/html/rfc7230#section-3.3.3
 raise httputil.HTTPInputError(
 "Response with both Transfer-Encoding and Content-Length")
 if "," in headers["Content-Length"]:
 # Proxies sometimes cause Content-Length headers to get
 # duplicated. If all the values are identical then we can
 # use them but if they differ it's an error.
 pieces = re.split(r',\s*', headers["Content-Length"])
 if any(i != pieces[0] for i in pieces):
 raise httputil.HTTPInputError(
 "Multiple unequal Content-Lengths: %r" %
 headers["Content-Length"])
 headers["Content-Length"] = pieces[0]

 try:
 content_length = int(headers["Content-Length"])
 except ValueError:
 # Handles non-integer Content-Length value.
 raise httputil.HTTPInputError(
 "Only integer Content-Length is allowed: %s" % headers["Content-Length"])

 if content_length > self._max_body_size:
 raise httputil.HTTPInputError("Content-Length too long")
 else:
 content_length = None

 if code == 204:
 # This response code is not allowed to have a non-empty body,
 # and has an implicit length of zero instead of read-until-close.
 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.3
 if ("Transfer-Encoding" in headers or
 content_length not in (None, 0)):
 raise httputil.HTTPInputError(
 "Response with code %d should not have body" % code)
 content_length = 0

 if content_length is not None:
 return self._read_fixed_body(content_length, delegate)
 if headers.get("Transfer-Encoding", "").lower() == "chunked":
 return self._read_chunked_body(delegate)
 if self.is_client:
 return self._read_body_until_close(delegate)
 return None

 @gen.coroutine
 def _read_fixed_body(self, content_length, delegate):
 while content_length > 0:
 body = yield self.stream.read_bytes(
 min(self.params.chunk_size, content_length), partial=True)
 content_length -= len(body)
 if not self._write_finished or self.is_client:
 with _ExceptionLoggingContext(app_log):
 ret = delegate.data_received(body)
 if ret is not None:
 yield ret

 @gen.coroutine
 def _read_chunked_body(self, delegate):
 # TODO: "chunk extensions" http://tools.ietf.org/html/rfc2616#section-3.6.1
 total_size = 0
 while True:
 chunk_len = yield self.stream.read_until(b"\r\n", max_bytes=64)
 chunk_len = int(chunk_len.strip(), 16)
 if chunk_len == 0:
 return
 total_size += chunk_len
 if total_size > self._max_body_size:
 raise httputil.HTTPInputError("chunked body too large")
 bytes_to_read = chunk_len
 while bytes_to_read:
 chunk = yield self.stream.read_bytes(
 min(bytes_to_read, self.params.chunk_size), partial=True)
 bytes_to_read -= len(chunk)
 if not self._write_finished or self.is_client:
 with _ExceptionLoggingContext(app_log):
 ret = delegate.data_received(chunk)
 if ret is not None:
 yield ret
 # chunk ends with \r\n
 crlf = yield self.stream.read_bytes(2)
 assert crlf == b"\r\n"

 @gen.coroutine
 def _read_body_until_close(self, delegate):
 body = yield self.stream.read_until_close()
 if not self._write_finished or self.is_client:
 with _ExceptionLoggingContext(app_log):
 delegate.data_received(body)

class _GzipMessageDelegate(httputil.HTTPMessageDelegate):
 """Wraps an `HTTPMessageDelegate` to decode ``Content-Encoding: gzip``.
 """
 def __init__(self, delegate, chunk_size):
 self._delegate = delegate
 self._chunk_size = chunk_size
 self._decompressor = None

 def headers_received(self, start_line, headers):
 if headers.get("Content-Encoding") == "gzip":
 self._decompressor = GzipDecompressor()
 # Downstream delegates will only see uncompressed data,
 # so rename the content-encoding header.
 # (but note that curl_httpclient doesn't do this).
 headers.add("X-Consumed-Content-Encoding",
 headers["Content-Encoding"])
 del headers["Content-Encoding"]
 return self._delegate.headers_received(start_line, headers)

 @gen.coroutine
 def data_received(self, chunk):
 if self._decompressor:
 compressed_data = chunk
 while compressed_data:
 decompressed = self._decompressor.decompress(
 compressed_data, self._chunk_size)
 if decompressed:
 ret = self._delegate.data_received(decompressed)
 if ret is not None:
 yield ret
 compressed_data = self._decompressor.unconsumed_tail
 else:
 ret = self._delegate.data_received(chunk)
 if ret is not None:
 yield ret

 def finish(self):
 if self._decompressor is not None:
 tail = self._decompressor.flush()
 if tail:
 # I believe the tail will always be empty (i.e.
 # decompress will return all it can). The purpose
 # of the flush call is to detect errors such
 # as truncated input. But in case it ever returns
 # anything, treat it as an extra chunk
 self._delegate.data_received(tail)
 return self._delegate.finish()

 def on_connection_close(self):
 return self._delegate.on_connection_close()

[docs]class HTTP1ServerConnection(object):
 """An HTTP/1.x server."""
 def __init__(self, stream, params=None, context=None):
 """
 :arg stream: an `.IOStream`
 :arg params: a `.HTTP1ConnectionParameters` or None
 :arg context: an opaque application-defined object that is accessible
 as ``connection.context``
 """
 self.stream = stream
 if params is None:
 params = HTTP1ConnectionParameters()
 self.params = params
 self.context = context
 self._serving_future = None

 @gen.coroutine
[docs] def close(self):
 """Closes the connection.

 Returns a `.Future` that resolves after the serving loop has exited.
 """
 self.stream.close()
 # Block until the serving loop is done, but ignore any exceptions
 # (start_serving is already responsible for logging them).
 try:
 yield self._serving_future
 except Exception:
 pass

[docs] def start_serving(self, delegate):
 """Starts serving requests on this connection.

 :arg delegate: a `.HTTPServerConnectionDelegate`
 """
 assert isinstance(delegate, httputil.HTTPServerConnectionDelegate)
 self._serving_future = self._server_request_loop(delegate)
 # Register the future on the IOLoop so its errors get logged.
 self.stream.io_loop.add_future(self._serving_future,
 lambda f: f.result())

 @gen.coroutine
 def _server_request_loop(self, delegate):
 try:
 while True:
 conn = HTTP1Connection(self.stream, False,
 self.params, self.context)
 request_delegate = delegate.start_request(self, conn)
 try:
 ret = yield conn.read_response(request_delegate)
 except (iostream.StreamClosedError,
 iostream.UnsatisfiableReadError):
 return
 except _QuietException:
 # This exception was already logged.
 conn.close()
 return
 except Exception:
 gen_log.error("Uncaught exception", exc_info=True)
 conn.close()
 return
 if not ret:
 return
 yield gen.moment
 finally:
 delegate.on_close(self)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/auth.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.auth

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""This module contains implementations of various third-party
authentication schemes.

All the classes in this file are class mixins designed to be used with
the `tornado.web.RequestHandler` class. They are used in two ways:

* On a login handler, use methods such as ``authenticate_redirect()``,
 ``authorize_redirect()``, and ``get_authenticated_user()`` to
 establish the user's identity and store authentication tokens to your
 database and/or cookies.
* In non-login handlers, use methods such as ``facebook_request()``
 or ``twitter_request()`` to use the authentication tokens to make
 requests to the respective services.

They all take slightly different arguments due to the fact all these
services implement authentication and authorization slightly differently.
See the individual service classes below for complete documentation.

Example usage for Google OAuth:

.. testcode::

 class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
 tornado.auth.GoogleOAuth2Mixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument('code', False):
 user = yield self.get_authenticated_user(
 redirect_uri='http://your.site.com/auth/google',
 code=self.get_argument('code'))
 # Save the user with e.g. set_secure_cookie
 else:
 yield self.authorize_redirect(
 redirect_uri='http://your.site.com/auth/google',
 client_id=self.settings['google_oauth']['key'],
 scope=['profile', 'email'],
 response_type='code',
 extra_params={'approval_prompt': 'auto'})

.. testoutput::
 :hide:

.. versionchanged:: 4.0
 All of the callback interfaces in this module are now guaranteed
 to run their callback with an argument of ``None`` on error.
 Previously some functions would do this while others would simply
 terminate the request on their own. This change also ensures that
 errors are more consistently reported through the ``Future`` interfaces.
"""

from __future__ import absolute_import, division, print_function, with_statement

import base64
import binascii
import functools
import hashlib
import hmac
import time
import uuid

from tornado.concurrent import TracebackFuture, return_future, chain_future
from tornado import gen
from tornado import httpclient
from tornado import escape
from tornado.httputil import url_concat
from tornado.log import gen_log
from tornado.stack_context import ExceptionStackContext
from tornado.util import unicode_type, ArgReplacer, PY3

if PY3:
 import urllib.parse as urlparse
 import urllib.parse as urllib_parse
 long = int
else:
 import urlparse
 import urllib as urllib_parse

class AuthError(Exception):
 pass

def _auth_future_to_callback(callback, future):
 try:
 result = future.result()
 except AuthError as e:
 gen_log.warning(str(e))
 result = None
 callback(result)

def _auth_return_future(f):
 """Similar to tornado.concurrent.return_future, but uses the auth
 module's legacy callback interface.

 Note that when using this decorator the ``callback`` parameter
 inside the function will actually be a future.
 """
 replacer = ArgReplacer(f, 'callback')

 @functools.wraps(f)
 def wrapper(*args, **kwargs):
 future = TracebackFuture()
 callback, args, kwargs = replacer.replace(future, args, kwargs)
 if callback is not None:
 future.add_done_callback(
 functools.partial(_auth_future_to_callback, callback))

 def handle_exception(typ, value, tb):
 if future.done():
 return False
 else:
 future.set_exc_info((typ, value, tb))
 return True
 with ExceptionStackContext(handle_exception):
 f(*args, **kwargs)
 return future
 return wrapper

[docs]class OpenIdMixin(object):
 """Abstract implementation of OpenID and Attribute Exchange.

 Class attributes:

 * ``_OPENID_ENDPOINT``: the identity provider's URI.
 """
 @return_future
[docs] def authenticate_redirect(self, callback_uri=None,
 ax_attrs=["name", "email", "language", "username"],
 callback=None):
 """Redirects to the authentication URL for this service.

 After authentication, the service will redirect back to the given
 callback URI with additional parameters including ``openid.mode``.

 We request the given attributes for the authenticated user by
 default (name, email, language, and username). If you don't need
 all those attributes for your app, you can request fewer with
 the ax_attrs keyword argument.

 .. versionchanged:: 3.1
 Returns a `.Future` and takes an optional callback. These are
 not strictly necessary as this method is synchronous,
 but they are supplied for consistency with
 `OAuthMixin.authorize_redirect`.
 """
 callback_uri = callback_uri or self.request.uri
 args = self._openid_args(callback_uri, ax_attrs=ax_attrs)
 self.redirect(self._OPENID_ENDPOINT + "?" + urllib_parse.urlencode(args))
 callback()

 @_auth_return_future
[docs] def get_authenticated_user(self, callback, http_client=None):
 """Fetches the authenticated user data upon redirect.

 This method should be called by the handler that receives the
 redirect from the `authenticate_redirect()` method (which is
 often the same as the one that calls it; in that case you would
 call `get_authenticated_user` if the ``openid.mode`` parameter
 is present and `authenticate_redirect` if it is not).

 The result of this method will generally be used to set a cookie.
 """
 # Verify the OpenID response via direct request to the OP
 args = dict((k, v[-1]) for k, v in self.request.arguments.items())
 args["openid.mode"] = u"check_authentication"
 url = self._OPENID_ENDPOINT
 if http_client is None:
 http_client = self.get_auth_http_client()
 http_client.fetch(url, functools.partial(
 self._on_authentication_verified, callback),
 method="POST", body=urllib_parse.urlencode(args))

 def _openid_args(self, callback_uri, ax_attrs=[], oauth_scope=None):
 url = urlparse.urljoin(self.request.full_url(), callback_uri)
 args = {
 "openid.ns": "http://specs.openid.net/auth/2.0",
 "openid.claimed_id":
 "http://specs.openid.net/auth/2.0/identifier_select",
 "openid.identity":
 "http://specs.openid.net/auth/2.0/identifier_select",
 "openid.return_to": url,
 "openid.realm": urlparse.urljoin(url, '/'),
 "openid.mode": "checkid_setup",
 }
 if ax_attrs:
 args.update({
 "openid.ns.ax": "http://openid.net/srv/ax/1.0",
 "openid.ax.mode": "fetch_request",
 })
 ax_attrs = set(ax_attrs)
 required = []
 if "name" in ax_attrs:
 ax_attrs -= set(["name", "firstname", "fullname", "lastname"])
 required += ["firstname", "fullname", "lastname"]
 args.update({
 "openid.ax.type.firstname":
 "http://axschema.org/namePerson/first",
 "openid.ax.type.fullname":
 "http://axschema.org/namePerson",
 "openid.ax.type.lastname":
 "http://axschema.org/namePerson/last",
 })
 known_attrs = {
 "email": "http://axschema.org/contact/email",
 "language": "http://axschema.org/pref/language",
 "username": "http://axschema.org/namePerson/friendly",
 }
 for name in ax_attrs:
 args["openid.ax.type." + name] = known_attrs[name]
 required.append(name)
 args["openid.ax.required"] = ",".join(required)
 if oauth_scope:
 args.update({
 "openid.ns.oauth":
 "http://specs.openid.net/extensions/oauth/1.0",
 "openid.oauth.consumer": self.request.host.split(":")[0],
 "openid.oauth.scope": oauth_scope,
 })
 return args

 def _on_authentication_verified(self, future, response):
 if response.error or b"is_valid:true" not in response.body:
 future.set_exception(AuthError(
 "Invalid OpenID response: %s" % (response.error or
 response.body)))
 return

 # Make sure we got back at least an email from attribute exchange
 ax_ns = None
 for name in self.request.arguments:
 if name.startswith("openid.ns.") and \
 self.get_argument(name) == u"http://openid.net/srv/ax/1.0":
 ax_ns = name[10:]
 break

 def get_ax_arg(uri):
 if not ax_ns:
 return u""
 prefix = "openid." + ax_ns + ".type."
 ax_name = None
 for name in self.request.arguments.keys():
 if self.get_argument(name) == uri and name.startswith(prefix):
 part = name[len(prefix):]
 ax_name = "openid." + ax_ns + ".value." + part
 break
 if not ax_name:
 return u""
 return self.get_argument(ax_name, u"")

 email = get_ax_arg("http://axschema.org/contact/email")
 name = get_ax_arg("http://axschema.org/namePerson")
 first_name = get_ax_arg("http://axschema.org/namePerson/first")
 last_name = get_ax_arg("http://axschema.org/namePerson/last")
 username = get_ax_arg("http://axschema.org/namePerson/friendly")
 locale = get_ax_arg("http://axschema.org/pref/language").lower()
 user = dict()
 name_parts = []
 if first_name:
 user["first_name"] = first_name
 name_parts.append(first_name)
 if last_name:
 user["last_name"] = last_name
 name_parts.append(last_name)
 if name:
 user["name"] = name
 elif name_parts:
 user["name"] = u" ".join(name_parts)
 elif email:
 user["name"] = email.split("@")[0]
 if email:
 user["email"] = email
 if locale:
 user["locale"] = locale
 if username:
 user["username"] = username
 claimed_id = self.get_argument("openid.claimed_id", None)
 if claimed_id:
 user["claimed_id"] = claimed_id
 future.set_result(user)

[docs] def get_auth_http_client(self):
 """Returns the `.AsyncHTTPClient` instance to be used for auth requests.

 May be overridden by subclasses to use an HTTP client other than
 the default.
 """
 return httpclient.AsyncHTTPClient()

[docs]class OAuthMixin(object):
 """Abstract implementation of OAuth 1.0 and 1.0a.

 See `TwitterMixin` below for an example implementation.

 Class attributes:

 * ``_OAUTH_AUTHORIZE_URL``: The service's OAuth authorization url.
 * ``_OAUTH_ACCESS_TOKEN_URL``: The service's OAuth access token url.
 * ``_OAUTH_VERSION``: May be either "1.0" or "1.0a".
 * ``_OAUTH_NO_CALLBACKS``: Set this to True if the service requires
 advance registration of callbacks.

 Subclasses must also override the `_oauth_get_user_future` and
 `_oauth_consumer_token` methods.
 """
 @return_future
[docs] def authorize_redirect(self, callback_uri=None, extra_params=None,
 http_client=None, callback=None):
 """Redirects the user to obtain OAuth authorization for this service.

 The ``callback_uri`` may be omitted if you have previously
 registered a callback URI with the third-party service. For
 some services (including Friendfeed), you must use a
 previously-registered callback URI and cannot specify a
 callback via this method.

 This method sets a cookie called ``_oauth_request_token`` which is
 subsequently used (and cleared) in `get_authenticated_user` for
 security purposes.

 Note that this method is asynchronous, although it calls
 `.RequestHandler.finish` for you so it may not be necessary
 to pass a callback or use the `.Future` it returns. However,
 if this method is called from a function decorated with
 `.gen.coroutine`, you must call it with ``yield`` to keep the
 response from being closed prematurely.

 .. versionchanged:: 3.1
 Now returns a `.Future` and takes an optional callback, for
 compatibility with `.gen.coroutine`.
 """
 if callback_uri and getattr(self, "_OAUTH_NO_CALLBACKS", False):
 raise Exception("This service does not support oauth_callback")
 if http_client is None:
 http_client = self.get_auth_http_client()
 if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a":
 http_client.fetch(
 self._oauth_request_token_url(callback_uri=callback_uri,
 extra_params=extra_params),
 functools.partial(
 self._on_request_token,
 self._OAUTH_AUTHORIZE_URL,
 callback_uri,
 callback))
 else:
 http_client.fetch(
 self._oauth_request_token_url(),
 functools.partial(
 self._on_request_token, self._OAUTH_AUTHORIZE_URL,
 callback_uri,
 callback))

 @_auth_return_future
[docs] def get_authenticated_user(self, callback, http_client=None):
 """Gets the OAuth authorized user and access token.

 This method should be called from the handler for your
 OAuth callback URL to complete the registration process. We run the
 callback with the authenticated user dictionary. This dictionary
 will contain an ``access_key`` which can be used to make authorized
 requests to this service on behalf of the user. The dictionary will
 also contain other fields such as ``name``, depending on the service
 used.
 """
 future = callback
 request_key = escape.utf8(self.get_argument("oauth_token"))
 oauth_verifier = self.get_argument("oauth_verifier", None)
 request_cookie = self.get_cookie("_oauth_request_token")
 if not request_cookie:
 future.set_exception(AuthError(
 "Missing OAuth request token cookie"))
 return
 self.clear_cookie("_oauth_request_token")
 cookie_key, cookie_secret = [base64.b64decode(escape.utf8(i)) for i in request_cookie.split("|")]
 if cookie_key != request_key:
 future.set_exception(AuthError(
 "Request token does not match cookie"))
 return
 token = dict(key=cookie_key, secret=cookie_secret)
 if oauth_verifier:
 token["verifier"] = oauth_verifier
 if http_client is None:
 http_client = self.get_auth_http_client()
 http_client.fetch(self._oauth_access_token_url(token),
 functools.partial(self._on_access_token, callback))

 def _oauth_request_token_url(self, callback_uri=None, extra_params=None):
 consumer_token = self._oauth_consumer_token()
 url = self._OAUTH_REQUEST_TOKEN_URL
 args = dict(
 oauth_consumer_key=escape.to_basestring(consumer_token["key"]),
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp=str(int(time.time())),
 oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)),
 oauth_version="1.0",
)
 if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a":
 if callback_uri == "oob":
 args["oauth_callback"] = "oob"
 elif callback_uri:
 args["oauth_callback"] = urlparse.urljoin(
 self.request.full_url(), callback_uri)
 if extra_params:
 args.update(extra_params)
 signature = _oauth10a_signature(consumer_token, "GET", url, args)
 else:
 signature = _oauth_signature(consumer_token, "GET", url, args)

 args["oauth_signature"] = signature
 return url + "?" + urllib_parse.urlencode(args)

 def _on_request_token(self, authorize_url, callback_uri, callback,
 response):
 if response.error:
 raise Exception("Could not get request token: %s" % response.error)
 request_token = _oauth_parse_response(response.body)
 data = (base64.b64encode(escape.utf8(request_token["key"])) + b"|" +
 base64.b64encode(escape.utf8(request_token["secret"])))
 self.set_cookie("_oauth_request_token", data)
 args = dict(oauth_token=request_token["key"])
 if callback_uri == "oob":
 self.finish(authorize_url + "?" + urllib_parse.urlencode(args))
 callback()
 return
 elif callback_uri:
 args["oauth_callback"] = urlparse.urljoin(
 self.request.full_url(), callback_uri)
 self.redirect(authorize_url + "?" + urllib_parse.urlencode(args))
 callback()

 def _oauth_access_token_url(self, request_token):
 consumer_token = self._oauth_consumer_token()
 url = self._OAUTH_ACCESS_TOKEN_URL
 args = dict(
 oauth_consumer_key=escape.to_basestring(consumer_token["key"]),
 oauth_token=escape.to_basestring(request_token["key"]),
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp=str(int(time.time())),
 oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)),
 oauth_version="1.0",
)
 if "verifier" in request_token:
 args["oauth_verifier"] = request_token["verifier"]

 if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a":
 signature = _oauth10a_signature(consumer_token, "GET", url, args,
 request_token)
 else:
 signature = _oauth_signature(consumer_token, "GET", url, args,
 request_token)

 args["oauth_signature"] = signature
 return url + "?" + urllib_parse.urlencode(args)

 def _on_access_token(self, future, response):
 if response.error:
 future.set_exception(AuthError("Could not fetch access token"))
 return

 access_token = _oauth_parse_response(response.body)
 self._oauth_get_user_future(access_token).add_done_callback(
 functools.partial(self._on_oauth_get_user, access_token, future))

[docs] def _oauth_consumer_token(self):
 """Subclasses must override this to return their OAuth consumer keys.

 The return value should be a `dict` with keys ``key`` and ``secret``.
 """
 raise NotImplementedError()

 @return_future
[docs] def _oauth_get_user_future(self, access_token, callback):
 """Subclasses must override this to get basic information about the
 user.

 Should return a `.Future` whose result is a dictionary
 containing information about the user, which may have been
 retrieved by using ``access_token`` to make a request to the
 service.

 The access token will be added to the returned dictionary to make
 the result of `get_authenticated_user`.

 For backwards compatibility, the callback-based ``_oauth_get_user``
 method is also supported.
 """
 # By default, call the old-style _oauth_get_user, but new code
 # should override this method instead.
 self._oauth_get_user(access_token, callback)

 def _oauth_get_user(self, access_token, callback):
 raise NotImplementedError()

 def _on_oauth_get_user(self, access_token, future, user_future):
 if user_future.exception() is not None:
 future.set_exception(user_future.exception())
 return
 user = user_future.result()
 if not user:
 future.set_exception(AuthError("Error getting user"))
 return
 user["access_token"] = access_token
 future.set_result(user)

 def _oauth_request_parameters(self, url, access_token, parameters={},
 method="GET"):
 """Returns the OAuth parameters as a dict for the given request.

 parameters should include all POST arguments and query string arguments
 that will be sent with the request.
 """
 consumer_token = self._oauth_consumer_token()
 base_args = dict(
 oauth_consumer_key=escape.to_basestring(consumer_token["key"]),
 oauth_token=escape.to_basestring(access_token["key"]),
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp=str(int(time.time())),
 oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)),
 oauth_version="1.0",
)
 args = {}
 args.update(base_args)
 args.update(parameters)
 if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a":
 signature = _oauth10a_signature(consumer_token, method, url, args,
 access_token)
 else:
 signature = _oauth_signature(consumer_token, method, url, args,
 access_token)
 base_args["oauth_signature"] = escape.to_basestring(signature)
 return base_args

[docs] def get_auth_http_client(self):
 """Returns the `.AsyncHTTPClient` instance to be used for auth requests.

 May be overridden by subclasses to use an HTTP client other than
 the default.
 """
 return httpclient.AsyncHTTPClient()

[docs]class OAuth2Mixin(object):
 """Abstract implementation of OAuth 2.0.

 See `FacebookGraphMixin` or `GoogleOAuth2Mixin` below for example
 implementations.

 Class attributes:

 * ``_OAUTH_AUTHORIZE_URL``: The service's authorization url.
 * ``_OAUTH_ACCESS_TOKEN_URL``: The service's access token url.
 """
 @return_future
[docs] def authorize_redirect(self, redirect_uri=None, client_id=None,
 client_secret=None, extra_params=None,
 callback=None, scope=None, response_type="code"):
 """Redirects the user to obtain OAuth authorization for this service.

 Some providers require that you register a redirect URL with
 your application instead of passing one via this method. You
 should call this method to log the user in, and then call
 ``get_authenticated_user`` in the handler for your
 redirect URL to complete the authorization process.

 .. versionchanged:: 3.1
 Returns a `.Future` and takes an optional callback. These are
 not strictly necessary as this method is synchronous,
 but they are supplied for consistency with
 `OAuthMixin.authorize_redirect`.
 """
 args = {
 "redirect_uri": redirect_uri,
 "client_id": client_id,
 "response_type": response_type
 }
 if extra_params:
 args.update(extra_params)
 if scope:
 args['scope'] = ' '.join(scope)
 self.redirect(
 url_concat(self._OAUTH_AUTHORIZE_URL, args))
 callback()

 def _oauth_request_token_url(self, redirect_uri=None, client_id=None,
 client_secret=None, code=None,
 extra_params=None):
 url = self._OAUTH_ACCESS_TOKEN_URL
 args = dict(
 redirect_uri=redirect_uri,
 code=code,
 client_id=client_id,
 client_secret=client_secret,
)
 if extra_params:
 args.update(extra_params)
 return url_concat(url, args)

 @_auth_return_future
[docs] def oauth2_request(self, url, callback, access_token=None,
 post_args=None, **args):
 """Fetches the given URL auth an OAuth2 access token.

 If the request is a POST, ``post_args`` should be provided. Query
 string arguments should be given as keyword arguments.

 Example usage:

 ..testcode::

 class MainHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.oauth2_request(
 "https://graph.facebook.com/me/feed",
 post_args={"message": "I am posting from my Tornado application!"},
 access_token=self.current_user["access_token"])

 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

 .. testoutput::
 :hide:

 .. versionadded:: 4.3
 """
 all_args = {}
 if access_token:
 all_args["access_token"] = access_token
 all_args.update(args)

 if all_args:
 url += "?" + urllib_parse.urlencode(all_args)
 callback = functools.partial(self._on_oauth2_request, callback)
 http = self.get_auth_http_client()
 if post_args is not None:
 http.fetch(url, method="POST", body=urllib_parse.urlencode(post_args),
 callback=callback)
 else:
 http.fetch(url, callback=callback)

 def _on_oauth2_request(self, future, response):
 if response.error:
 future.set_exception(AuthError("Error response %s fetching %s" %
 (response.error, response.request.url)))
 return

 future.set_result(escape.json_decode(response.body))

[docs] def get_auth_http_client(self):
 """Returns the `.AsyncHTTPClient` instance to be used for auth requests.

 May be overridden by subclasses to use an HTTP client other than
 the default.

 .. versionadded:: 4.3
 """
 return httpclient.AsyncHTTPClient()

[docs]class TwitterMixin(OAuthMixin):
 """Twitter OAuth authentication.

 To authenticate with Twitter, register your application with
 Twitter at http://twitter.com/apps. Then copy your Consumer Key
 and Consumer Secret to the application
 `~tornado.web.Application.settings` ``twitter_consumer_key`` and
 ``twitter_consumer_secret``. Use this mixin on the handler for the
 URL you registered as your application's callback URL.

 When your application is set up, you can use this mixin like this
 to authenticate the user with Twitter and get access to their stream:

 .. testcode::

 class TwitterLoginHandler(tornado.web.RequestHandler,
 tornado.auth.TwitterMixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument("oauth_token", None):
 user = yield self.get_authenticated_user()
 # Save the user using e.g. set_secure_cookie()
 else:
 yield self.authorize_redirect()

 .. testoutput::
 :hide:

 The user object returned by `~OAuthMixin.get_authenticated_user`
 includes the attributes ``username``, ``name``, ``access_token``,
 and all of the custom Twitter user attributes described at
 https://dev.twitter.com/docs/api/1.1/get/users/show
 """
 _OAUTH_REQUEST_TOKEN_URL = "https://api.twitter.com/oauth/request_token"
 _OAUTH_ACCESS_TOKEN_URL = "https://api.twitter.com/oauth/access_token"
 _OAUTH_AUTHORIZE_URL = "https://api.twitter.com/oauth/authorize"
 _OAUTH_AUTHENTICATE_URL = "https://api.twitter.com/oauth/authenticate"
 _OAUTH_NO_CALLBACKS = False
 _TWITTER_BASE_URL = "https://api.twitter.com/1.1"

 @return_future
[docs] def authenticate_redirect(self, callback_uri=None, callback=None):
 """Just like `~OAuthMixin.authorize_redirect`, but
 auto-redirects if authorized.

 This is generally the right interface to use if you are using
 Twitter for single-sign on.

 .. versionchanged:: 3.1
 Now returns a `.Future` and takes an optional callback, for
 compatibility with `.gen.coroutine`.
 """
 http = self.get_auth_http_client()
 http.fetch(self._oauth_request_token_url(callback_uri=callback_uri),
 functools.partial(
 self._on_request_token, self._OAUTH_AUTHENTICATE_URL,
 None, callback))

 @_auth_return_future
[docs] def twitter_request(self, path, callback=None, access_token=None,
 post_args=None, **args):
 """Fetches the given API path, e.g., ``statuses/user_timeline/btaylor``

 The path should not include the format or API version number.
 (we automatically use JSON format and API version 1).

 If the request is a POST, ``post_args`` should be provided. Query
 string arguments should be given as keyword arguments.

 All the Twitter methods are documented at http://dev.twitter.com/

 Many methods require an OAuth access token which you can
 obtain through `~OAuthMixin.authorize_redirect` and
 `~OAuthMixin.get_authenticated_user`. The user returned through that
 process includes an 'access_token' attribute that can be used
 to make authenticated requests via this method. Example
 usage:

 .. testcode::

 class MainHandler(tornado.web.RequestHandler,
 tornado.auth.TwitterMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.twitter_request(
 "/statuses/update",
 post_args={"status": "Testing Tornado Web Server"},
 access_token=self.current_user["access_token"])
 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

 .. testoutput::
 :hide:

 """
 if path.startswith('http:') or path.startswith('https:'):
 # Raw urls are useful for e.g. search which doesn't follow the
 # usual pattern: http://search.twitter.com/search.json
 url = path
 else:
 url = self._TWITTER_BASE_URL + path + ".json"
 # Add the OAuth resource request signature if we have credentials
 if access_token:
 all_args = {}
 all_args.update(args)
 all_args.update(post_args or {})
 method = "POST" if post_args is not None else "GET"
 oauth = self._oauth_request_parameters(
 url, access_token, all_args, method=method)
 args.update(oauth)
 if args:
 url += "?" + urllib_parse.urlencode(args)
 http = self.get_auth_http_client()
 http_callback = functools.partial(self._on_twitter_request, callback)
 if post_args is not None:
 http.fetch(url, method="POST", body=urllib_parse.urlencode(post_args),
 callback=http_callback)
 else:
 http.fetch(url, callback=http_callback)

 def _on_twitter_request(self, future, response):
 if response.error:
 future.set_exception(AuthError(
 "Error response %s fetching %s" % (response.error,
 response.request.url)))
 return
 future.set_result(escape.json_decode(response.body))

 def _oauth_consumer_token(self):
 self.require_setting("twitter_consumer_key", "Twitter OAuth")
 self.require_setting("twitter_consumer_secret", "Twitter OAuth")
 return dict(
 key=self.settings["twitter_consumer_key"],
 secret=self.settings["twitter_consumer_secret"])

 @gen.coroutine
 def _oauth_get_user_future(self, access_token):
 user = yield self.twitter_request(
 "/account/verify_credentials",
 access_token=access_token)
 if user:
 user["username"] = user["screen_name"]
 raise gen.Return(user)

[docs]class GoogleOAuth2Mixin(OAuth2Mixin):
 """Google authentication using OAuth2.

 In order to use, register your application with Google and copy the
 relevant parameters to your application settings.

 * Go to the Google Dev Console at http://console.developers.google.com
 * Select a project, or create a new one.
 * In the sidebar on the left, select APIs & Auth.
 * In the list of APIs, find the Google+ API service and set it to ON.
 * In the sidebar on the left, select Credentials.
 * In the OAuth section of the page, select Create New Client ID.
 * Set the Redirect URI to point to your auth handler
 * Copy the "Client secret" and "Client ID" to the application settings as
 {"google_oauth": {"key": CLIENT_ID, "secret": CLIENT_SECRET}}

 .. versionadded:: 3.2
 """
 _OAUTH_AUTHORIZE_URL = "https://accounts.google.com/o/oauth2/auth"
 _OAUTH_ACCESS_TOKEN_URL = "https://accounts.google.com/o/oauth2/token"
 _OAUTH_USERINFO_URL = "https://www.googleapis.com/oauth2/v1/userinfo"
 _OAUTH_NO_CALLBACKS = False
 _OAUTH_SETTINGS_KEY = 'google_oauth'

 @_auth_return_future
[docs] def get_authenticated_user(self, redirect_uri, code, callback):
 """Handles the login for the Google user, returning an access token.

 The result is a dictionary containing an ``access_token`` field
 ([among others](https://developers.google.com/identity/protocols/OAuth2WebServer#handlingtheresponse)).
 Unlike other ``get_authenticated_user`` methods in this package,
 this method does not return any additional information about the user.
 The returned access token can be used with `OAuth2Mixin.oauth2_request`
 to request additional information (perhaps from
 ``https://www.googleapis.com/oauth2/v2/userinfo``)

 Example usage:

 .. testcode::

 class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
 tornado.auth.GoogleOAuth2Mixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument('code', False):
 access = yield self.get_authenticated_user(
 redirect_uri='http://your.site.com/auth/google',
 code=self.get_argument('code'))
 user = yield self.oauth2_request(
 "https://www.googleapis.com/oauth2/v1/userinfo",
 access_token=access["access_token"])
 # Save the user and access token with
 # e.g. set_secure_cookie.
 else:
 yield self.authorize_redirect(
 redirect_uri='http://your.site.com/auth/google',
 client_id=self.settings['google_oauth']['key'],
 scope=['profile', 'email'],
 response_type='code',
 extra_params={'approval_prompt': 'auto'})

 .. testoutput::
 :hide:

 """
 http = self.get_auth_http_client()
 body = urllib_parse.urlencode({
 "redirect_uri": redirect_uri,
 "code": code,
 "client_id": self.settings[self._OAUTH_SETTINGS_KEY]['key'],
 "client_secret": self.settings[self._OAUTH_SETTINGS_KEY]['secret'],
 "grant_type": "authorization_code",
 })

 http.fetch(self._OAUTH_ACCESS_TOKEN_URL,
 functools.partial(self._on_access_token, callback),
 method="POST", headers={'Content-Type': 'application/x-www-form-urlencoded'}, body=body)

 def _on_access_token(self, future, response):
 """Callback function for the exchange to the access token."""
 if response.error:
 future.set_exception(AuthError('Google auth error: %s' % str(response)))
 return

 args = escape.json_decode(response.body)
 future.set_result(args)

[docs]class FacebookGraphMixin(OAuth2Mixin):
 """Facebook authentication using the new Graph API and OAuth2."""
 _OAUTH_ACCESS_TOKEN_URL = "https://graph.facebook.com/oauth/access_token?"
 _OAUTH_AUTHORIZE_URL = "https://www.facebook.com/dialog/oauth?"
 _OAUTH_NO_CALLBACKS = False
 _FACEBOOK_BASE_URL = "https://graph.facebook.com"

 @_auth_return_future
[docs] def get_authenticated_user(self, redirect_uri, client_id, client_secret,
 code, callback, extra_fields=None):
 """Handles the login for the Facebook user, returning a user object.

 Example usage:

 .. testcode::

 class FacebookGraphLoginHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.gen.coroutine
 def get(self):
 if self.get_argument("code", False):
 user = yield self.get_authenticated_user(
 redirect_uri='/auth/facebookgraph/',
 client_id=self.settings["facebook_api_key"],
 client_secret=self.settings["facebook_secret"],
 code=self.get_argument("code"))
 # Save the user with e.g. set_secure_cookie
 else:
 yield self.authorize_redirect(
 redirect_uri='/auth/facebookgraph/',
 client_id=self.settings["facebook_api_key"],
 extra_params={"scope": "read_stream,offline_access"})

 .. testoutput::
 :hide:

 """
 http = self.get_auth_http_client()
 args = {
 "redirect_uri": redirect_uri,
 "code": code,
 "client_id": client_id,
 "client_secret": client_secret,
 }

 fields = set(['id', 'name', 'first_name', 'last_name',
 'locale', 'picture', 'link'])
 if extra_fields:
 fields.update(extra_fields)

 http.fetch(self._oauth_request_token_url(**args),
 functools.partial(self._on_access_token, redirect_uri, client_id,
 client_secret, callback, fields))

 def _on_access_token(self, redirect_uri, client_id, client_secret,
 future, fields, response):
 if response.error:
 future.set_exception(AuthError('Facebook auth error: %s' % str(response)))
 return

 args = urlparse.parse_qs(escape.native_str(response.body))
 session = {
 "access_token": args["access_token"][-1],
 "expires": args.get("expires")
 }

 self.facebook_request(
 path="/me",
 callback=functools.partial(
 self._on_get_user_info, future, session, fields),
 access_token=session["access_token"],
 appsecret_proof=hmac.new(key=client_secret.encode('utf8'),
 msg=session["access_token"].encode('utf8'),
 digestmod=hashlib.sha256).hexdigest(),
 fields=",".join(fields)
)

 def _on_get_user_info(self, future, session, fields, user):
 if user is None:
 future.set_result(None)
 return

 fieldmap = {}
 for field in fields:
 fieldmap[field] = user.get(field)

 fieldmap.update({"access_token": session["access_token"], "session_expires": session.get("expires")})
 future.set_result(fieldmap)

 @_auth_return_future
[docs] def facebook_request(self, path, callback, access_token=None,
 post_args=None, **args):
 """Fetches the given relative API path, e.g., "/btaylor/picture"

 If the request is a POST, ``post_args`` should be provided. Query
 string arguments should be given as keyword arguments.

 An introduction to the Facebook Graph API can be found at
 http://developers.facebook.com/docs/api

 Many methods require an OAuth access token which you can
 obtain through `~OAuth2Mixin.authorize_redirect` and
 `get_authenticated_user`. The user returned through that
 process includes an ``access_token`` attribute that can be
 used to make authenticated requests via this method.

 Example usage:

 ..testcode::

 class MainHandler(tornado.web.RequestHandler,
 tornado.auth.FacebookGraphMixin):
 @tornado.web.authenticated
 @tornado.gen.coroutine
 def get(self):
 new_entry = yield self.facebook_request(
 "/me/feed",
 post_args={"message": "I am posting from my Tornado application!"},
 access_token=self.current_user["access_token"])

 if not new_entry:
 # Call failed; perhaps missing permission?
 yield self.authorize_redirect()
 return
 self.finish("Posted a message!")

 .. testoutput::
 :hide:

 The given path is relative to ``self._FACEBOOK_BASE_URL``,
 by default "https://graph.facebook.com".

 This method is a wrapper around `OAuth2Mixin.oauth2_request`;
 the only difference is that this method takes a relative path,
 while ``oauth2_request`` takes a complete url.

 .. versionchanged:: 3.1
 Added the ability to override ``self._FACEBOOK_BASE_URL``.
 """
 url = self._FACEBOOK_BASE_URL + path
 # Thanks to the _auth_return_future decorator, our "callback"
 # argument is a Future, which we cannot pass as a callback to
 # oauth2_request. Instead, have oauth2_request return a
 # future and chain them together.
 oauth_future = self.oauth2_request(url, access_token=access_token,
 post_args=post_args, **args)
 chain_future(oauth_future, callback)

def _oauth_signature(consumer_token, method, url, parameters={}, token=None):
 """Calculates the HMAC-SHA1 OAuth signature for the given request.

 See http://oauth.net/core/1.0/#signing_process
 """
 parts = urlparse.urlparse(url)
 scheme, netloc, path = parts[:3]
 normalized_url = scheme.lower() + "://" + netloc.lower() + path

 base_elems = []
 base_elems.append(method.upper())
 base_elems.append(normalized_url)
 base_elems.append("&".join("%s=%s" % (k, _oauth_escape(str(v)))
 for k, v in sorted(parameters.items())))
 base_string = "&".join(_oauth_escape(e) for e in base_elems)

 key_elems = [escape.utf8(consumer_token["secret"])]
 key_elems.append(escape.utf8(token["secret"] if token else ""))
 key = b"&".join(key_elems)

 hash = hmac.new(key, escape.utf8(base_string), hashlib.sha1)
 return binascii.b2a_base64(hash.digest())[:-1]

def _oauth10a_signature(consumer_token, method, url, parameters={}, token=None):
 """Calculates the HMAC-SHA1 OAuth 1.0a signature for the given request.

 See http://oauth.net/core/1.0a/#signing_process
 """
 parts = urlparse.urlparse(url)
 scheme, netloc, path = parts[:3]
 normalized_url = scheme.lower() + "://" + netloc.lower() + path

 base_elems = []
 base_elems.append(method.upper())
 base_elems.append(normalized_url)
 base_elems.append("&".join("%s=%s" % (k, _oauth_escape(str(v)))
 for k, v in sorted(parameters.items())))

 base_string = "&".join(_oauth_escape(e) for e in base_elems)
 key_elems = [escape.utf8(urllib_parse.quote(consumer_token["secret"], safe='~'))]
 key_elems.append(escape.utf8(urllib_parse.quote(token["secret"], safe='~') if token else ""))
 key = b"&".join(key_elems)

 hash = hmac.new(key, escape.utf8(base_string), hashlib.sha1)
 return binascii.b2a_base64(hash.digest())[:-1]

def _oauth_escape(val):
 if isinstance(val, unicode_type):
 val = val.encode("utf-8")
 return urllib_parse.quote(val, safe="~")

def _oauth_parse_response(body):
 # I can't find an officially-defined encoding for oauth responses and
 # have never seen anyone use non-ascii. Leave the response in a byte
 # string for python 2, and use utf8 on python 3.
 body = escape.native_str(body)
 p = urlparse.parse_qs(body, keep_blank_values=False)
 token = dict(key=p["oauth_token"][0], secret=p["oauth_token_secret"][0])

 # Add the extra parameters the Provider included to the token
 special = ("oauth_token", "oauth_token_secret")
 token.update((k, p[k][0]) for k in p if k not in special)
 return token

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/process.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.process

#!/usr/bin/env python
#
Copyright 2011 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Utilities for working with multiple processes, including both forking
the server into multiple processes and managing subprocesses.
"""

from __future__ import absolute_import, division, print_function, with_statement

import errno
import os
import signal
import subprocess
import sys
import time

from binascii import hexlify

from tornado.concurrent import Future
from tornado import ioloop
from tornado.iostream import PipeIOStream
from tornado.log import gen_log
from tornado.platform.auto import set_close_exec
from tornado import stack_context
from tornado.util import errno_from_exception, PY3

try:
 import multiprocessing
except ImportError:
 # Multiprocessing is not available on Google App Engine.
 multiprocessing = None

if PY3:
 long = int

Re-export this exception for convenience.
try:
 CalledProcessError = subprocess.CalledProcessError
except AttributeError:
 # The subprocess module exists in Google App Engine, but is empty.
 # This module isn't very useful in that case, but it should
 # at least be importable.
 if 'APPENGINE_RUNTIME' not in os.environ:
 raise

[docs]def cpu_count():
 """Returns the number of processors on this machine."""
 if multiprocessing is None:
 return 1
 try:
 return multiprocessing.cpu_count()
 except NotImplementedError:
 pass
 try:
 return os.sysconf("SC_NPROCESSORS_CONF")
 except ValueError:
 pass
 gen_log.error("Could not detect number of processors; assuming 1")
 return 1

def _reseed_random():
 if 'random' not in sys.modules:
 return
 import random
 # If os.urandom is available, this method does the same thing as
 # random.seed (at least as of python 2.6). If os.urandom is not
 # available, we mix in the pid in addition to a timestamp.
 try:
 seed = long(hexlify(os.urandom(16)), 16)
 except NotImplementedError:
 seed = int(time.time() * 1000) ^ os.getpid()
 random.seed(seed)

def _pipe_cloexec():
 r, w = os.pipe()
 set_close_exec(r)
 set_close_exec(w)
 return r, w

_task_id = None

[docs]def fork_processes(num_processes, max_restarts=100):
 """Starts multiple worker processes.

 If ``num_processes`` is None or <= 0, we detect the number of cores
 available on this machine and fork that number of child
 processes. If ``num_processes`` is given and > 0, we fork that
 specific number of sub-processes.

 Since we use processes and not threads, there is no shared memory
 between any server code.

 Note that multiple processes are not compatible with the autoreload
 module (or the ``autoreload=True`` option to `tornado.web.Application`
 which defaults to True when ``debug=True``).
 When using multiple processes, no IOLoops can be created or
 referenced until after the call to ``fork_processes``.

 In each child process, ``fork_processes`` returns its *task id*, a
 number between 0 and ``num_processes``. Processes that exit
 abnormally (due to a signal or non-zero exit status) are restarted
 with the same id (up to ``max_restarts`` times). In the parent
 process, ``fork_processes`` returns None if all child processes
 have exited normally, but will otherwise only exit by throwing an
 exception.
 """
 global _task_id
 assert _task_id is None
 if num_processes is None or num_processes <= 0:
 num_processes = cpu_count()
 if ioloop.IOLoop.initialized():
 raise RuntimeError("Cannot run in multiple processes: IOLoop instance "
 "has already been initialized. You cannot call "
 "IOLoop.instance() before calling start_processes()")
 gen_log.info("Starting %d processes", num_processes)
 children = {}

 def start_child(i):
 pid = os.fork()
 if pid == 0:
 # child process
 _reseed_random()
 global _task_id
 _task_id = i
 return i
 else:
 children[pid] = i
 return None

 for i in range(num_processes):
 id = start_child(i)
 if id is not None:
 return id
 num_restarts = 0
 while children:
 try:
 pid, status = os.wait()
 except OSError as e:
 if errno_from_exception(e) == errno.EINTR:
 continue
 raise
 if pid not in children:
 continue
 id = children.pop(pid)
 if os.WIFSIGNALED(status):
 gen_log.warning("child %d (pid %d) killed by signal %d, restarting",
 id, pid, os.WTERMSIG(status))
 elif os.WEXITSTATUS(status) != 0:
 gen_log.warning("child %d (pid %d) exited with status %d, restarting",
 id, pid, os.WEXITSTATUS(status))
 else:
 gen_log.info("child %d (pid %d) exited normally", id, pid)
 continue
 num_restarts += 1
 if num_restarts > max_restarts:
 raise RuntimeError("Too many child restarts, giving up")
 new_id = start_child(id)
 if new_id is not None:
 return new_id
 # All child processes exited cleanly, so exit the master process
 # instead of just returning to right after the call to
 # fork_processes (which will probably just start up another IOLoop
 # unless the caller checks the return value).
 sys.exit(0)

[docs]def task_id():
 """Returns the current task id, if any.

 Returns None if this process was not created by `fork_processes`.
 """
 global _task_id
 return _task_id

[docs]class Subprocess(object):
 """Wraps ``subprocess.Popen`` with IOStream support.

 The constructor is the same as ``subprocess.Popen`` with the following
 additions:

 * ``stdin``, ``stdout``, and ``stderr`` may have the value
 ``tornado.process.Subprocess.STREAM``, which will make the corresponding
 attribute of the resulting Subprocess a `.PipeIOStream`.
 * A new keyword argument ``io_loop`` may be used to pass in an IOLoop.

 The ``Subprocess.STREAM`` option and the ``set_exit_callback`` and
 ``wait_for_exit`` methods do not work on Windows. There is
 therefore no reason to use this class instead of
 ``subprocess.Popen`` on that platform.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.

 """
 STREAM = object()

 _initialized = False
 _waiting = {} # type: ignore

 def __init__(self, *args, **kwargs):
 self.io_loop = kwargs.pop('io_loop', None) or ioloop.IOLoop.current()
 # All FDs we create should be closed on error; those in to_close
 # should be closed in the parent process on success.
 pipe_fds = []
 to_close = []
 if kwargs.get('stdin') is Subprocess.STREAM:
 in_r, in_w = _pipe_cloexec()
 kwargs['stdin'] = in_r
 pipe_fds.extend((in_r, in_w))
 to_close.append(in_r)
 self.stdin = PipeIOStream(in_w, io_loop=self.io_loop)
 if kwargs.get('stdout') is Subprocess.STREAM:
 out_r, out_w = _pipe_cloexec()
 kwargs['stdout'] = out_w
 pipe_fds.extend((out_r, out_w))
 to_close.append(out_w)
 self.stdout = PipeIOStream(out_r, io_loop=self.io_loop)
 if kwargs.get('stderr') is Subprocess.STREAM:
 err_r, err_w = _pipe_cloexec()
 kwargs['stderr'] = err_w
 pipe_fds.extend((err_r, err_w))
 to_close.append(err_w)
 self.stderr = PipeIOStream(err_r, io_loop=self.io_loop)
 try:
 self.proc = subprocess.Popen(*args, **kwargs)
 except:
 for fd in pipe_fds:
 os.close(fd)
 raise
 for fd in to_close:
 os.close(fd)
 for attr in ['stdin', 'stdout', 'stderr', 'pid']:
 if not hasattr(self, attr): # don't clobber streams set above
 setattr(self, attr, getattr(self.proc, attr))
 self._exit_callback = None
 self.returncode = None

[docs] def set_exit_callback(self, callback):
 """Runs ``callback`` when this process exits.

 The callback takes one argument, the return code of the process.

 This method uses a ``SIGCHLD`` handler, which is a global setting
 and may conflict if you have other libraries trying to handle the
 same signal. If you are using more than one ``IOLoop`` it may
 be necessary to call `Subprocess.initialize` first to designate
 one ``IOLoop`` to run the signal handlers.

 In many cases a close callback on the stdout or stderr streams
 can be used as an alternative to an exit callback if the
 signal handler is causing a problem.
 """
 self._exit_callback = stack_context.wrap(callback)
 Subprocess.initialize(self.io_loop)
 Subprocess._waiting[self.pid] = self
 Subprocess._try_cleanup_process(self.pid)

[docs] def wait_for_exit(self, raise_error=True):
 """Returns a `.Future` which resolves when the process exits.

 Usage::

 ret = yield proc.wait_for_exit()

 This is a coroutine-friendly alternative to `set_exit_callback`
 (and a replacement for the blocking `subprocess.Popen.wait`).

 By default, raises `subprocess.CalledProcessError` if the process
 has a non-zero exit status. Use ``wait_for_exit(raise_error=False)``
 to suppress this behavior and return the exit status without raising.

 .. versionadded:: 4.2
 """
 future = Future()

 def callback(ret):
 if ret != 0 and raise_error:
 # Unfortunately we don't have the original args any more.
 future.set_exception(CalledProcessError(ret, None))
 else:
 future.set_result(ret)
 self.set_exit_callback(callback)
 return future

 @classmethod
[docs] def initialize(cls, io_loop=None):
 """Initializes the ``SIGCHLD`` handler.

 The signal handler is run on an `.IOLoop` to avoid locking issues.
 Note that the `.IOLoop` used for signal handling need not be the
 same one used by individual Subprocess objects (as long as the
 ``IOLoops`` are each running in separate threads).

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 if cls._initialized:
 return
 if io_loop is None:
 io_loop = ioloop.IOLoop.current()
 cls._old_sigchld = signal.signal(
 signal.SIGCHLD,
 lambda sig, frame: io_loop.add_callback_from_signal(cls._cleanup))
 cls._initialized = True

 @classmethod
[docs] def uninitialize(cls):
 """Removes the ``SIGCHLD`` handler."""
 if not cls._initialized:
 return
 signal.signal(signal.SIGCHLD, cls._old_sigchld)
 cls._initialized = False

 @classmethod
 def _cleanup(cls):
 for pid in list(cls._waiting.keys()): # make a copy
 cls._try_cleanup_process(pid)

 @classmethod
 def _try_cleanup_process(cls, pid):
 try:
 ret_pid, status = os.waitpid(pid, os.WNOHANG)
 except OSError as e:
 if errno_from_exception(e) == errno.ECHILD:
 return
 if ret_pid == 0:
 return
 assert ret_pid == pid
 subproc = cls._waiting.pop(pid)
 subproc.io_loop.add_callback_from_signal(
 subproc._set_returncode, status)

 def _set_returncode(self, status):
 if os.WIFSIGNALED(status):
 self.returncode = -os.WTERMSIG(status)
 else:
 assert os.WIFEXITED(status)
 self.returncode = os.WEXITSTATUS(status)
 if self._exit_callback:
 callback = self._exit_callback
 self._exit_callback = None
 callback(self.returncode)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/escape.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.escape

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Escaping/unescaping methods for HTML, JSON, URLs, and others.

Also includes a few other miscellaneous string manipulation functions that
have crept in over time.
"""

from __future__ import absolute_import, division, print_function, with_statement

import json
import re

from tornado.util import PY3, unicode_type, basestring_type

if PY3:
 from urllib.parse import parse_qs as _parse_qs
 import html.entities as htmlentitydefs
 import urllib.parse as urllib_parse
 unichr = chr
else:
 from urlparse import parse_qs as _parse_qs
 import htmlentitydefs
 import urllib as urllib_parse

try:
 import typing # noqa
except ImportError:
 pass

_XHTML_ESCAPE_RE = re.compile('[&<>"\']')
_XHTML_ESCAPE_DICT = {'&': '&', '<': '<', '>': '>', '"': '"',
 '\'': '''}

[docs]def xhtml_escape(value):
 """Escapes a string so it is valid within HTML or XML.

 Escapes the characters ``<``, ``>``, ``"``, ``'``, and ``&``.
 When used in attribute values the escaped strings must be enclosed
 in quotes.

 .. versionchanged:: 3.2

 Added the single quote to the list of escaped characters.
 """
 return _XHTML_ESCAPE_RE.sub(lambda match: _XHTML_ESCAPE_DICT[match.group(0)],
 to_basestring(value))

[docs]def xhtml_unescape(value):
 """Un-escapes an XML-escaped string."""
 return re.sub(r"&(#?)(\w+?);", _convert_entity, _unicode(value))

The fact that json_encode wraps json.dumps is an implementation detail.
Please see https://github.com/tornadoweb/tornado/pull/706
before sending a pull request that adds **kwargs to this function.
[docs]def json_encode(value):
 """JSON-encodes the given Python object."""
 # JSON permits but does not require forward slashes to be escaped.
 # This is useful when json data is emitted in a <script> tag
 # in HTML, as it prevents </script> tags from prematurely terminating
 # the javascript. Some json libraries do this escaping by default,
 # although python's standard library does not, so we do it here.
 # http://stackoverflow.com/questions/1580647/json-why-are-forward-slashes-escaped
 return json.dumps(value).replace("</", "<\\/")

[docs]def json_decode(value):
 """Returns Python objects for the given JSON string."""
 return json.loads(to_basestring(value))

[docs]def squeeze(value):
 """Replace all sequences of whitespace chars with a single space."""
 return re.sub(r"[\x00-\x20]+", " ", value).strip()

[docs]def url_escape(value, plus=True):
 """Returns a URL-encoded version of the given value.

 If ``plus`` is true (the default), spaces will be represented
 as "+" instead of "%20". This is appropriate for query strings
 but not for the path component of a URL. Note that this default
 is the reverse of Python's urllib module.

 .. versionadded:: 3.1
 The ``plus`` argument
 """
 quote = urllib_parse.quote_plus if plus else urllib_parse.quote
 return quote(utf8(value))

python 3 changed things around enough that we need two separate
implementations of url_unescape. We also need our own implementation
of parse_qs since python 3's version insists on decoding everything.
if not PY3:
 def url_unescape(value, encoding='utf-8', plus=True):
 """Decodes the given value from a URL.

 The argument may be either a byte or unicode string.

 If encoding is None, the result will be a byte string. Otherwise,
 the result is a unicode string in the specified encoding.

 If ``plus`` is true (the default), plus signs will be interpreted
 as spaces (literal plus signs must be represented as "%2B"). This
 is appropriate for query strings and form-encoded values but not
 for the path component of a URL. Note that this default is the
 reverse of Python's urllib module.

 .. versionadded:: 3.1
 The ``plus`` argument
 """
 unquote = (urllib_parse.unquote_plus if plus else urllib_parse.unquote)
 if encoding is None:
 return unquote(utf8(value))
 else:
 return unicode_type(unquote(utf8(value)), encoding)

 parse_qs_bytes = _parse_qs
else:
[docs] def url_unescape(value, encoding='utf-8', plus=True):
 """Decodes the given value from a URL.

 The argument may be either a byte or unicode string.

 If encoding is None, the result will be a byte string. Otherwise,
 the result is a unicode string in the specified encoding.

 If ``plus`` is true (the default), plus signs will be interpreted
 as spaces (literal plus signs must be represented as "%2B"). This
 is appropriate for query strings and form-encoded values but not
 for the path component of a URL. Note that this default is the
 reverse of Python's urllib module.

 .. versionadded:: 3.1
 The ``plus`` argument
 """
 if encoding is None:
 if plus:
 # unquote_to_bytes doesn't have a _plus variant
 value = to_basestring(value).replace('+', ' ')
 return urllib_parse.unquote_to_bytes(value)
 else:
 unquote = (urllib_parse.unquote_plus if plus
 else urllib_parse.unquote)
 return unquote(to_basestring(value), encoding=encoding)

 def parse_qs_bytes(qs, keep_blank_values=False, strict_parsing=False):
 """Parses a query string like urlparse.parse_qs, but returns the
 values as byte strings.

 Keys still become type str (interpreted as latin1 in python3!)
 because it's too painful to keep them as byte strings in
 python3 and in practice they're nearly always ascii anyway.
 """
 # This is gross, but python3 doesn't give us another way.
 # Latin1 is the universal donor of character encodings.
 result = _parse_qs(qs, keep_blank_values, strict_parsing,
 encoding='latin1', errors='strict')
 encoded = {}
 for k, v in result.items():
 encoded[k] = [i.encode('latin1') for i in v]
 return encoded

_UTF8_TYPES = (bytes, type(None))

[docs]def utf8(value):
 # type: (typing.Union[bytes,unicode_type,None])->typing.Union[bytes,None]
 """Converts a string argument to a byte string.

 If the argument is already a byte string or None, it is returned unchanged.
 Otherwise it must be a unicode string and is encoded as utf8.
 """
 if isinstance(value, _UTF8_TYPES):
 return value
 if not isinstance(value, unicode_type):
 raise TypeError(
 "Expected bytes, unicode, or None; got %r" % type(value)
)
 return value.encode("utf-8")

_TO_UNICODE_TYPES = (unicode_type, type(None))

[docs]def to_unicode(value):
 """Converts a string argument to a unicode string.

 If the argument is already a unicode string or None, it is returned
 unchanged. Otherwise it must be a byte string and is decoded as utf8.
 """
 if isinstance(value, _TO_UNICODE_TYPES):
 return value
 if not isinstance(value, bytes):
 raise TypeError(
 "Expected bytes, unicode, or None; got %r" % type(value)
)
 return value.decode("utf-8")

to_unicode was previously named _unicode not because it was private,
but to avoid conflicts with the built-in unicode() function/type
_unicode = to_unicode

When dealing with the standard library across python 2 and 3 it is
sometimes useful to have a direct conversion to the native string type
if str is unicode_type:
 native_str = to_unicode
else:
 native_str = utf8

_BASESTRING_TYPES = (basestring_type, type(None))

[docs]def to_basestring(value):
 """Converts a string argument to a subclass of basestring.

 In python2, byte and unicode strings are mostly interchangeable,
 so functions that deal with a user-supplied argument in combination
 with ascii string constants can use either and should return the type
 the user supplied. In python3, the two types are not interchangeable,
 so this method is needed to convert byte strings to unicode.
 """
 if isinstance(value, _BASESTRING_TYPES):
 return value
 if not isinstance(value, bytes):
 raise TypeError(
 "Expected bytes, unicode, or None; got %r" % type(value)
)
 return value.decode("utf-8")

[docs]def recursive_unicode(obj):
 """Walks a simple data structure, converting byte strings to unicode.

 Supports lists, tuples, and dictionaries.
 """
 if isinstance(obj, dict):
 return dict((recursive_unicode(k), recursive_unicode(v)) for (k, v) in obj.items())
 elif isinstance(obj, list):
 return list(recursive_unicode(i) for i in obj)
 elif isinstance(obj, tuple):
 return tuple(recursive_unicode(i) for i in obj)
 elif isinstance(obj, bytes):
 return to_unicode(obj)
 else:
 return obj

I originally used the regex from
http://daringfireball.net/2010/07/improved_regex_for_matching_urls
but it gets all exponential on certain patterns (such as too many trailing
dots), causing the regex matcher to never return.
This regex should avoid those problems.
Use to_unicode instead of tornado.util.u - we don't want backslashes getting
processed as escapes.
_URL_RE = re.compile(to_unicode(r"""\b((?:([\w-]+):(/{1,3})|www[.])(?:(?:(?:[^\s&()]|&|")*(?:[^!"#$%&'()*+,.:;<=>?@\[\]^`{|}~\s]))|(?:\((?:[^\s&()]|&|")*\)))+)"""))

[docs]def linkify(text, shorten=False, extra_params="",
 require_protocol=False, permitted_protocols=["http", "https"]):
 """Converts plain text into HTML with links.

 For example: ``linkify("Hello http://tornadoweb.org!")`` would return
 ``Hello http://tornadoweb.org!``

 Parameters:

 * ``shorten``: Long urls will be shortened for display.

 * ``extra_params``: Extra text to include in the link tag, or a callable
 taking the link as an argument and returning the extra text
 e.g. ``linkify(text, extra_params='rel="nofollow" class="external"')``,
 or::

 def extra_params_cb(url):
 if url.startswith("http://example.com"):
 return 'class="internal"'
 else:
 return 'class="external" rel="nofollow"'
 linkify(text, extra_params=extra_params_cb)

 * ``require_protocol``: Only linkify urls which include a protocol. If
 this is False, urls such as www.facebook.com will also be linkified.

 * ``permitted_protocols``: List (or set) of protocols which should be
 linkified, e.g. ``linkify(text, permitted_protocols=["http", "ftp",
 "mailto"])``. It is very unsafe to include protocols such as
 ``javascript``.
 """
 if extra_params and not callable(extra_params):
 extra_params = " " + extra_params.strip()

 def make_link(m):
 url = m.group(1)
 proto = m.group(2)
 if require_protocol and not proto:
 return url # not protocol, no linkify

 if proto and proto not in permitted_protocols:
 return url # bad protocol, no linkify

 href = m.group(1)
 if not proto:
 href = "http://" + href # no proto specified, use http

 if callable(extra_params):
 params = " " + extra_params(href).strip()
 else:
 params = extra_params

 # clip long urls. max_len is just an approximation
 max_len = 30
 if shorten and len(url) > max_len:
 before_clip = url
 if proto:
 proto_len = len(proto) + 1 + len(m.group(3) or "") # +1 for :
 else:
 proto_len = 0

 parts = url[proto_len:].split("/")
 if len(parts) > 1:
 # Grab the whole host part plus the first bit of the path
 # The path is usually not that interesting once shortened
 # (no more slug, etc), so it really just provides a little
 # extra indication of shortening.
 url = url[:proto_len] + parts[0] + "/" + \
 parts[1][:8].split('?')[0].split('.')[0]

 if len(url) > max_len * 1.5: # still too long
 url = url[:max_len]

 if url != before_clip:
 amp = url.rfind('&')
 # avoid splitting html char entities
 if amp > max_len - 5:
 url = url[:amp]
 url += "..."

 if len(url) >= len(before_clip):
 url = before_clip
 else:
 # full url is visible on mouse-over (for those who don't
 # have a status bar, such as Safari by default)
 params += ' title="%s"' % href

 return u'%s' % (href, params, url)

 # First HTML-escape so that our strings are all safe.
 # The regex is modified to avoid character entites other than & so
 # that we won't pick up ", etc.
 text = _unicode(xhtml_escape(text))
 return _URL_RE.sub(make_link, text)

def _convert_entity(m):
 if m.group(1) == "#":
 try:
 if m.group(2)[:1].lower() == 'x':
 return unichr(int(m.group(2)[1:], 16))
 else:
 return unichr(int(m.group(2)))
 except ValueError:
 return "&#%s;" % m.group(2)
 try:
 return _HTML_UNICODE_MAP[m.group(2)]
 except KeyError:
 return "&%s;" % m.group(2)

def _build_unicode_map():
 unicode_map = {}
 for name, value in htmlentitydefs.name2codepoint.items():
 unicode_map[name] = unichr(value)
 return unicode_map

_HTML_UNICODE_MAP = _build_unicode_map()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/web.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.web

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""``tornado.web`` provides a simple web framework with asynchronous
features that allow it to scale to large numbers of open connections,
making it ideal for `long polling
<http://en.wikipedia.org/wiki/Push_technology#Long_polling>`_.

Here is a simple "Hello, world" example app:

.. testcode::

 import tornado.ioloop
 import tornado.web

 class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

 if __name__ == "__main__":
 application = tornado.web.Application([
 (r"/", MainHandler),
])
 application.listen(8888)
 tornado.ioloop.IOLoop.current().start()

.. testoutput::
 :hide:

See the :doc:`guide` for additional information.

Thread-safety notes

In general, methods on `RequestHandler` and elsewhere in Tornado are
not thread-safe. In particular, methods such as
`~RequestHandler.write()`, `~RequestHandler.finish()`, and
`~RequestHandler.flush()` must only be called from the main thread. If
you use multiple threads it is important to use `.IOLoop.add_callback`
to transfer control back to the main thread before finishing the
request.

"""

from __future__ import absolute_import, division, print_function, with_statement

import base64
import binascii
import datetime
import email.utils
import functools
import gzip
import hashlib
import hmac
import mimetypes
import numbers
import os.path
import re
import stat
import sys
import threading
import time
import tornado
import traceback
import types
from io import BytesIO

from tornado.concurrent import Future
from tornado import escape
from tornado import gen
from tornado import httputil
from tornado import iostream
from tornado import locale
from tornado.log import access_log, app_log, gen_log
from tornado import stack_context
from tornado import template
from tornado.escape import utf8, _unicode
from tornado.util import (import_object, ObjectDict, raise_exc_info,
 unicode_type, _websocket_mask, re_unescape, PY3)
from tornado.httputil import split_host_and_port

if PY3:
 import http.cookies as Cookie
 import urllib.parse as urlparse
 from urllib.parse import urlencode
else:
 import Cookie
 import urlparse
 from urllib import urlencode

try:
 import typing # noqa

 # The following types are accepted by RequestHandler.set_header
 # and related methods.
 _HeaderTypes = typing.Union[bytes, unicode_type,
 numbers.Integral, datetime.datetime]
except ImportError:
 pass

MIN_SUPPORTED_SIGNED_VALUE_VERSION = 1
"""The oldest signed value version supported by this version of Tornado.

Signed values older than this version cannot be decoded.

.. versionadded:: 3.2.1
"""

MAX_SUPPORTED_SIGNED_VALUE_VERSION = 2
"""The newest signed value version supported by this version of Tornado.

Signed values newer than this version cannot be decoded.

.. versionadded:: 3.2.1
"""

DEFAULT_SIGNED_VALUE_VERSION = 2
"""The signed value version produced by `.RequestHandler.create_signed_value`.

May be overridden by passing a ``version`` keyword argument.

.. versionadded:: 3.2.1
"""

DEFAULT_SIGNED_VALUE_MIN_VERSION = 1
"""The oldest signed value accepted by `.RequestHandler.get_secure_cookie`.

May be overridden by passing a ``min_version`` keyword argument.

.. versionadded:: 3.2.1
"""

[docs]class RequestHandler(object):
 """Base class for HTTP request handlers.

 Subclasses must define at least one of the methods defined in the
 "Entry points" section below.
 """
 SUPPORTED_METHODS = ("GET", "HEAD", "POST", "DELETE", "PATCH", "PUT",
 "OPTIONS")

 _template_loaders = {} # type: typing.Dict[str, template.BaseLoader]
 _template_loader_lock = threading.Lock()
 _remove_control_chars_regex = re.compile(r"[\x00-\x08\x0e-\x1f]")

 def __init__(self, application, request, **kwargs):
 super(RequestHandler, self).__init__()

 self.application = application
 self.request = request
 self._headers_written = False
 self._finished = False
 self._auto_finish = True
 self._transforms = None # will be set in _execute
 self._prepared_future = None
 self._headers = None # type: httputil.HTTPHeaders
 self.path_args = None
 self.path_kwargs = None
 self.ui = ObjectDict((n, self._ui_method(m)) for n, m in
 application.ui_methods.items())
 # UIModules are available as both `modules` and `_tt_modules` in the
 # template namespace. Historically only `modules` was available
 # but could be clobbered by user additions to the namespace.
 # The template {% module %} directive looks in `_tt_modules` to avoid
 # possible conflicts.
 self.ui["_tt_modules"] = _UIModuleNamespace(self,
 application.ui_modules)
 self.ui["modules"] = self.ui["_tt_modules"]
 self.clear()
 self.request.connection.set_close_callback(self.on_connection_close)
 self.initialize(**kwargs)

[docs] def initialize(self):
 """Hook for subclass initialization. Called for each request.

 A dictionary passed as the third argument of a url spec will be
 supplied as keyword arguments to initialize().

 Example::

 class ProfileHandler(RequestHandler):
 def initialize(self, database):
 self.database = database

 def get(self, username):
 ...

 app = Application([
 (r'/user/(.*)', ProfileHandler, dict(database=database)),
])
 """
 pass

 @property
 def settings(self):
 """An alias for `self.application.settings <Application.settings>`."""
 return self.application.settings

[docs] def head(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def get(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def post(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def delete(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def patch(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def put(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def options(self, *args, **kwargs):
 raise HTTPError(405)

[docs] def prepare(self):
 """Called at the beginning of a request before `get`/`post`/etc.

 Override this method to perform common initialization regardless
 of the request method.

 Asynchronous support: Decorate this method with `.gen.coroutine`
 or `.return_future` to make it asynchronous (the
 `asynchronous` decorator cannot be used on `prepare`).
 If this method returns a `.Future` execution will not proceed
 until the `.Future` is done.

 .. versionadded:: 3.1
 Asynchronous support.
 """
 pass

[docs] def on_finish(self):
 """Called after the end of a request.

 Override this method to perform cleanup, logging, etc.
 This method is a counterpart to `prepare`. ``on_finish`` may
 not produce any output, as it is called after the response
 has been sent to the client.
 """
 pass

[docs] def on_connection_close(self):
 """Called in async handlers if the client closed the connection.

 Override this to clean up resources associated with
 long-lived connections. Note that this method is called only if
 the connection was closed during asynchronous processing; if you
 need to do cleanup after every request override `on_finish`
 instead.

 Proxies may keep a connection open for a time (perhaps
 indefinitely) after the client has gone away, so this method
 may not be called promptly after the end user closes their
 connection.
 """
 if _has_stream_request_body(self.__class__):
 if not self.request.body.done():
 self.request.body.set_exception(iostream.StreamClosedError())
 self.request.body.exception()

[docs] def clear(self):
 """Resets all headers and content for this response."""
 self._headers = httputil.HTTPHeaders({
 "Server": "TornadoServer/%s" % tornado.version,
 "Content-Type": "text/html; charset=UTF-8",
 "Date": httputil.format_timestamp(time.time()),
 })
 self.set_default_headers()
 self._write_buffer = []
 self._status_code = 200
 self._reason = httputil.responses[200]

[docs] def set_default_headers(self):
 """Override this to set HTTP headers at the beginning of the request.

 For example, this is the place to set a custom ``Server`` header.
 Note that setting such headers in the normal flow of request
 processing may not do what you want, since headers may be reset
 during error handling.
 """
 pass

[docs] def set_status(self, status_code, reason=None):
 """Sets the status code for our response.

 :arg int status_code: Response status code. If ``reason`` is ``None``,
 it must be present in `httplib.responses <http.client.responses>`.
 :arg string reason: Human-readable reason phrase describing the status
 code. If ``None``, it will be filled in from
 `httplib.responses <http.client.responses>`.
 """
 self._status_code = status_code
 if reason is not None:
 self._reason = escape.native_str(reason)
 else:
 try:
 self._reason = httputil.responses[status_code]
 except KeyError:
 raise ValueError("unknown status code %d" % status_code)

[docs] def get_status(self):
 """Returns the status code for our response."""
 return self._status_code

[docs] def set_header(self, name, value):
 # type: (str, _HeaderTypes) -> None
 """Sets the given response header name and value.

 If a datetime is given, we automatically format it according to the
 HTTP specification. If the value is not a string, we convert it to
 a string. All header values are then encoded as UTF-8.
 """
 self._headers[name] = self._convert_header_value(value)

[docs] def add_header(self, name, value):
 # type: (str, _HeaderTypes) -> None
 """Adds the given response header and value.

 Unlike `set_header`, `add_header` may be called multiple times
 to return multiple values for the same header.
 """
 self._headers.add(name, self._convert_header_value(value))

[docs] def clear_header(self, name):
 """Clears an outgoing header, undoing a previous `set_header` call.

 Note that this method does not apply to multi-valued headers
 set by `add_header`.
 """
 if name in self._headers:
 del self._headers[name]

 _INVALID_HEADER_CHAR_RE = re.compile(r"[\x00-\x1f]")

 def _convert_header_value(self, value):
 # type: (_HeaderTypes) -> str

 # Convert the input value to a str. This type check is a bit
 # subtle: The bytes case only executes on python 3, and the
 # unicode case only executes on python 2, because the other
 # cases are covered by the first match for str.
 if isinstance(value, str):
 retval = value
 elif isinstance(value, bytes): # py3
 # Non-ascii characters in headers are not well supported,
 # but if you pass bytes, use latin1 so they pass through as-is.
 retval = value.decode('latin1')
 elif isinstance(value, unicode_type): # py2
 # TODO: This is inconsistent with the use of latin1 above,
 # but it's been that way for a long time. Should it change?
 retval = escape.utf8(value)
 elif isinstance(value, numbers.Integral):
 # return immediately since we know the converted value will be safe
 return str(value)
 elif isinstance(value, datetime.datetime):
 return httputil.format_timestamp(value)
 else:
 raise TypeError("Unsupported header value %r" % value)
 # If \n is allowed into the header, it is possible to inject
 # additional headers or split the request.
 if RequestHandler._INVALID_HEADER_CHAR_RE.search(retval):
 raise ValueError("Unsafe header value %r", retval)
 return retval

 _ARG_DEFAULT = object()

[docs] def get_argument(self, name, default=_ARG_DEFAULT, strip=True):
 """Returns the value of the argument with the given name.

 If default is not provided, the argument is considered to be
 required, and we raise a `MissingArgumentError` if it is missing.

 If the argument appears in the url more than once, we return the
 last value.

 The returned value is always unicode.
 """
 return self._get_argument(name, default, self.request.arguments, strip)

[docs] def get_arguments(self, name, strip=True):
 """Returns a list of the arguments with the given name.

 If the argument is not present, returns an empty list.

 The returned values are always unicode.
 """

 # Make sure `get_arguments` isn't accidentally being called with a
 # positional argument that's assumed to be a default (like in
 # `get_argument`.)
 assert isinstance(strip, bool)

 return self._get_arguments(name, self.request.arguments, strip)

[docs] def get_body_argument(self, name, default=_ARG_DEFAULT, strip=True):
 """Returns the value of the argument with the given name
 from the request body.

 If default is not provided, the argument is considered to be
 required, and we raise a `MissingArgumentError` if it is missing.

 If the argument appears in the url more than once, we return the
 last value.

 The returned value is always unicode.

 .. versionadded:: 3.2
 """
 return self._get_argument(name, default, self.request.body_arguments,
 strip)

[docs] def get_body_arguments(self, name, strip=True):
 """Returns a list of the body arguments with the given name.

 If the argument is not present, returns an empty list.

 The returned values are always unicode.

 .. versionadded:: 3.2
 """
 return self._get_arguments(name, self.request.body_arguments, strip)

[docs] def get_query_argument(self, name, default=_ARG_DEFAULT, strip=True):
 """Returns the value of the argument with the given name
 from the request query string.

 If default is not provided, the argument is considered to be
 required, and we raise a `MissingArgumentError` if it is missing.

 If the argument appears in the url more than once, we return the
 last value.

 The returned value is always unicode.

 .. versionadded:: 3.2
 """
 return self._get_argument(name, default,
 self.request.query_arguments, strip)

[docs] def get_query_arguments(self, name, strip=True):
 """Returns a list of the query arguments with the given name.

 If the argument is not present, returns an empty list.

 The returned values are always unicode.

 .. versionadded:: 3.2
 """
 return self._get_arguments(name, self.request.query_arguments, strip)

 def _get_argument(self, name, default, source, strip=True):
 args = self._get_arguments(name, source, strip=strip)
 if not args:
 if default is self._ARG_DEFAULT:
 raise MissingArgumentError(name)
 return default
 return args[-1]

 def _get_arguments(self, name, source, strip=True):
 values = []
 for v in source.get(name, []):
 v = self.decode_argument(v, name=name)
 if isinstance(v, unicode_type):
 # Get rid of any weird control chars (unless decoding gave
 # us bytes, in which case leave it alone)
 v = RequestHandler._remove_control_chars_regex.sub(" ", v)
 if strip:
 v = v.strip()
 values.append(v)
 return values

[docs] def decode_argument(self, value, name=None):
 """Decodes an argument from the request.

 The argument has been percent-decoded and is now a byte string.
 By default, this method decodes the argument as utf-8 and returns
 a unicode string, but this may be overridden in subclasses.

 This method is used as a filter for both `get_argument()` and for
 values extracted from the url and passed to `get()`/`post()`/etc.

 The name of the argument is provided if known, but may be None
 (e.g. for unnamed groups in the url regex).
 """
 try:
 return _unicode(value)
 except UnicodeDecodeError:
 raise HTTPError(400, "Invalid unicode in %s: %r" %
 (name or "url", value[:40]))

 @property
 def cookies(self):
 """An alias for
 `self.request.cookies <.httputil.HTTPServerRequest.cookies>`."""
 return self.request.cookies

[docs] def get_cookie(self, name, default=None):
 """Gets the value of the cookie with the given name, else default."""
 if self.request.cookies is not None and name in self.request.cookies:
 return self.request.cookies[name].value
 return default

[docs] def set_cookie(self, name, value, domain=None, expires=None, path="/",
 expires_days=None, **kwargs):
 """Sets the given cookie name/value with the given options.

 Additional keyword arguments are set on the Cookie.Morsel
 directly.
 See https://docs.python.org/2/library/cookie.html#Cookie.Morsel
 for available attributes.
 """
 # The cookie library only accepts type str, in both python 2 and 3
 name = escape.native_str(name)
 value = escape.native_str(value)
 if re.search(r"[\x00-\x20]", name + value):
 # Don't let us accidentally inject bad stuff
 raise ValueError("Invalid cookie %r: %r" % (name, value))
 if not hasattr(self, "_new_cookie"):
 self._new_cookie = Cookie.SimpleCookie()
 if name in self._new_cookie:
 del self._new_cookie[name]
 self._new_cookie[name] = value
 morsel = self._new_cookie[name]
 if domain:
 morsel["domain"] = domain
 if expires_days is not None and not expires:
 expires = datetime.datetime.utcnow() + datetime.timedelta(
 days=expires_days)
 if expires:
 morsel["expires"] = httputil.format_timestamp(expires)
 if path:
 morsel["path"] = path
 for k, v in kwargs.items():
 if k == 'max_age':
 k = 'max-age'

 # skip falsy values for httponly and secure flags because
 # SimpleCookie sets them regardless
 if k in ['httponly', 'secure'] and not v:
 continue

 morsel[k] = v

[docs] def clear_cookie(self, name, path="/", domain=None):
 """Deletes the cookie with the given name.

 Due to limitations of the cookie protocol, you must pass the same
 path and domain to clear a cookie as were used when that cookie
 was set (but there is no way to find out on the server side
 which values were used for a given cookie).
 """
 expires = datetime.datetime.utcnow() - datetime.timedelta(days=365)
 self.set_cookie(name, value="", path=path, expires=expires,
 domain=domain)

[docs] def clear_all_cookies(self, path="/", domain=None):
 """Deletes all the cookies the user sent with this request.

 See `clear_cookie` for more information on the path and domain
 parameters.

 .. versionchanged:: 3.2

 Added the ``path`` and ``domain`` parameters.
 """
 for name in self.request.cookies:
 self.clear_cookie(name, path=path, domain=domain)

[docs] def set_secure_cookie(self, name, value, expires_days=30, version=None,
 **kwargs):
 """Signs and timestamps a cookie so it cannot be forged.

 You must specify the ``cookie_secret`` setting in your Application
 to use this method. It should be a long, random sequence of bytes
 to be used as the HMAC secret for the signature.

 To read a cookie set with this method, use `get_secure_cookie()`.

 Note that the ``expires_days`` parameter sets the lifetime of the
 cookie in the browser, but is independent of the ``max_age_days``
 parameter to `get_secure_cookie`.

 Secure cookies may contain arbitrary byte values, not just unicode
 strings (unlike regular cookies)

 .. versionchanged:: 3.2.1

 Added the ``version`` argument. Introduced cookie version 2
 and made it the default.
 """
 self.set_cookie(name, self.create_signed_value(name, value,
 version=version),
 expires_days=expires_days, **kwargs)

[docs] def create_signed_value(self, name, value, version=None):
 """Signs and timestamps a string so it cannot be forged.

 Normally used via set_secure_cookie, but provided as a separate
 method for non-cookie uses. To decode a value not stored
 as a cookie use the optional value argument to get_secure_cookie.

 .. versionchanged:: 3.2.1

 Added the ``version`` argument. Introduced cookie version 2
 and made it the default.
 """
 self.require_setting("cookie_secret", "secure cookies")
 secret = self.application.settings["cookie_secret"]
 key_version = None
 if isinstance(secret, dict):
 if self.application.settings.get("key_version") is None:
 raise Exception("key_version setting must be used for secret_key dicts")
 key_version = self.application.settings["key_version"]

 return create_signed_value(secret, name, value, version=version,
 key_version=key_version)

[docs] def get_secure_cookie(self, name, value=None, max_age_days=31,
 min_version=None):
 """Returns the given signed cookie if it validates, or None.

 The decoded cookie value is returned as a byte string (unlike
 `get_cookie`).

 .. versionchanged:: 3.2.1

 Added the ``min_version`` argument. Introduced cookie version 2;
 both versions 1 and 2 are accepted by default.
 """
 self.require_setting("cookie_secret", "secure cookies")
 if value is None:
 value = self.get_cookie(name)
 return decode_signed_value(self.application.settings["cookie_secret"],
 name, value, max_age_days=max_age_days,
 min_version=min_version)

[docs] def get_secure_cookie_key_version(self, name, value=None):
 """Returns the signing key version of the secure cookie.

 The version is returned as int.
 """
 self.require_setting("cookie_secret", "secure cookies")
 if value is None:
 value = self.get_cookie(name)
 return get_signature_key_version(value)

[docs] def redirect(self, url, permanent=False, status=None):
 """Sends a redirect to the given (optionally relative) URL.

 If the ``status`` argument is specified, that value is used as the
 HTTP status code; otherwise either 301 (permanent) or 302
 (temporary) is chosen based on the ``permanent`` argument.
 The default is 302 (temporary).
 """
 if self._headers_written:
 raise Exception("Cannot redirect after headers have been written")
 if status is None:
 status = 301 if permanent else 302
 else:
 assert isinstance(status, int) and 300 <= status <= 399
 self.set_status(status)
 self.set_header("Location", utf8(url))
 self.finish()

[docs] def write(self, chunk):
 """Writes the given chunk to the output buffer.

 To write the output to the network, use the flush() method below.

 If the given chunk is a dictionary, we write it as JSON and set
 the Content-Type of the response to be ``application/json``.
 (if you want to send JSON as a different ``Content-Type``, call
 set_header *after* calling write()).

 Note that lists are not converted to JSON because of a potential
 cross-site security vulnerability. All JSON output should be
 wrapped in a dictionary. More details at
 http://haacked.com/archive/2009/06/25/json-hijacking.aspx/ and
 https://github.com/facebook/tornado/issues/1009
 """
 if self._finished:
 raise RuntimeError("Cannot write() after finish()")
 if not isinstance(chunk, (bytes, unicode_type, dict)):
 message = "write() only accepts bytes, unicode, and dict objects"
 if isinstance(chunk, list):
 message += ". Lists not accepted for security reasons; see http://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler.write"
 raise TypeError(message)
 if isinstance(chunk, dict):
 chunk = escape.json_encode(chunk)
 self.set_header("Content-Type", "application/json; charset=UTF-8")
 chunk = utf8(chunk)
 self._write_buffer.append(chunk)

[docs] def render(self, template_name, **kwargs):
 """Renders the template with the given arguments as the response."""
 if self._finished:
 raise RuntimeError("Cannot render() after finish()")
 html = self.render_string(template_name, **kwargs)

 # Insert the additional JS and CSS added by the modules on the page
 js_embed = []
 js_files = []
 css_embed = []
 css_files = []
 html_heads = []
 html_bodies = []
 for module in getattr(self, "_active_modules", {}).values():
 embed_part = module.embedded_javascript()
 if embed_part:
 js_embed.append(utf8(embed_part))
 file_part = module.javascript_files()
 if file_part:
 if isinstance(file_part, (unicode_type, bytes)):
 js_files.append(file_part)
 else:
 js_files.extend(file_part)
 embed_part = module.embedded_css()
 if embed_part:
 css_embed.append(utf8(embed_part))
 file_part = module.css_files()
 if file_part:
 if isinstance(file_part, (unicode_type, bytes)):
 css_files.append(file_part)
 else:
 css_files.extend(file_part)
 head_part = module.html_head()
 if head_part:
 html_heads.append(utf8(head_part))
 body_part = module.html_body()
 if body_part:
 html_bodies.append(utf8(body_part))

 def is_absolute(path):
 return any(path.startswith(x) for x in ["/", "http:", "https:"])
 if js_files:
 # Maintain order of JavaScript files given by modules
 paths = []
 unique_paths = set()
 for path in js_files:
 if not is_absolute(path):
 path = self.static_url(path)
 if path not in unique_paths:
 paths.append(path)
 unique_paths.add(path)
 js = ''.join('<script src="' + escape.xhtml_escape(p) +
 '" type="text/javascript"></script>'
 for p in paths)
 sloc = html.rindex(b'</body>')
 html = html[:sloc] + utf8(js) + b'\n' + html[sloc:]
 if js_embed:
 js = b'<script type="text/javascript">\n//<![CDATA[\n' + \
 b'\n'.join(js_embed) + b'\n//]]>\n</script>'
 sloc = html.rindex(b'</body>')
 html = html[:sloc] + js + b'\n' + html[sloc:]
 if css_files:
 paths = []
 unique_paths = set()
 for path in css_files:
 if not is_absolute(path):
 path = self.static_url(path)
 if path not in unique_paths:
 paths.append(path)
 unique_paths.add(path)
 css = ''.join('<link href="' + escape.xhtml_escape(p) + '" '
 'type="text/css" rel="stylesheet"/>'
 for p in paths)
 hloc = html.index(b'</head>')
 html = html[:hloc] + utf8(css) + b'\n' + html[hloc:]
 if css_embed:
 css = b'<style type="text/css">\n' + b'\n'.join(css_embed) + \
 b'\n</style>'
 hloc = html.index(b'</head>')
 html = html[:hloc] + css + b'\n' + html[hloc:]
 if html_heads:
 hloc = html.index(b'</head>')
 html = html[:hloc] + b''.join(html_heads) + b'\n' + html[hloc:]
 if html_bodies:
 hloc = html.index(b'</body>')
 html = html[:hloc] + b''.join(html_bodies) + b'\n' + html[hloc:]
 self.finish(html)

[docs] def render_string(self, template_name, **kwargs):
 """Generate the given template with the given arguments.

 We return the generated byte string (in utf8). To generate and
 write a template as a response, use render() above.
 """
 # If no template_path is specified, use the path of the calling file
 template_path = self.get_template_path()
 if not template_path:
 frame = sys._getframe(0)
 web_file = frame.f_code.co_filename
 while frame.f_code.co_filename == web_file:
 frame = frame.f_back
 template_path = os.path.dirname(frame.f_code.co_filename)
 with RequestHandler._template_loader_lock:
 if template_path not in RequestHandler._template_loaders:
 loader = self.create_template_loader(template_path)
 RequestHandler._template_loaders[template_path] = loader
 else:
 loader = RequestHandler._template_loaders[template_path]
 t = loader.load(template_name)
 namespace = self.get_template_namespace()
 namespace.update(kwargs)
 return t.generate(**namespace)

[docs] def get_template_namespace(self):
 """Returns a dictionary to be used as the default template namespace.

 May be overridden by subclasses to add or modify values.

 The results of this method will be combined with additional
 defaults in the `tornado.template` module and keyword arguments
 to `render` or `render_string`.
 """
 namespace = dict(
 handler=self,
 request=self.request,
 current_user=self.current_user,
 locale=self.locale,
 _=self.locale.translate,
 pgettext=self.locale.pgettext,
 static_url=self.static_url,
 xsrf_form_html=self.xsrf_form_html,
 reverse_url=self.reverse_url
)
 namespace.update(self.ui)
 return namespace

[docs] def create_template_loader(self, template_path):
 """Returns a new template loader for the given path.

 May be overridden by subclasses. By default returns a
 directory-based loader on the given path, using the
 ``autoescape`` and ``template_whitespace`` application
 settings. If a ``template_loader`` application setting is
 supplied, uses that instead.
 """
 settings = self.application.settings
 if "template_loader" in settings:
 return settings["template_loader"]
 kwargs = {}
 if "autoescape" in settings:
 # autoescape=None means "no escaping", so we have to be sure
 # to only pass this kwarg if the user asked for it.
 kwargs["autoescape"] = settings["autoescape"]
 if "template_whitespace" in settings:
 kwargs["whitespace"] = settings["template_whitespace"]
 return template.Loader(template_path, **kwargs)

[docs] def flush(self, include_footers=False, callback=None):
 """Flushes the current output buffer to the network.

 The ``callback`` argument, if given, can be used for flow control:
 it will be run when all flushed data has been written to the socket.
 Note that only one flush callback can be outstanding at a time;
 if another flush occurs before the previous flush's callback
 has been run, the previous callback will be discarded.

 .. versionchanged:: 4.0
 Now returns a `.Future` if no callback is given.
 """
 chunk = b"".join(self._write_buffer)
 self._write_buffer = []
 if not self._headers_written:
 self._headers_written = True
 for transform in self._transforms:
 self._status_code, self._headers, chunk = \
 transform.transform_first_chunk(
 self._status_code, self._headers,
 chunk, include_footers)
 # Ignore the chunk and only write the headers for HEAD requests
 if self.request.method == "HEAD":
 chunk = None

 # Finalize the cookie headers (which have been stored in a side
 # object so an outgoing cookie could be overwritten before it
 # is sent).
 if hasattr(self, "_new_cookie"):
 for cookie in self._new_cookie.values():
 self.add_header("Set-Cookie", cookie.OutputString(None))

 start_line = httputil.ResponseStartLine('',
 self._status_code,
 self._reason)
 return self.request.connection.write_headers(
 start_line, self._headers, chunk, callback=callback)
 else:
 for transform in self._transforms:
 chunk = transform.transform_chunk(chunk, include_footers)
 # Ignore the chunk and only write the headers for HEAD requests
 if self.request.method != "HEAD":
 return self.request.connection.write(chunk, callback=callback)
 else:
 future = Future()
 future.set_result(None)
 return future

[docs] def finish(self, chunk=None):
 """Finishes this response, ending the HTTP request."""
 if self._finished:
 raise RuntimeError("finish() called twice")

 if chunk is not None:
 self.write(chunk)

 # Automatically support ETags and add the Content-Length header if
 # we have not flushed any content yet.
 if not self._headers_written:
 if (self._status_code == 200 and
 self.request.method in ("GET", "HEAD") and
 "Etag" not in self._headers):
 self.set_etag_header()
 if self.check_etag_header():
 self._write_buffer = []
 self.set_status(304)
 if self._status_code in (204, 304):
 assert not self._write_buffer, "Cannot send body with %s" % self._status_code
 self._clear_headers_for_304()
 elif "Content-Length" not in self._headers:
 content_length = sum(len(part) for part in self._write_buffer)
 self.set_header("Content-Length", content_length)

 if hasattr(self.request, "connection"):
 # Now that the request is finished, clear the callback we
 # set on the HTTPConnection (which would otherwise prevent the
 # garbage collection of the RequestHandler when there
 # are keepalive connections)
 self.request.connection.set_close_callback(None)

 self.flush(include_footers=True)
 self.request.finish()
 self._log()
 self._finished = True
 self.on_finish()
 # Break up a reference cycle between this handler and the
 # _ui_module closures to allow for faster GC on CPython.
 self.ui = None

[docs] def send_error(self, status_code=500, **kwargs):
 """Sends the given HTTP error code to the browser.

 If `flush()` has already been called, it is not possible to send
 an error, so this method will simply terminate the response.
 If output has been written but not yet flushed, it will be discarded
 and replaced with the error page.

 Override `write_error()` to customize the error page that is returned.
 Additional keyword arguments are passed through to `write_error`.
 """
 if self._headers_written:
 gen_log.error("Cannot send error response after headers written")
 if not self._finished:
 # If we get an error between writing headers and finishing,
 # we are unlikely to be able to finish due to a
 # Content-Length mismatch. Try anyway to release the
 # socket.
 try:
 self.finish()
 except Exception:
 gen_log.error("Failed to flush partial response",
 exc_info=True)
 return
 self.clear()

 reason = kwargs.get('reason')
 if 'exc_info' in kwargs:
 exception = kwargs['exc_info'][1]
 if isinstance(exception, HTTPError) and exception.reason:
 reason = exception.reason
 self.set_status(status_code, reason=reason)
 try:
 self.write_error(status_code, **kwargs)
 except Exception:
 app_log.error("Uncaught exception in write_error", exc_info=True)
 if not self._finished:
 self.finish()

[docs] def write_error(self, status_code, **kwargs):
 """Override to implement custom error pages.

 ``write_error`` may call `write`, `render`, `set_header`, etc
 to produce output as usual.

 If this error was caused by an uncaught exception (including
 HTTPError), an ``exc_info`` triple will be available as
 ``kwargs["exc_info"]``. Note that this exception may not be
 the "current" exception for purposes of methods like
 ``sys.exc_info()`` or ``traceback.format_exc``.
 """
 if self.settings.get("serve_traceback") and "exc_info" in kwargs:
 # in debug mode, try to send a traceback
 self.set_header('Content-Type', 'text/plain')
 for line in traceback.format_exception(*kwargs["exc_info"]):
 self.write(line)
 self.finish()
 else:
 self.finish("<html><title>%(code)d: %(message)s</title>"
 "<body>%(code)d: %(message)s</body></html>" % {
 "code": status_code,
 "message": self._reason,
 })

 @property
 def locale(self):
 """The locale for the current session.

 Determined by either `get_user_locale`, which you can override to
 set the locale based on, e.g., a user preference stored in a
 database, or `get_browser_locale`, which uses the ``Accept-Language``
 header.

 .. versionchanged: 4.1
 Added a property setter.
 """
 if not hasattr(self, "_locale"):
 self._locale = self.get_user_locale()
 if not self._locale:
 self._locale = self.get_browser_locale()
 assert self._locale
 return self._locale

 @locale.setter
 def locale(self, value):
 self._locale = value

[docs] def get_user_locale(self):
 """Override to determine the locale from the authenticated user.

 If None is returned, we fall back to `get_browser_locale()`.

 This method should return a `tornado.locale.Locale` object,
 most likely obtained via a call like ``tornado.locale.get("en")``
 """
 return None

[docs] def get_browser_locale(self, default="en_US"):
 """Determines the user's locale from ``Accept-Language`` header.

 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4
 """
 if "Accept-Language" in self.request.headers:
 languages = self.request.headers["Accept-Language"].split(",")
 locales = []
 for language in languages:
 parts = language.strip().split(";")
 if len(parts) > 1 and parts[1].startswith("q="):
 try:
 score = float(parts[1][2:])
 except (ValueError, TypeError):
 score = 0.0
 else:
 score = 1.0
 locales.append((parts[0], score))
 if locales:
 locales.sort(key=lambda pair: pair[1], reverse=True)
 codes = [l[0] for l in locales]
 return locale.get(*codes)
 return locale.get(default)

 @property
 def current_user(self):
 """The authenticated user for this request.

 This is set in one of two ways:

 * A subclass may override `get_current_user()`, which will be called
 automatically the first time ``self.current_user`` is accessed.
 `get_current_user()` will only be called once per request,
 and is cached for future access::

 def get_current_user(self):
 user_cookie = self.get_secure_cookie("user")
 if user_cookie:
 return json.loads(user_cookie)
 return None

 * It may be set as a normal variable, typically from an overridden
 `prepare()`::

 @gen.coroutine
 def prepare(self):
 user_id_cookie = self.get_secure_cookie("user_id")
 if user_id_cookie:
 self.current_user = yield load_user(user_id_cookie)

 Note that `prepare()` may be a coroutine while `get_current_user()`
 may not, so the latter form is necessary if loading the user requires
 asynchronous operations.

 The user object may be any type of the application's choosing.
 """
 if not hasattr(self, "_current_user"):
 self._current_user = self.get_current_user()
 return self._current_user

 @current_user.setter
 def current_user(self, value):
 self._current_user = value

[docs] def get_current_user(self):
 """Override to determine the current user from, e.g., a cookie.

 This method may not be a coroutine.
 """
 return None

[docs] def get_login_url(self):
 """Override to customize the login URL based on the request.

 By default, we use the ``login_url`` application setting.
 """
 self.require_setting("login_url", "@tornado.web.authenticated")
 return self.application.settings["login_url"]

[docs] def get_template_path(self):
 """Override to customize template path for each handler.

 By default, we use the ``template_path`` application setting.
 Return None to load templates relative to the calling file.
 """
 return self.application.settings.get("template_path")

 @property
 def xsrf_token(self):
 """The XSRF-prevention token for the current user/session.

 To prevent cross-site request forgery, we set an '_xsrf' cookie
 and include the same '_xsrf' value as an argument with all POST
 requests. If the two do not match, we reject the form submission
 as a potential forgery.

 See http://en.wikipedia.org/wiki/Cross-site_request_forgery

 .. versionchanged:: 3.2.2
 The xsrf token will now be have a random mask applied in every
 request, which makes it safe to include the token in pages
 that are compressed. See http://breachattack.com for more
 information on the issue fixed by this change. Old (version 1)
 cookies will be converted to version 2 when this method is called
 unless the ``xsrf_cookie_version`` `Application` setting is
 set to 1.

 .. versionchanged:: 4.3
 The ``xsrf_cookie_kwargs`` `Application` setting may be
 used to supply additional cookie options (which will be
 passed directly to `set_cookie`). For example,
 ``xsrf_cookie_kwargs=dict(httponly=True, secure=True)``
 will set the ``secure`` and ``httponly`` flags on the
 ``_xsrf`` cookie.
 """
 if not hasattr(self, "_xsrf_token"):
 version, token, timestamp = self._get_raw_xsrf_token()
 output_version = self.settings.get("xsrf_cookie_version", 2)
 cookie_kwargs = self.settings.get("xsrf_cookie_kwargs", {})
 if output_version == 1:
 self._xsrf_token = binascii.b2a_hex(token)
 elif output_version == 2:
 mask = os.urandom(4)
 self._xsrf_token = b"|".join([
 b"2",
 binascii.b2a_hex(mask),
 binascii.b2a_hex(_websocket_mask(mask, token)),
 utf8(str(int(timestamp)))])
 else:
 raise ValueError("unknown xsrf cookie version %d",
 output_version)
 if version is None:
 expires_days = 30 if self.current_user else None
 self.set_cookie("_xsrf", self._xsrf_token,
 expires_days=expires_days,
 **cookie_kwargs)
 return self._xsrf_token

 def _get_raw_xsrf_token(self):
 """Read or generate the xsrf token in its raw form.

 The raw_xsrf_token is a tuple containing:

 * version: the version of the cookie from which this token was read,
 or None if we generated a new token in this request.
 * token: the raw token data; random (non-ascii) bytes.
 * timestamp: the time this token was generated (will not be accurate
 for version 1 cookies)
 """
 if not hasattr(self, '_raw_xsrf_token'):
 cookie = self.get_cookie("_xsrf")
 if cookie:
 version, token, timestamp = self._decode_xsrf_token(cookie)
 else:
 version, token, timestamp = None, None, None
 if token is None:
 version = None
 token = os.urandom(16)
 timestamp = time.time()
 self._raw_xsrf_token = (version, token, timestamp)
 return self._raw_xsrf_token

 def _decode_xsrf_token(self, cookie):
 """Convert a cookie string into a the tuple form returned by
 _get_raw_xsrf_token.
 """

 try:
 m = _signed_value_version_re.match(utf8(cookie))

 if m:
 version = int(m.group(1))
 if version == 2:
 _, mask, masked_token, timestamp = cookie.split("|")

 mask = binascii.a2b_hex(utf8(mask))
 token = _websocket_mask(
 mask, binascii.a2b_hex(utf8(masked_token)))
 timestamp = int(timestamp)
 return version, token, timestamp
 else:
 # Treat unknown versions as not present instead of failing.
 raise Exception("Unknown xsrf cookie version")
 else:
 version = 1
 try:
 token = binascii.a2b_hex(utf8(cookie))
 except (binascii.Error, TypeError):
 token = utf8(cookie)
 # We don't have a usable timestamp in older versions.
 timestamp = int(time.time())
 return (version, token, timestamp)
 except Exception:
 # Catch exceptions and return nothing instead of failing.
 gen_log.debug("Uncaught exception in _decode_xsrf_token",
 exc_info=True)
 return None, None, None

[docs] def check_xsrf_cookie(self):
 """Verifies that the ``_xsrf`` cookie matches the ``_xsrf`` argument.

 To prevent cross-site request forgery, we set an ``_xsrf``
 cookie and include the same value as a non-cookie
 field with all ``POST`` requests. If the two do not match, we
 reject the form submission as a potential forgery.

 The ``_xsrf`` value may be set as either a form field named ``_xsrf``
 or in a custom HTTP header named ``X-XSRFToken`` or ``X-CSRFToken``
 (the latter is accepted for compatibility with Django).

 See http://en.wikipedia.org/wiki/Cross-site_request_forgery

 Prior to release 1.1.1, this check was ignored if the HTTP header
 ``X-Requested-With: XMLHTTPRequest`` was present. This exception
 has been shown to be insecure and has been removed. For more
 information please see
 http://www.djangoproject.com/weblog/2011/feb/08/security/
 http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails

 .. versionchanged:: 3.2.2
 Added support for cookie version 2. Both versions 1 and 2 are
 supported.
 """
 token = (self.get_argument("_xsrf", None) or
 self.request.headers.get("X-Xsrftoken") or
 self.request.headers.get("X-Csrftoken"))
 if not token:
 raise HTTPError(403, "'_xsrf' argument missing from POST")
 _, token, _ = self._decode_xsrf_token(token)
 _, expected_token, _ = self._get_raw_xsrf_token()
 if not token:
 raise HTTPError(403, "'_xsrf' argument has invalid format")
 if not _time_independent_equals(utf8(token), utf8(expected_token)):
 raise HTTPError(403, "XSRF cookie does not match POST argument")

[docs] def xsrf_form_html(self):
 """An HTML ``<input/>`` element to be included with all POST forms.

 It defines the ``_xsrf`` input value, which we check on all POST
 requests to prevent cross-site request forgery. If you have set
 the ``xsrf_cookies`` application setting, you must include this
 HTML within all of your HTML forms.

 In a template, this method should be called with ``{% module
 xsrf_form_html() %}``

 See `check_xsrf_cookie()` above for more information.
 """
 return '<input type="hidden" name="_xsrf" value="' + \
 escape.xhtml_escape(self.xsrf_token) + '"/>'

[docs] def static_url(self, path, include_host=None, **kwargs):
 """Returns a static URL for the given relative static file path.

 This method requires you set the ``static_path`` setting in your
 application (which specifies the root directory of your static
 files).

 This method returns a versioned url (by default appending
 ``?v=<signature>``), which allows the static files to be
 cached indefinitely. This can be disabled by passing
 ``include_version=False`` (in the default implementation;
 other static file implementations are not required to support
 this, but they may support other options).

 By default this method returns URLs relative to the current
 host, but if ``include_host`` is true the URL returned will be
 absolute. If this handler has an ``include_host`` attribute,
 that value will be used as the default for all `static_url`
 calls that do not pass ``include_host`` as a keyword argument.

 """
 self.require_setting("static_path", "static_url")
 get_url = self.settings.get("static_handler_class",
 StaticFileHandler).make_static_url

 if include_host is None:
 include_host = getattr(self, "include_host", False)

 if include_host:
 base = self.request.protocol + "://" + self.request.host
 else:
 base = ""

 return base + get_url(self.settings, path, **kwargs)

[docs] def require_setting(self, name, feature="this feature"):
 """Raises an exception if the given app setting is not defined."""
 if not self.application.settings.get(name):
 raise Exception("You must define the '%s' setting in your "
 "application to use %s" % (name, feature))

[docs] def reverse_url(self, name, *args):
 """Alias for `Application.reverse_url`."""
 return self.application.reverse_url(name, *args)

[docs] def compute_etag(self):
 """Computes the etag header to be used for this request.

 By default uses a hash of the content written so far.

 May be overridden to provide custom etag implementations,
 or may return None to disable tornado's default etag support.
 """
 hasher = hashlib.sha1()
 for part in self._write_buffer:
 hasher.update(part)
 return '"%s"' % hasher.hexdigest()

[docs] def set_etag_header(self):
 """Sets the response's Etag header using ``self.compute_etag()``.

 Note: no header will be set if ``compute_etag()`` returns ``None``.

 This method is called automatically when the request is finished.
 """
 etag = self.compute_etag()
 if etag is not None:
 self.set_header("Etag", etag)

[docs] def check_etag_header(self):
 """Checks the ``Etag`` header against requests's ``If-None-Match``.

 Returns ``True`` if the request's Etag matches and a 304 should be
 returned. For example::

 self.set_etag_header()
 if self.check_etag_header():
 self.set_status(304)
 return

 This method is called automatically when the request is finished,
 but may be called earlier for applications that override
 `compute_etag` and want to do an early check for ``If-None-Match``
 before completing the request. The ``Etag`` header should be set
 (perhaps with `set_etag_header`) before calling this method.
 """
 computed_etag = utf8(self._headers.get("Etag", ""))
 # Find all weak and strong etag values from If-None-Match header
 # because RFC 7232 allows multiple etag values in a single header.
 etags = re.findall(
 br'*|(?:W/)?"[^"]*"',
 utf8(self.request.headers.get("If-None-Match", ""))
)
 if not computed_etag or not etags:
 return False

 match = False
 if etags[0] == b'*':
 match = True
 else:
 # Use a weak comparison when comparing entity-tags.
 def val(x):
 return x[2:] if x.startswith(b'W/') else x

 for etag in etags:
 if val(etag) == val(computed_etag):
 match = True
 break
 return match

 def _stack_context_handle_exception(self, type, value, traceback):
 try:
 # For historical reasons _handle_request_exception only takes
 # the exception value instead of the full triple,
 # so re-raise the exception to ensure that it's in
 # sys.exc_info()
 raise_exc_info((type, value, traceback))
 except Exception:
 self._handle_request_exception(value)
 return True

 @gen.coroutine
 def _execute(self, transforms, *args, **kwargs):
 """Executes this request with the given output transforms."""
 self._transforms = transforms
 try:
 if self.request.method not in self.SUPPORTED_METHODS:
 raise HTTPError(405)
 self.path_args = [self.decode_argument(arg) for arg in args]
 self.path_kwargs = dict((k, self.decode_argument(v, name=k))
 for (k, v) in kwargs.items())
 # If XSRF cookies are turned on, reject form submissions without
 # the proper cookie
 if self.request.method not in ("GET", "HEAD", "OPTIONS") and \
 self.application.settings.get("xsrf_cookies"):
 self.check_xsrf_cookie()

 result = self.prepare()
 if result is not None:
 result = yield result
 if self._prepared_future is not None:
 # Tell the Application we've finished with prepare()
 # and are ready for the body to arrive.
 self._prepared_future.set_result(None)
 if self._finished:
 return

 if _has_stream_request_body(self.__class__):
 # In streaming mode request.body is a Future that signals
 # the body has been completely received. The Future has no
 # result; the data has been passed to self.data_received
 # instead.
 try:
 yield self.request.body
 except iostream.StreamClosedError:
 return

 method = getattr(self, self.request.method.lower())
 result = method(*self.path_args, **self.path_kwargs)
 if result is not None:
 result = yield result
 if self._auto_finish and not self._finished:
 self.finish()
 except Exception as e:
 try:
 self._handle_request_exception(e)
 except Exception:
 app_log.error("Exception in exception handler", exc_info=True)
 if (self._prepared_future is not None and
 not self._prepared_future.done()):
 # In case we failed before setting _prepared_future, do it
 # now (to unblock the HTTP server). Note that this is not
 # in a finally block to avoid GC issues prior to Python 3.4.
 self._prepared_future.set_result(None)

[docs] def data_received(self, chunk):
 """Implement this method to handle streamed request data.

 Requires the `.stream_request_body` decorator.
 """
 raise NotImplementedError()

 def _log(self):
 """Logs the current request.

 Sort of deprecated since this functionality was moved to the
 Application, but left in place for the benefit of existing apps
 that have overridden this method.
 """
 self.application.log_request(self)

 def _request_summary(self):
 return "%s %s (%s)" % (self.request.method, self.request.uri,
 self.request.remote_ip)

 def _handle_request_exception(self, e):
 if isinstance(e, Finish):
 # Not an error; just finish the request without logging.
 if not self._finished:
 self.finish(*e.args)
 return
 try:
 self.log_exception(*sys.exc_info())
 except Exception:
 # An error here should still get a best-effort send_error()
 # to avoid leaking the connection.
 app_log.error("Error in exception logger", exc_info=True)
 if self._finished:
 # Extra errors after the request has been finished should
 # be logged, but there is no reason to continue to try and
 # send a response.
 return
 if isinstance(e, HTTPError):
 if e.status_code not in httputil.responses and not e.reason:
 gen_log.error("Bad HTTP status code: %d", e.status_code)
 self.send_error(500, exc_info=sys.exc_info())
 else:
 self.send_error(e.status_code, exc_info=sys.exc_info())
 else:
 self.send_error(500, exc_info=sys.exc_info())

[docs] def log_exception(self, typ, value, tb):
 """Override to customize logging of uncaught exceptions.

 By default logs instances of `HTTPError` as warnings without
 stack traces (on the ``tornado.general`` logger), and all
 other exceptions as errors with stack traces (on the
 ``tornado.application`` logger).

 .. versionadded:: 3.1
 """
 if isinstance(value, HTTPError):
 if value.log_message:
 format = "%d %s: " + value.log_message
 args = ([value.status_code, self._request_summary()] +
 list(value.args))
 gen_log.warning(format, *args)
 else:
 app_log.error("Uncaught exception %s\n%r", self._request_summary(),
 self.request, exc_info=(typ, value, tb))

 def _ui_module(self, name, module):
 def render(*args, **kwargs):
 if not hasattr(self, "_active_modules"):
 self._active_modules = {}
 if name not in self._active_modules:
 self._active_modules[name] = module(self)
 rendered = self._active_modules[name].render(*args, **kwargs)
 return rendered
 return render

 def _ui_method(self, method):
 return lambda *args, **kwargs: method(self, *args, **kwargs)

 def _clear_headers_for_304(self):
 # 304 responses should not contain entity headers (defined in
 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7.1)
 # not explicitly allowed by
 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
 headers = ["Allow", "Content-Encoding", "Content-Language",
 "Content-Length", "Content-MD5", "Content-Range",
 "Content-Type", "Last-Modified"]
 for h in headers:
 self.clear_header(h)

[docs]def asynchronous(method):
 """Wrap request handler methods with this if they are asynchronous.

 This decorator is for callback-style asynchronous methods; for
 coroutines, use the ``@gen.coroutine`` decorator without
 ``@asynchronous``. (It is legal for legacy reasons to use the two
 decorators together provided ``@asynchronous`` is first, but
 ``@asynchronous`` will be ignored in this case)

 This decorator should only be applied to the :ref:`HTTP verb
 methods <verbs>`; its behavior is undefined for any other method.
 This decorator does not *make* a method asynchronous; it tells
 the framework that the method *is* asynchronous. For this decorator
 to be useful the method must (at least sometimes) do something
 asynchronous.

 If this decorator is given, the response is not finished when the
 method returns. It is up to the request handler to call
 `self.finish() <RequestHandler.finish>` to finish the HTTP
 request. Without this decorator, the request is automatically
 finished when the ``get()`` or ``post()`` method returns. Example:

 .. testcode::

 class MyRequestHandler(RequestHandler):
 @asynchronous
 def get(self):
 http = httpclient.AsyncHTTPClient()
 http.fetch("http://friendfeed.com/", self._on_download)

 def _on_download(self, response):
 self.write("Downloaded!")
 self.finish()

 .. testoutput::
 :hide:

 .. versionchanged:: 3.1
 The ability to use ``@gen.coroutine`` without ``@asynchronous``.

 .. versionchanged:: 4.3 Returning anything but ``None`` or a
 yieldable object from a method decorated with ``@asynchronous``
 is an error. Such return values were previously ignored silently.
 """
 # Delay the IOLoop import because it's not available on app engine.
 from tornado.ioloop import IOLoop

 @functools.wraps(method)
 def wrapper(self, *args, **kwargs):
 self._auto_finish = False
 with stack_context.ExceptionStackContext(
 self._stack_context_handle_exception):
 result = method(self, *args, **kwargs)
 if result is not None:
 result = gen.convert_yielded(result)

 # If @asynchronous is used with @gen.coroutine, (but
 # not @gen.engine), we can automatically finish the
 # request when the future resolves. Additionally,
 # the Future will swallow any exceptions so we need
 # to throw them back out to the stack context to finish
 # the request.
 def future_complete(f):
 f.result()
 if not self._finished:
 self.finish()
 IOLoop.current().add_future(result, future_complete)
 # Once we have done this, hide the Future from our
 # caller (i.e. RequestHandler._when_complete), which
 # would otherwise set up its own callback and
 # exception handler (resulting in exceptions being
 # logged twice).
 return None
 return result
 return wrapper

[docs]def stream_request_body(cls):
 """Apply to `RequestHandler` subclasses to enable streaming body support.

 This decorator implies the following changes:

 * `.HTTPServerRequest.body` is undefined, and body arguments will not
 be included in `RequestHandler.get_argument`.
 * `RequestHandler.prepare` is called when the request headers have been
 read instead of after the entire body has been read.
 * The subclass must define a method ``data_received(self, data):``, which
 will be called zero or more times as data is available. Note that
 if the request has an empty body, ``data_received`` may not be called.
 * ``prepare`` and ``data_received`` may return Futures (such as via
 ``@gen.coroutine``, in which case the next method will not be called
 until those futures have completed.
 * The regular HTTP method (``post``, ``put``, etc) will be called after
 the entire body has been read.

 There is a subtle interaction between ``data_received`` and asynchronous
 ``prepare``: The first call to ``data_received`` may occur at any point
 after the call to ``prepare`` has returned *or yielded*.
 """
 if not issubclass(cls, RequestHandler):
 raise TypeError("expected subclass of RequestHandler, got %r", cls)
 cls._stream_request_body = True
 return cls

def _has_stream_request_body(cls):
 if not issubclass(cls, RequestHandler):
 raise TypeError("expected subclass of RequestHandler, got %r", cls)
 return getattr(cls, '_stream_request_body', False)

[docs]def removeslash(method):
 """Use this decorator to remove trailing slashes from the request path.

 For example, a request to ``/foo/`` would redirect to ``/foo`` with this
 decorator. Your request handler mapping should use a regular expression
 like ``r'/foo/*'`` in conjunction with using the decorator.
 """
 @functools.wraps(method)
 def wrapper(self, *args, **kwargs):
 if self.request.path.endswith("/"):
 if self.request.method in ("GET", "HEAD"):
 uri = self.request.path.rstrip("/")
 if uri: # don't try to redirect '/' to ''
 if self.request.query:
 uri += "?" + self.request.query
 self.redirect(uri, permanent=True)
 return
 else:
 raise HTTPError(404)
 return method(self, *args, **kwargs)
 return wrapper

[docs]def addslash(method):
 """Use this decorator to add a missing trailing slash to the request path.

 For example, a request to ``/foo`` would redirect to ``/foo/`` with this
 decorator. Your request handler mapping should use a regular expression
 like ``r'/foo/?'`` in conjunction with using the decorator.
 """
 @functools.wraps(method)
 def wrapper(self, *args, **kwargs):
 if not self.request.path.endswith("/"):
 if self.request.method in ("GET", "HEAD"):
 uri = self.request.path + "/"
 if self.request.query:
 uri += "?" + self.request.query
 self.redirect(uri, permanent=True)
 return
 raise HTTPError(404)
 return method(self, *args, **kwargs)
 return wrapper

[docs]class Application(httputil.HTTPServerConnectionDelegate):
 """A collection of request handlers that make up a web application.

 Instances of this class are callable and can be passed directly to
 HTTPServer to serve the application::

 application = web.Application([
 (r"/", MainPageHandler),
])
 http_server = httpserver.HTTPServer(application)
 http_server.listen(8080)
 ioloop.IOLoop.current().start()

 The constructor for this class takes in a list of `URLSpec` objects
 or (regexp, request_class) tuples. When we receive requests, we
 iterate over the list in order and instantiate an instance of the
 first request class whose regexp matches the request path.
 The request class can be specified as either a class object or a
 (fully-qualified) name.

 Each tuple can contain additional elements, which correspond to the
 arguments to the `URLSpec` constructor. (Prior to Tornado 3.2,
 only tuples of two or three elements were allowed).

 A dictionary may be passed as the third element of the tuple,
 which will be used as keyword arguments to the handler's
 constructor and `~RequestHandler.initialize` method. This pattern
 is used for the `StaticFileHandler` in this example (note that a
 `StaticFileHandler` can be installed automatically with the
 static_path setting described below)::

 application = web.Application([
 (r"/static/(.*)", web.StaticFileHandler, {"path": "/var/www"}),
])

 We support virtual hosts with the `add_handlers` method, which takes in
 a host regular expression as the first argument::

 application.add_handlers(r"www\.myhost\.com", [
 (r"/article/([0-9]+)", ArticleHandler),
])

 You can serve static files by sending the ``static_path`` setting
 as a keyword argument. We will serve those files from the
 ``/static/`` URI (this is configurable with the
 ``static_url_prefix`` setting), and we will serve ``/favicon.ico``
 and ``/robots.txt`` from the same directory. A custom subclass of
 `StaticFileHandler` can be specified with the
 ``static_handler_class`` setting.

 """
 def __init__(self, handlers=None, default_host="", transforms=None,
 **settings):
 if transforms is None:
 self.transforms = []
 if settings.get("compress_response") or settings.get("gzip"):
 self.transforms.append(GZipContentEncoding)
 else:
 self.transforms = transforms
 self.handlers = []
 self.named_handlers = {}
 self.default_host = default_host
 self.settings = settings
 self.ui_modules = {'linkify': _linkify,
 'xsrf_form_html': _xsrf_form_html,
 'Template': TemplateModule,
 }
 self.ui_methods = {}
 self._load_ui_modules(settings.get("ui_modules", {}))
 self._load_ui_methods(settings.get("ui_methods", {}))
 if self.settings.get("static_path"):
 path = self.settings["static_path"]
 handlers = list(handlers or [])
 static_url_prefix = settings.get("static_url_prefix",
 "/static/")
 static_handler_class = settings.get("static_handler_class",
 StaticFileHandler)
 static_handler_args = settings.get("static_handler_args", {})
 static_handler_args['path'] = path
 for pattern in [re.escape(static_url_prefix) + r"(.*)",
 r"/(favicon\.ico)", r"/(robots\.txt)"]:
 handlers.insert(0, (pattern, static_handler_class,
 static_handler_args))
 if handlers:
 self.add_handlers(".*$", handlers)

 if self.settings.get('debug'):
 self.settings.setdefault('autoreload', True)
 self.settings.setdefault('compiled_template_cache', False)
 self.settings.setdefault('static_hash_cache', False)
 self.settings.setdefault('serve_traceback', True)

 # Automatically reload modified modules
 if self.settings.get('autoreload'):
 from tornado import autoreload
 autoreload.start()

[docs] def listen(self, port, address="", **kwargs):
 """Starts an HTTP server for this application on the given port.

 This is a convenience alias for creating an `.HTTPServer`
 object and calling its listen method. Keyword arguments not
 supported by `HTTPServer.listen <.TCPServer.listen>` are passed to the
 `.HTTPServer` constructor. For advanced uses
 (e.g. multi-process mode), do not use this method; create an
 `.HTTPServer` and call its
 `.TCPServer.bind`/`.TCPServer.start` methods directly.

 Note that after calling this method you still need to call
 ``IOLoop.current().start()`` to start the server.

 Returns the `.HTTPServer` object.

 .. versionchanged:: 4.3
 Now returns the `.HTTPServer` object.
 """
 # import is here rather than top level because HTTPServer
 # is not importable on appengine
 from tornado.httpserver import HTTPServer
 server = HTTPServer(self, **kwargs)
 server.listen(port, address)
 return server

[docs] def add_handlers(self, host_pattern, host_handlers):
 """Appends the given handlers to our handler list.

 Host patterns are processed sequentially in the order they were
 added. All matching patterns will be considered.
 """
 if not host_pattern.endswith("$"):
 host_pattern += "$"
 handlers = []
 # The handlers with the wildcard host_pattern are a special
 # case - they're added in the constructor but should have lower
 # precedence than the more-precise handlers added later.
 # If a wildcard handler group exists, it should always be last
 # in the list, so insert new groups just before it.
 if self.handlers and self.handlers[-1][0].pattern == '.*$':
 self.handlers.insert(-1, (re.compile(host_pattern), handlers))
 else:
 self.handlers.append((re.compile(host_pattern), handlers))

 for spec in host_handlers:
 if isinstance(spec, (tuple, list)):
 assert len(spec) in (2, 3, 4)
 spec = URLSpec(*spec)
 handlers.append(spec)
 if spec.name:
 if spec.name in self.named_handlers:
 app_log.warning(
 "Multiple handlers named %s; replacing previous value",
 spec.name)
 self.named_handlers[spec.name] = spec

 def add_transform(self, transform_class):
 self.transforms.append(transform_class)

 def _get_host_handlers(self, request):
 host = split_host_and_port(request.host.lower())[0]
 matches = []
 for pattern, handlers in self.handlers:
 if pattern.match(host):
 matches.extend(handlers)
 # Look for default host if not behind load balancer (for debugging)
 if not matches and "X-Real-Ip" not in request.headers:
 for pattern, handlers in self.handlers:
 if pattern.match(self.default_host):
 matches.extend(handlers)
 return matches or None

 def _load_ui_methods(self, methods):
 if isinstance(methods, types.ModuleType):
 self._load_ui_methods(dict((n, getattr(methods, n))
 for n in dir(methods)))
 elif isinstance(methods, list):
 for m in methods:
 self._load_ui_methods(m)
 else:
 for name, fn in methods.items():
 if not name.startswith("_") and hasattr(fn, "__call__") \
 and name[0].lower() == name[0]:
 self.ui_methods[name] = fn

 def _load_ui_modules(self, modules):
 if isinstance(modules, types.ModuleType):
 self._load_ui_modules(dict((n, getattr(modules, n))
 for n in dir(modules)))
 elif isinstance(modules, list):
 for m in modules:
 self._load_ui_modules(m)
 else:
 assert isinstance(modules, dict)
 for name, cls in modules.items():
 try:
 if issubclass(cls, UIModule):
 self.ui_modules[name] = cls
 except TypeError:
 pass

 def start_request(self, server_conn, request_conn):
 # Modern HTTPServer interface
 return _RequestDispatcher(self, request_conn)

 def __call__(self, request):
 # Legacy HTTPServer interface
 dispatcher = _RequestDispatcher(self, None)
 dispatcher.set_request(request)
 return dispatcher.execute()

[docs] def reverse_url(self, name, *args):
 """Returns a URL path for handler named ``name``

 The handler must be added to the application as a named `URLSpec`.

 Args will be substituted for capturing groups in the `URLSpec` regex.
 They will be converted to strings if necessary, encoded as utf8,
 and url-escaped.
 """
 if name in self.named_handlers:
 return self.named_handlers[name].reverse(*args)
 raise KeyError("%s not found in named urls" % name)

[docs] def log_request(self, handler):
 """Writes a completed HTTP request to the logs.

 By default writes to the python root logger. To change
 this behavior either subclass Application and override this method,
 or pass a function in the application settings dictionary as
 ``log_function``.
 """
 if "log_function" in self.settings:
 self.settings["log_function"](handler)
 return
 if handler.get_status() < 400:
 log_method = access_log.info
 elif handler.get_status() < 500:
 log_method = access_log.warning
 else:
 log_method = access_log.error
 request_time = 1000.0 * handler.request.request_time()
 log_method("%d %s %.2fms", handler.get_status(),
 handler._request_summary(), request_time)

class _RequestDispatcher(httputil.HTTPMessageDelegate):
 def __init__(self, application, connection):
 self.application = application
 self.connection = connection
 self.request = None
 self.chunks = []
 self.handler_class = None
 self.handler_kwargs = None
 self.path_args = []
 self.path_kwargs = {}

 def headers_received(self, start_line, headers):
 self.set_request(httputil.HTTPServerRequest(
 connection=self.connection, start_line=start_line,
 headers=headers))
 if self.stream_request_body:
 self.request.body = Future()
 return self.execute()

 def set_request(self, request):
 self.request = request
 self._find_handler()
 self.stream_request_body = _has_stream_request_body(self.handler_class)

 def _find_handler(self):
 # Identify the handler to use as soon as we have the request.
 # Save url path arguments for later.
 app = self.application
 handlers = app._get_host_handlers(self.request)
 if not handlers:
 self.handler_class = RedirectHandler
 self.handler_kwargs = dict(url="%s://%s/"
 % (self.request.protocol,
 app.default_host))
 return
 for spec in handlers:
 match = spec.regex.match(self.request.path)
 if match:
 self.handler_class = spec.handler_class
 self.handler_kwargs = spec.kwargs
 if spec.regex.groups:
 # Pass matched groups to the handler. Since
 # match.groups() includes both named and
 # unnamed groups, we want to use either groups
 # or groupdict but not both.
 if spec.regex.groupindex:
 self.path_kwargs = dict(
 (str(k), _unquote_or_none(v))
 for (k, v) in match.groupdict().items())
 else:
 self.path_args = [_unquote_or_none(s)
 for s in match.groups()]
 return
 if app.settings.get('default_handler_class'):
 self.handler_class = app.settings['default_handler_class']
 self.handler_kwargs = app.settings.get(
 'default_handler_args', {})
 else:
 self.handler_class = ErrorHandler
 self.handler_kwargs = dict(status_code=404)

 def data_received(self, data):
 if self.stream_request_body:
 return self.handler.data_received(data)
 else:
 self.chunks.append(data)

 def finish(self):
 if self.stream_request_body:
 self.request.body.set_result(None)
 else:
 self.request.body = b''.join(self.chunks)
 self.request._parse_body()
 self.execute()

 def on_connection_close(self):
 if self.stream_request_body:
 self.handler.on_connection_close()
 else:
 self.chunks = None

 def execute(self):
 # If template cache is disabled (usually in the debug mode),
 # re-compile templates and reload static files on every
 # request so you don't need to restart to see changes
 if not self.application.settings.get("compiled_template_cache", True):
 with RequestHandler._template_loader_lock:
 for loader in RequestHandler._template_loaders.values():
 loader.reset()
 if not self.application.settings.get('static_hash_cache', True):
 StaticFileHandler.reset()

 self.handler = self.handler_class(self.application, self.request,
 **self.handler_kwargs)
 transforms = [t(self.request) for t in self.application.transforms]

 if self.stream_request_body:
 self.handler._prepared_future = Future()
 # Note that if an exception escapes handler._execute it will be
 # trapped in the Future it returns (which we are ignoring here,
 # leaving it to be logged when the Future is GC'd).
 # However, that shouldn't happen because _execute has a blanket
 # except handler, and we cannot easily access the IOLoop here to
 # call add_future (because of the requirement to remain compatible
 # with WSGI)
 self.handler._execute(transforms, *self.path_args,
 **self.path_kwargs)
 # If we are streaming the request body, then execute() is finished
 # when the handler has prepared to receive the body. If not,
 # it doesn't matter when execute() finishes (so we return None)
 return self.handler._prepared_future

[docs]class HTTPError(Exception):
 """An exception that will turn into an HTTP error response.

 Raising an `HTTPError` is a convenient alternative to calling
 `RequestHandler.send_error` since it automatically ends the
 current function.

 To customize the response sent with an `HTTPError`, override
 `RequestHandler.write_error`.

 :arg int status_code: HTTP status code. Must be listed in
 `httplib.responses <http.client.responses>` unless the ``reason``
 keyword argument is given.
 :arg string log_message: Message to be written to the log for this error
 (will not be shown to the user unless the `Application` is in debug
 mode). May contain ``%s``-style placeholders, which will be filled
 in with remaining positional parameters.
 :arg string reason: Keyword-only argument. The HTTP "reason" phrase
 to pass in the status line along with ``status_code``. Normally
 determined automatically from ``status_code``, but can be used
 to use a non-standard numeric code.
 """
 def __init__(self, status_code=500, log_message=None, *args, **kwargs):
 self.status_code = status_code
 self.log_message = log_message
 self.args = args
 self.reason = kwargs.get('reason', None)
 if log_message and not args:
 self.log_message = log_message.replace('%', '%%')

 def __str__(self):
 message = "HTTP %d: %s" % (
 self.status_code,
 self.reason or httputil.responses.get(self.status_code, 'Unknown'))
 if self.log_message:
 return message + " (" + (self.log_message % self.args) + ")"
 else:
 return message

[docs]class Finish(Exception):
 """An exception that ends the request without producing an error response.

 When `Finish` is raised in a `RequestHandler`, the request will
 end (calling `RequestHandler.finish` if it hasn't already been
 called), but the error-handling methods (including
 `RequestHandler.write_error`) will not be called.

 If `Finish()` was created with no arguments, the pending response
 will be sent as-is. If `Finish()` was given an argument, that
 argument will be passed to `RequestHandler.finish()`.

 This can be a more convenient way to implement custom error pages
 than overriding ``write_error`` (especially in library code)::

 if self.current_user is None:
 self.set_status(401)
 self.set_header('WWW-Authenticate', 'Basic realm="something"')
 raise Finish()

 .. versionchanged:: 4.3
 Arguments passed to ``Finish()`` will be passed on to
 `RequestHandler.finish`.
 """
 pass

[docs]class MissingArgumentError(HTTPError):
 """Exception raised by `RequestHandler.get_argument`.

 This is a subclass of `HTTPError`, so if it is uncaught a 400 response
 code will be used instead of 500 (and a stack trace will not be logged).

 .. versionadded:: 3.1
 """
 def __init__(self, arg_name):
 super(MissingArgumentError, self).__init__(
 400, 'Missing argument %s' % arg_name)
 self.arg_name = arg_name

[docs]class ErrorHandler(RequestHandler):
 """Generates an error response with ``status_code`` for all requests."""
 def initialize(self, status_code):
 self.set_status(status_code)

 def prepare(self):
 raise HTTPError(self._status_code)

 def check_xsrf_cookie(self):
 # POSTs to an ErrorHandler don't actually have side effects,
 # so we don't need to check the xsrf token. This allows POSTs
 # to the wrong url to return a 404 instead of 403.
 pass

[docs]class RedirectHandler(RequestHandler):
 """Redirects the client to the given URL for all GET requests.

 You should provide the keyword argument ``url`` to the handler, e.g.::

 application = web.Application([
 (r"/oldpath", web.RedirectHandler, {"url": "/newpath"}),
])
 """
 def initialize(self, url, permanent=True):
 self._url = url
 self._permanent = permanent

 def get(self):
 self.redirect(self._url, permanent=self._permanent)

[docs]class StaticFileHandler(RequestHandler):
 """A simple handler that can serve static content from a directory.

 A `StaticFileHandler` is configured automatically if you pass the
 ``static_path`` keyword argument to `Application`. This handler
 can be customized with the ``static_url_prefix``, ``static_handler_class``,
 and ``static_handler_args`` settings.

 To map an additional path to this handler for a static data directory
 you would add a line to your application like::

 application = web.Application([
 (r"/content/(.*)", web.StaticFileHandler, {"path": "/var/www"}),
])

 The handler constructor requires a ``path`` argument, which specifies the
 local root directory of the content to be served.

 Note that a capture group in the regex is required to parse the value for
 the ``path`` argument to the get() method (different than the constructor
 argument above); see `URLSpec` for details.

 To serve a file like ``index.html`` automatically when a directory is
 requested, set ``static_handler_args=dict(default_filename="index.html")``
 in your application settings, or add ``default_filename`` as an initializer
 argument for your ``StaticFileHandler``.

 To maximize the effectiveness of browser caching, this class supports
 versioned urls (by default using the argument ``?v=``). If a version
 is given, we instruct the browser to cache this file indefinitely.
 `make_static_url` (also available as `RequestHandler.static_url`) can
 be used to construct a versioned url.

 This handler is intended primarily for use in development and light-duty
 file serving; for heavy traffic it will be more efficient to use
 a dedicated static file server (such as nginx or Apache). We support
 the HTTP ``Accept-Ranges`` mechanism to return partial content (because
 some browsers require this functionality to be present to seek in
 HTML5 audio or video).

 Subclassing notes

 This class is designed to be extensible by subclassing, but because
 of the way static urls are generated with class methods rather than
 instance methods, the inheritance patterns are somewhat unusual.
 Be sure to use the ``@classmethod`` decorator when overriding a
 class method. Instance methods may use the attributes ``self.path``
 ``self.absolute_path``, and ``self.modified``.

 Subclasses should only override methods discussed in this section;
 overriding other methods is error-prone. Overriding
 ``StaticFileHandler.get`` is particularly problematic due to the
 tight coupling with ``compute_etag`` and other methods.

 To change the way static urls are generated (e.g. to match the behavior
 of another server or CDN), override `make_static_url`, `parse_url_path`,
 `get_cache_time`, and/or `get_version`.

 To replace all interaction with the filesystem (e.g. to serve
 static content from a database), override `get_content`,
 `get_content_size`, `get_modified_time`, `get_absolute_path`, and
 `validate_absolute_path`.

 .. versionchanged:: 3.1
 Many of the methods for subclasses were added in Tornado 3.1.
 """
 CACHE_MAX_AGE = 86400 * 365 * 10 # 10 years

 _static_hashes = {} # type: typing.Dict
 _lock = threading.Lock() # protects _static_hashes

 def initialize(self, path, default_filename=None):
 self.root = path
 self.default_filename = default_filename

 @classmethod
 def reset(cls):
 with cls._lock:
 cls._static_hashes = {}

 def head(self, path):
 return self.get(path, include_body=False)

 @gen.coroutine
 def get(self, path, include_body=True):
 # Set up our path instance variables.
 self.path = self.parse_url_path(path)
 del path # make sure we don't refer to path instead of self.path again
 absolute_path = self.get_absolute_path(self.root, self.path)
 self.absolute_path = self.validate_absolute_path(
 self.root, absolute_path)
 if self.absolute_path is None:
 return

 self.modified = self.get_modified_time()
 self.set_headers()

 if self.should_return_304():
 self.set_status(304)
 return

 request_range = None
 range_header = self.request.headers.get("Range")
 if range_header:
 # As per RFC 2616 14.16, if an invalid Range header is specified,
 # the request will be treated as if the header didn't exist.
 request_range = httputil._parse_request_range(range_header)

 size = self.get_content_size()
 if request_range:
 start, end = request_range
 if (start is not None and start >= size) or end == 0:
 # As per RFC 2616 14.35.1, a range is not satisfiable only: if
 # the first requested byte is equal to or greater than the
 # content, or when a suffix with length 0 is specified
 self.set_status(416) # Range Not Satisfiable
 self.set_header("Content-Type", "text/plain")
 self.set_header("Content-Range", "bytes */%s" % (size,))
 return
 if start is not None and start < 0:
 start += size
 if end is not None and end > size:
 # Clients sometimes blindly use a large range to limit their
 # download size; cap the endpoint at the actual file size.
 end = size
 # Note: only return HTTP 206 if less than the entire range has been
 # requested. Not only is this semantically correct, but Chrome
 # refuses to play audio if it gets an HTTP 206 in response to
 # ``Range: bytes=0-``.
 if size != (end or size) - (start or 0):
 self.set_status(206) # Partial Content
 self.set_header("Content-Range",
 httputil._get_content_range(start, end, size))
 else:
 start = end = None

 if start is not None and end is not None:
 content_length = end - start
 elif end is not None:
 content_length = end
 elif start is not None:
 content_length = size - start
 else:
 content_length = size
 self.set_header("Content-Length", content_length)

 if include_body:
 content = self.get_content(self.absolute_path, start, end)
 if isinstance(content, bytes):
 content = [content]
 for chunk in content:
 try:
 self.write(chunk)
 yield self.flush()
 except iostream.StreamClosedError:
 return
 else:
 assert self.request.method == "HEAD"

[docs] def compute_etag(self):
 """Sets the ``Etag`` header based on static url version.

 This allows efficient ``If-None-Match`` checks against cached
 versions, and sends the correct ``Etag`` for a partial response
 (i.e. the same ``Etag`` as the full file).

 .. versionadded:: 3.1
 """
 version_hash = self._get_cached_version(self.absolute_path)
 if not version_hash:
 return None
 return '"%s"' % (version_hash,)

[docs] def set_headers(self):
 """Sets the content and caching headers on the response.

 .. versionadded:: 3.1
 """
 self.set_header("Accept-Ranges", "bytes")
 self.set_etag_header()

 if self.modified is not None:
 self.set_header("Last-Modified", self.modified)

 content_type = self.get_content_type()
 if content_type:
 self.set_header("Content-Type", content_type)

 cache_time = self.get_cache_time(self.path, self.modified,
 content_type)
 if cache_time > 0:
 self.set_header("Expires", datetime.datetime.utcnow() +
 datetime.timedelta(seconds=cache_time))
 self.set_header("Cache-Control", "max-age=" + str(cache_time))

 self.set_extra_headers(self.path)

[docs] def should_return_304(self):
 """Returns True if the headers indicate that we should return 304.

 .. versionadded:: 3.1
 """
 if self.check_etag_header():
 return True

 # Check the If-Modified-Since, and don't send the result if the
 # content has not been modified
 ims_value = self.request.headers.get("If-Modified-Since")
 if ims_value is not None:
 date_tuple = email.utils.parsedate(ims_value)
 if date_tuple is not None:
 if_since = datetime.datetime(*date_tuple[:6])
 if if_since >= self.modified:
 return True

 return False

 @classmethod
[docs] def get_absolute_path(cls, root, path):
 """Returns the absolute location of ``path`` relative to ``root``.

 ``root`` is the path configured for this `StaticFileHandler`
 (in most cases the ``static_path`` `Application` setting).

 This class method may be overridden in subclasses. By default
 it returns a filesystem path, but other strings may be used
 as long as they are unique and understood by the subclass's
 overridden `get_content`.

 .. versionadded:: 3.1
 """
 abspath = os.path.abspath(os.path.join(root, path))
 return abspath

[docs] def validate_absolute_path(self, root, absolute_path):
 """Validate and return the absolute path.

 ``root`` is the configured path for the `StaticFileHandler`,
 and ``path`` is the result of `get_absolute_path`

 This is an instance method called during request processing,
 so it may raise `HTTPError` or use methods like
 `RequestHandler.redirect` (return None after redirecting to
 halt further processing). This is where 404 errors for missing files
 are generated.

 This method may modify the path before returning it, but note that
 any such modifications will not be understood by `make_static_url`.

 In instance methods, this method's result is available as
 ``self.absolute_path``.

 .. versionadded:: 3.1
 """
 # os.path.abspath strips a trailing /.
 # We must add it back to `root` so that we only match files
 # in a directory named `root` instead of files starting with
 # that prefix.
 root = os.path.abspath(root)
 if not root.endswith(os.path.sep):
 # abspath always removes a trailing slash, except when
 # root is '/'. This is an unusual case, but several projects
 # have independently discovered this technique to disable
 # Tornado's path validation and (hopefully) do their own,
 # so we need to support it.
 root += os.path.sep
 # The trailing slash also needs to be temporarily added back
 # the requested path so a request to root/ will match.
 if not (absolute_path + os.path.sep).startswith(root):
 raise HTTPError(403, "%s is not in root static directory",
 self.path)
 if (os.path.isdir(absolute_path) and
 self.default_filename is not None):
 # need to look at the request.path here for when path is empty
 # but there is some prefix to the path that was already
 # trimmed by the routing
 if not self.request.path.endswith("/"):
 self.redirect(self.request.path + "/", permanent=True)
 return
 absolute_path = os.path.join(absolute_path, self.default_filename)
 if not os.path.exists(absolute_path):
 raise HTTPError(404)
 if not os.path.isfile(absolute_path):
 raise HTTPError(403, "%s is not a file", self.path)
 return absolute_path

 @classmethod
[docs] def get_content(cls, abspath, start=None, end=None):
 """Retrieve the content of the requested resource which is located
 at the given absolute path.

 This class method may be overridden by subclasses. Note that its
 signature is different from other overridable class methods
 (no ``settings`` argument); this is deliberate to ensure that
 ``abspath`` is able to stand on its own as a cache key.

 This method should either return a byte string or an iterator
 of byte strings. The latter is preferred for large files
 as it helps reduce memory fragmentation.

 .. versionadded:: 3.1
 """
 with open(abspath, "rb") as file:
 if start is not None:
 file.seek(start)
 if end is not None:
 remaining = end - (start or 0)
 else:
 remaining = None
 while True:
 chunk_size = 64 * 1024
 if remaining is not None and remaining < chunk_size:
 chunk_size = remaining
 chunk = file.read(chunk_size)
 if chunk:
 if remaining is not None:
 remaining -= len(chunk)
 yield chunk
 else:
 if remaining is not None:
 assert remaining == 0
 return

 @classmethod
[docs] def get_content_version(cls, abspath):
 """Returns a version string for the resource at the given path.

 This class method may be overridden by subclasses. The
 default implementation is a hash of the file's contents.

 .. versionadded:: 3.1
 """
 data = cls.get_content(abspath)
 hasher = hashlib.md5()
 if isinstance(data, bytes):
 hasher.update(data)
 else:
 for chunk in data:
 hasher.update(chunk)
 return hasher.hexdigest()

 def _stat(self):
 if not hasattr(self, '_stat_result'):
 self._stat_result = os.stat(self.absolute_path)
 return self._stat_result

[docs] def get_content_size(self):
 """Retrieve the total size of the resource at the given path.

 This method may be overridden by subclasses.

 .. versionadded:: 3.1

 .. versionchanged:: 4.0
 This method is now always called, instead of only when
 partial results are requested.
 """
 stat_result = self._stat()
 return stat_result[stat.ST_SIZE]

[docs] def get_modified_time(self):
 """Returns the time that ``self.absolute_path`` was last modified.

 May be overridden in subclasses. Should return a `~datetime.datetime`
 object or None.

 .. versionadded:: 3.1
 """
 stat_result = self._stat()
 modified = datetime.datetime.utcfromtimestamp(
 stat_result[stat.ST_MTIME])
 return modified

[docs] def get_content_type(self):
 """Returns the ``Content-Type`` header to be used for this request.

 .. versionadded:: 3.1
 """
 mime_type, encoding = mimetypes.guess_type(self.absolute_path)
 # per RFC 6713, use the appropriate type for a gzip compressed file
 if encoding == "gzip":
 return "application/gzip"
 # As of 2015-07-21 there is no bzip2 encoding defined at
 # http://www.iana.org/assignments/media-types/media-types.xhtml
 # So for that (and any other encoding), use octet-stream.
 elif encoding is not None:
 return "application/octet-stream"
 elif mime_type is not None:
 return mime_type
 # if mime_type not detected, use application/octet-stream
 else:
 return "application/octet-stream"

[docs] def set_extra_headers(self, path):
 """For subclass to add extra headers to the response"""
 pass

[docs] def get_cache_time(self, path, modified, mime_type):
 """Override to customize cache control behavior.

 Return a positive number of seconds to make the result
 cacheable for that amount of time or 0 to mark resource as
 cacheable for an unspecified amount of time (subject to
 browser heuristics).

 By default returns cache expiry of 10 years for resources requested
 with ``v`` argument.
 """
 return self.CACHE_MAX_AGE if "v" in self.request.arguments else 0

 @classmethod
[docs] def make_static_url(cls, settings, path, include_version=True):
 """Constructs a versioned url for the given path.

 This method may be overridden in subclasses (but note that it
 is a class method rather than an instance method). Subclasses
 are only required to implement the signature
 ``make_static_url(cls, settings, path)``; other keyword
 arguments may be passed through `~RequestHandler.static_url`
 but are not standard.

 ``settings`` is the `Application.settings` dictionary. ``path``
 is the static path being requested. The url returned should be
 relative to the current host.

 ``include_version`` determines whether the generated URL should
 include the query string containing the version hash of the
 file corresponding to the given ``path``.

 """
 url = settings.get('static_url_prefix', '/static/') + path
 if not include_version:
 return url

 version_hash = cls.get_version(settings, path)
 if not version_hash:
 return url

 return '%s?v=%s' % (url, version_hash)

[docs] def parse_url_path(self, url_path):
 """Converts a static URL path into a filesystem path.

 ``url_path`` is the path component of the URL with
 ``static_url_prefix`` removed. The return value should be
 filesystem path relative to ``static_path``.

 This is the inverse of `make_static_url`.
 """
 if os.path.sep != "/":
 url_path = url_path.replace("/", os.path.sep)
 return url_path

 @classmethod
[docs] def get_version(cls, settings, path):
 """Generate the version string to be used in static URLs.

 ``settings`` is the `Application.settings` dictionary and ``path``
 is the relative location of the requested asset on the filesystem.
 The returned value should be a string, or ``None`` if no version
 could be determined.

 .. versionchanged:: 3.1
 This method was previously recommended for subclasses to override;
 `get_content_version` is now preferred as it allows the base
 class to handle caching of the result.
 """
 abs_path = cls.get_absolute_path(settings['static_path'], path)
 return cls._get_cached_version(abs_path)

 @classmethod
 def _get_cached_version(cls, abs_path):
 with cls._lock:
 hashes = cls._static_hashes
 if abs_path not in hashes:
 try:
 hashes[abs_path] = cls.get_content_version(abs_path)
 except Exception:
 gen_log.error("Could not open static file %r", abs_path)
 hashes[abs_path] = None
 hsh = hashes.get(abs_path)
 if hsh:
 return hsh
 return None

[docs]class FallbackHandler(RequestHandler):
 """A `RequestHandler` that wraps another HTTP server callback.

 The fallback is a callable object that accepts an
 `~.httputil.HTTPServerRequest`, such as an `Application` or
 `tornado.wsgi.WSGIContainer`. This is most useful to use both
 Tornado ``RequestHandlers`` and WSGI in the same server. Typical
 usage::

 wsgi_app = tornado.wsgi.WSGIContainer(
 django.core.handlers.wsgi.WSGIHandler())
 application = tornado.web.Application([
 (r"/foo", FooHandler),
 (r".*", FallbackHandler, dict(fallback=wsgi_app),
])
 """
 def initialize(self, fallback):
 self.fallback = fallback

 def prepare(self):
 self.fallback(self.request)
 self._finished = True

class OutputTransform(object):
 """A transform modifies the result of an HTTP request (e.g., GZip encoding)

 Applications are not expected to create their own OutputTransforms
 or interact with them directly; the framework chooses which transforms
 (if any) to apply.
 """
 def __init__(self, request):
 pass

 def transform_first_chunk(self, status_code, headers, chunk, finishing):
 # type: (int, httputil.HTTPHeaders, bytes, bool) -> typing.Tuple[int, httputil.HTTPHeaders, bytes]
 return status_code, headers, chunk

 def transform_chunk(self, chunk, finishing):
 return chunk

class GZipContentEncoding(OutputTransform):
 """Applies the gzip content encoding to the response.

 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11

 .. versionchanged:: 4.0
 Now compresses all mime types beginning with ``text/``, instead
 of just a whitelist. (the whitelist is still used for certain
 non-text mime types).
 """
 # Whitelist of compressible mime types (in addition to any types
 # beginning with "text/").
 CONTENT_TYPES = set(["application/javascript", "application/x-javascript",
 "application/xml", "application/atom+xml",
 "application/json", "application/xhtml+xml",
 "image/svg+xml"])
 # Python's GzipFile defaults to level 9, while most other gzip
 # tools (including gzip itself) default to 6, which is probably a
 # better CPU/size tradeoff.
 GZIP_LEVEL = 6
 # Responses that are too short are unlikely to benefit from gzipping
 # after considering the "Content-Encoding: gzip" header and the header
 # inside the gzip encoding.
 # Note that responses written in multiple chunks will be compressed
 # regardless of size.
 MIN_LENGTH = 1024

 def __init__(self, request):
 self._gzipping = "gzip" in request.headers.get("Accept-Encoding", "")

 def _compressible_type(self, ctype):
 return ctype.startswith('text/') or ctype in self.CONTENT_TYPES

 def transform_first_chunk(self, status_code, headers, chunk, finishing):
 # type: (int, httputil.HTTPHeaders, bytes, bool) -> typing.Tuple[int, httputil.HTTPHeaders, bytes]
 # TODO: can/should this type be inherited from the superclass?
 if 'Vary' in headers:
 headers['Vary'] += ', Accept-Encoding'
 else:
 headers['Vary'] = 'Accept-Encoding'
 if self._gzipping:
 ctype = _unicode(headers.get("Content-Type", "")).split(";")[0]
 self._gzipping = self._compressible_type(ctype) and \
 (not finishing or len(chunk) >= self.MIN_LENGTH) and \
 ("Content-Encoding" not in headers)
 if self._gzipping:
 headers["Content-Encoding"] = "gzip"
 self._gzip_value = BytesIO()
 self._gzip_file = gzip.GzipFile(mode="w", fileobj=self._gzip_value,
 compresslevel=self.GZIP_LEVEL)
 chunk = self.transform_chunk(chunk, finishing)
 if "Content-Length" in headers:
 # The original content length is no longer correct.
 # If this is the last (and only) chunk, we can set the new
 # content-length; otherwise we remove it and fall back to
 # chunked encoding.
 if finishing:
 headers["Content-Length"] = str(len(chunk))
 else:
 del headers["Content-Length"]
 return status_code, headers, chunk

 def transform_chunk(self, chunk, finishing):
 if self._gzipping:
 self._gzip_file.write(chunk)
 if finishing:
 self._gzip_file.close()
 else:
 self._gzip_file.flush()
 chunk = self._gzip_value.getvalue()
 self._gzip_value.truncate(0)
 self._gzip_value.seek(0)
 return chunk

[docs]def authenticated(method):
 """Decorate methods with this to require that the user be logged in.

 If the user is not logged in, they will be redirected to the configured
 `login url <RequestHandler.get_login_url>`.

 If you configure a login url with a query parameter, Tornado will
 assume you know what you're doing and use it as-is. If not, it
 will add a `next` parameter so the login page knows where to send
 you once you're logged in.
 """
 @functools.wraps(method)
 def wrapper(self, *args, **kwargs):
 if not self.current_user:
 if self.request.method in ("GET", "HEAD"):
 url = self.get_login_url()
 if "?" not in url:
 if urlparse.urlsplit(url).scheme:
 # if login url is absolute, make next absolute too
 next_url = self.request.full_url()
 else:
 next_url = self.request.uri
 url += "?" + urlencode(dict(next=next_url))
 self.redirect(url)
 return
 raise HTTPError(403)
 return method(self, *args, **kwargs)
 return wrapper

[docs]class UIModule(object):
 """A re-usable, modular UI unit on a page.

 UI modules often execute additional queries, and they can include
 additional CSS and JavaScript that will be included in the output
 page, which is automatically inserted on page render.

 Subclasses of UIModule must override the `render` method.
 """
 def __init__(self, handler):
 self.handler = handler
 self.request = handler.request
 self.ui = handler.ui
 self.locale = handler.locale

 @property
 def current_user(self):
 return self.handler.current_user

[docs] def render(self, *args, **kwargs):
 """Override in subclasses to return this module's output."""
 raise NotImplementedError()

[docs] def embedded_javascript(self):
 """Override to return a JavaScript string
 to be embedded in the page."""
 return None

[docs] def javascript_files(self):
 """Override to return a list of JavaScript files needed by this module.

 If the return values are relative paths, they will be passed to
 `RequestHandler.static_url`; otherwise they will be used as-is.
 """
 return None

[docs] def embedded_css(self):
 """Override to return a CSS string
 that will be embedded in the page."""
 return None

[docs] def css_files(self):
 """Override to returns a list of CSS files required by this module.

 If the return values are relative paths, they will be passed to
 `RequestHandler.static_url`; otherwise they will be used as-is.
 """
 return None

[docs] def html_head(self):
 """Override to return an HTML string that will be put in the <head/>
 element.
 """
 return None

[docs] def html_body(self):
 """Override to return an HTML string that will be put at the end of
 the <body/> element.
 """
 return None

[docs] def render_string(self, path, **kwargs):
 """Renders a template and returns it as a string."""
 return self.handler.render_string(path, **kwargs)

class _linkify(UIModule):
 def render(self, text, **kwargs):
 return escape.linkify(text, **kwargs)

class _xsrf_form_html(UIModule):
 def render(self):
 return self.handler.xsrf_form_html()

class TemplateModule(UIModule):
 """UIModule that simply renders the given template.

 {% module Template("foo.html") %} is similar to {% include "foo.html" %},
 but the module version gets its own namespace (with kwargs passed to
 Template()) instead of inheriting the outer template's namespace.

 Templates rendered through this module also get access to UIModule's
 automatic javascript/css features. Simply call set_resources
 inside the template and give it keyword arguments corresponding to
 the methods on UIModule: {{ set_resources(js_files=static_url("my.js")) }}
 Note that these resources are output once per template file, not once
 per instantiation of the template, so they must not depend on
 any arguments to the template.
 """
 def __init__(self, handler):
 super(TemplateModule, self).__init__(handler)
 # keep resources in both a list and a dict to preserve order
 self._resource_list = []
 self._resource_dict = {}

 def render(self, path, **kwargs):
 def set_resources(**kwargs):
 if path not in self._resource_dict:
 self._resource_list.append(kwargs)
 self._resource_dict[path] = kwargs
 else:
 if self._resource_dict[path] != kwargs:
 raise ValueError("set_resources called with different "
 "resources for the same template")
 return ""
 return self.render_string(path, set_resources=set_resources,
 **kwargs)

 def _get_resources(self, key):
 return (r[key] for r in self._resource_list if key in r)

 def embedded_javascript(self):
 return "\n".join(self._get_resources("embedded_javascript"))

 def javascript_files(self):
 result = []
 for f in self._get_resources("javascript_files"):
 if isinstance(f, (unicode_type, bytes)):
 result.append(f)
 else:
 result.extend(f)
 return result

 def embedded_css(self):
 return "\n".join(self._get_resources("embedded_css"))

 def css_files(self):
 result = []
 for f in self._get_resources("css_files"):
 if isinstance(f, (unicode_type, bytes)):
 result.append(f)
 else:
 result.extend(f)
 return result

 def html_head(self):
 return "".join(self._get_resources("html_head"))

 def html_body(self):
 return "".join(self._get_resources("html_body"))

class _UIModuleNamespace(object):
 """Lazy namespace which creates UIModule proxies bound to a handler."""
 def __init__(self, handler, ui_modules):
 self.handler = handler
 self.ui_modules = ui_modules

 def __getitem__(self, key):
 return self.handler._ui_module(key, self.ui_modules[key])

 def __getattr__(self, key):
 try:
 return self[key]
 except KeyError as e:
 raise AttributeError(str(e))

[docs]class URLSpec(object):
 """Specifies mappings between URLs and handlers."""
 def __init__(self, pattern, handler, kwargs=None, name=None):
 """Parameters:

 * ``pattern``: Regular expression to be matched. Any capturing
 groups in the regex will be passed in to the handler's
 get/post/etc methods as arguments (by keyword if named, by
 position if unnamed. Named and unnamed capturing groups may
 may not be mixed in the same rule).

 * ``handler``: `RequestHandler` subclass to be invoked.

 * ``kwargs`` (optional): A dictionary of additional arguments
 to be passed to the handler's constructor.

 * ``name`` (optional): A name for this handler. Used by
 `Application.reverse_url`.

 """
 if not pattern.endswith('$'):
 pattern += '$'
 self.regex = re.compile(pattern)
 assert len(self.regex.groupindex) in (0, self.regex.groups), \
 ("groups in url regexes must either be all named or all "
 "positional: %r" % self.regex.pattern)

 if isinstance(handler, str):
 # import the Module and instantiate the class
 # Must be a fully qualified name (module.ClassName)
 handler = import_object(handler)

 self.handler_class = handler
 self.kwargs = kwargs or {}
 self.name = name
 self._path, self._group_count = self._find_groups()

 def __repr__(self):
 return '%s(%r, %s, kwargs=%r, name=%r)' % \
 (self.__class__.__name__, self.regex.pattern,
 self.handler_class, self.kwargs, self.name)

 def _find_groups(self):
 """Returns a tuple (reverse string, group count) for a url.

 For example: Given the url pattern /([0-9]{4})/([a-z-]+)/, this method
 would return ('/%s/%s/', 2).
 """
 pattern = self.regex.pattern
 if pattern.startswith('^'):
 pattern = pattern[1:]
 if pattern.endswith('$'):
 pattern = pattern[:-1]

 if self.regex.groups != pattern.count('('):
 # The pattern is too complicated for our simplistic matching,
 # so we can't support reversing it.
 return (None, None)

 pieces = []
 for fragment in pattern.split('('):
 if ')' in fragment:
 paren_loc = fragment.index(')')
 if paren_loc >= 0:
 pieces.append('%s' + fragment[paren_loc + 1:])
 else:
 try:
 unescaped_fragment = re_unescape(fragment)
 except ValueError as exc:
 # If we can't unescape part of it, we can't
 # reverse this url.
 return (None, None)
 pieces.append(unescaped_fragment)

 return (''.join(pieces), self.regex.groups)

 def reverse(self, *args):
 if self._path is None:
 raise ValueError("Cannot reverse url regex " + self.regex.pattern)
 assert len(args) == self._group_count, "required number of arguments "\
 "not found"
 if not len(args):
 return self._path
 converted_args = []
 for a in args:
 if not isinstance(a, (unicode_type, bytes)):
 a = str(a)
 converted_args.append(escape.url_escape(utf8(a), plus=False))
 return self._path % tuple(converted_args)

url = URLSpec

if hasattr(hmac, 'compare_digest'): # python 3.3
 _time_independent_equals = hmac.compare_digest
else:
 def _time_independent_equals(a, b):
 if len(a) != len(b):
 return False
 result = 0
 if isinstance(a[0], int): # python3 byte strings
 for x, y in zip(a, b):
 result |= x ^ y
 else: # python2
 for x, y in zip(a, b):
 result |= ord(x) ^ ord(y)
 return result == 0

def create_signed_value(secret, name, value, version=None, clock=None,
 key_version=None):
 if version is None:
 version = DEFAULT_SIGNED_VALUE_VERSION
 if clock is None:
 clock = time.time

 timestamp = utf8(str(int(clock())))
 value = base64.b64encode(utf8(value))
 if version == 1:
 signature = _create_signature_v1(secret, name, value, timestamp)
 value = b"|".join([value, timestamp, signature])
 return value
 elif version == 2:
 # The v2 format consists of a version number and a series of
 # length-prefixed fields "%d:%s", the last of which is a
 # signature, all separated by pipes. All numbers are in
 # decimal format with no leading zeros. The signature is an
 # HMAC-SHA256 of the whole string up to that point, including
 # the final pipe.
 #
 # The fields are:
 # - format version (i.e. 2; no length prefix)
 # - key version (integer, default is 0)
 # - timestamp (integer seconds since epoch)
 # - name (not encoded; assumed to be ~alphanumeric)
 # - value (base64-encoded)
 # - signature (hex-encoded; no length prefix)
 def format_field(s):
 return utf8("%d:" % len(s)) + utf8(s)
 to_sign = b"|".join([
 b"2",
 format_field(str(key_version or 0)),
 format_field(timestamp),
 format_field(name),
 format_field(value),
 b''])

 if isinstance(secret, dict):
 assert key_version is not None, 'Key version must be set when sign key dict is used'
 assert version >= 2, 'Version must be at least 2 for key version support'
 secret = secret[key_version]

 signature = _create_signature_v2(secret, to_sign)
 return to_sign + signature
 else:
 raise ValueError("Unsupported version %d" % version)

A leading version number in decimal
with no leading zeros, followed by a pipe.
_signed_value_version_re = re.compile(br"^([1-9][0-9]*)\|(.*)$")

def _get_version(value):
 # Figures out what version value is. Version 1 did not include an
 # explicit version field and started with arbitrary base64 data,
 # which makes this tricky.
 m = _signed_value_version_re.match(value)
 if m is None:
 version = 1
 else:
 try:
 version = int(m.group(1))
 if version > 999:
 # Certain payloads from the version-less v1 format may
 # be parsed as valid integers. Due to base64 padding
 # restrictions, this can only happen for numbers whose
 # length is a multiple of 4, so we can treat all
 # numbers up to 999 as versions, and for the rest we
 # fall back to v1 format.
 version = 1
 except ValueError:
 version = 1
 return version

def decode_signed_value(secret, name, value, max_age_days=31,
 clock=None, min_version=None):
 if clock is None:
 clock = time.time
 if min_version is None:
 min_version = DEFAULT_SIGNED_VALUE_MIN_VERSION
 if min_version > 2:
 raise ValueError("Unsupported min_version %d" % min_version)
 if not value:
 return None

 value = utf8(value)
 version = _get_version(value)

 if version < min_version:
 return None
 if version == 1:
 return _decode_signed_value_v1(secret, name, value,
 max_age_days, clock)
 elif version == 2:
 return _decode_signed_value_v2(secret, name, value,
 max_age_days, clock)
 else:
 return None

def _decode_signed_value_v1(secret, name, value, max_age_days, clock):
 parts = utf8(value).split(b"|")
 if len(parts) != 3:
 return None
 signature = _create_signature_v1(secret, name, parts[0], parts[1])
 if not _time_independent_equals(parts[2], signature):
 gen_log.warning("Invalid cookie signature %r", value)
 return None
 timestamp = int(parts[1])
 if timestamp < clock() - max_age_days * 86400:
 gen_log.warning("Expired cookie %r", value)
 return None
 if timestamp > clock() + 31 * 86400:
 # _cookie_signature does not hash a delimiter between the
 # parts of the cookie, so an attacker could transfer trailing
 # digits from the payload to the timestamp without altering the
 # signature. For backwards compatibility, sanity-check timestamp
 # here instead of modifying _cookie_signature.
 gen_log.warning("Cookie timestamp in future; possible tampering %r",
 value)
 return None
 if parts[1].startswith(b"0"):
 gen_log.warning("Tampered cookie %r", value)
 return None
 try:
 return base64.b64decode(parts[0])
 except Exception:
 return None

def _decode_fields_v2(value):
 def _consume_field(s):
 length, _, rest = s.partition(b':')
 n = int(length)
 field_value = rest[:n]
 # In python 3, indexing bytes returns small integers; we must
 # use a slice to get a byte string as in python 2.
 if rest[n:n + 1] != b'|':
 raise ValueError("malformed v2 signed value field")
 rest = rest[n + 1:]
 return field_value, rest

 rest = value[2:] # remove version number
 key_version, rest = _consume_field(rest)
 timestamp, rest = _consume_field(rest)
 name_field, rest = _consume_field(rest)
 value_field, passed_sig = _consume_field(rest)
 return int(key_version), timestamp, name_field, value_field, passed_sig

def _decode_signed_value_v2(secret, name, value, max_age_days, clock):
 try:
 key_version, timestamp, name_field, value_field, passed_sig = _decode_fields_v2(value)
 except ValueError:
 return None
 signed_string = value[:-len(passed_sig)]

 if isinstance(secret, dict):
 try:
 secret = secret[key_version]
 except KeyError:
 return None

 expected_sig = _create_signature_v2(secret, signed_string)
 if not _time_independent_equals(passed_sig, expected_sig):
 return None
 if name_field != utf8(name):
 return None
 timestamp = int(timestamp)
 if timestamp < clock() - max_age_days * 86400:
 # The signature has expired.
 return None
 try:
 return base64.b64decode(value_field)
 except Exception:
 return None

def get_signature_key_version(value):
 value = utf8(value)
 version = _get_version(value)
 if version < 2:
 return None
 try:
 key_version, _, _, _, _ = _decode_fields_v2(value)
 except ValueError:
 return None

 return key_version

def _create_signature_v1(secret, *parts):
 hash = hmac.new(utf8(secret), digestmod=hashlib.sha1)
 for part in parts:
 hash.update(utf8(part))
 return utf8(hash.hexdigest())

def _create_signature_v2(secret, s):
 hash = hmac.new(utf8(secret), digestmod=hashlib.sha256)
 hash.update(utf8(s))
 return utf8(hash.hexdigest())

def _unquote_or_none(s):
 """None-safe wrapper around url_unescape to handle unmatched optional
 groups correctly.

 Note that args are passed as bytes so the handler can decide what
 encoding to use.
 """
 if s is None:
 return s
 return escape.url_unescape(s, encoding=None, plus=False)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/iostream.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.iostream

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Utility classes to write to and read from non-blocking files and sockets.

Contents:

* `BaseIOStream`: Generic interface for reading and writing.
* `IOStream`: Implementation of BaseIOStream using non-blocking sockets.
* `SSLIOStream`: SSL-aware version of IOStream.
* `PipeIOStream`: Pipe-based IOStream implementation.
"""

from __future__ import absolute_import, division, print_function, with_statement

import collections
import errno
import numbers
import os
import socket
import sys
import re

from tornado.concurrent import TracebackFuture
from tornado import ioloop
from tornado.log import gen_log, app_log
from tornado.netutil import ssl_wrap_socket, ssl_match_hostname, SSLCertificateError, _client_ssl_defaults, _server_ssl_defaults
from tornado import stack_context
from tornado.util import errno_from_exception

try:
 from tornado.platform.posix import _set_nonblocking
except ImportError:
 _set_nonblocking = None

try:
 import ssl
except ImportError:
 # ssl is not available on Google App Engine
 ssl = None

These errnos indicate that a non-blocking operation must be retried
at a later time. On most platforms they're the same value, but on
some they differ.
_ERRNO_WOULDBLOCK = (errno.EWOULDBLOCK, errno.EAGAIN)

if hasattr(errno, "WSAEWOULDBLOCK"):
 _ERRNO_WOULDBLOCK += (errno.WSAEWOULDBLOCK,) # type: ignore

These errnos indicate that a connection has been abruptly terminated.
They should be caught and handled less noisily than other errors.
_ERRNO_CONNRESET = (errno.ECONNRESET, errno.ECONNABORTED, errno.EPIPE,
 errno.ETIMEDOUT)

if hasattr(errno, "WSAECONNRESET"):
 _ERRNO_CONNRESET += (errno.WSAECONNRESET, errno.WSAECONNABORTED, errno.WSAETIMEDOUT) # type: ignore

if sys.platform == 'darwin':
 # OSX appears to have a race condition that causes send(2) to return
 # EPROTOTYPE if called while a socket is being torn down:
 # http://erickt.github.io/blog/2014/11/19/adventures-in-debugging-a-potential-osx-kernel-bug/
 # Since the socket is being closed anyway, treat this as an ECONNRESET
 # instead of an unexpected error.
 _ERRNO_CONNRESET += (errno.EPROTOTYPE,) # type: ignore

More non-portable errnos:
_ERRNO_INPROGRESS = (errno.EINPROGRESS,)

if hasattr(errno, "WSAEINPROGRESS"):
 _ERRNO_INPROGRESS += (errno.WSAEINPROGRESS,) # type: ignore

[docs]class StreamClosedError(IOError):
 """Exception raised by `IOStream` methods when the stream is closed.

 Note that the close callback is scheduled to run *after* other
 callbacks on the stream (to allow for buffered data to be processed),
 so you may see this error before you see the close callback.

 The ``real_error`` attribute contains the underlying error that caused
 the stream to close (if any).

 .. versionchanged:: 4.3
 Added the ``real_error`` attribute.
 """
 def __init__(self, real_error=None):
 super(StreamClosedError, self).__init__('Stream is closed')
 self.real_error = real_error

[docs]class UnsatisfiableReadError(Exception):
 """Exception raised when a read cannot be satisfied.

 Raised by ``read_until`` and ``read_until_regex`` with a ``max_bytes``
 argument.
 """
 pass

[docs]class StreamBufferFullError(Exception):
 """Exception raised by `IOStream` methods when the buffer is full.
 """

[docs]class BaseIOStream(object):
 """A utility class to write to and read from a non-blocking file or socket.

 We support a non-blocking ``write()`` and a family of ``read_*()`` methods.
 All of the methods take an optional ``callback`` argument and return a
 `.Future` only if no callback is given. When the operation completes,
 the callback will be run or the `.Future` will resolve with the data
 read (or ``None`` for ``write()``). All outstanding ``Futures`` will
 resolve with a `StreamClosedError` when the stream is closed; users
 of the callback interface will be notified via
 `.BaseIOStream.set_close_callback` instead.

 When a stream is closed due to an error, the IOStream's ``error``
 attribute contains the exception object.

 Subclasses must implement `fileno`, `close_fd`, `write_to_fd`,
 `read_from_fd`, and optionally `get_fd_error`.
 """
 def __init__(self, io_loop=None, max_buffer_size=None,
 read_chunk_size=None, max_write_buffer_size=None):
 """`BaseIOStream` constructor.

 :arg io_loop: The `.IOLoop` to use; defaults to `.IOLoop.current`.
 Deprecated since Tornado 4.1.
 :arg max_buffer_size: Maximum amount of incoming data to buffer;
 defaults to 100MB.
 :arg read_chunk_size: Amount of data to read at one time from the
 underlying transport; defaults to 64KB.
 :arg max_write_buffer_size: Amount of outgoing data to buffer;
 defaults to unlimited.

 .. versionchanged:: 4.0
 Add the ``max_write_buffer_size`` parameter. Changed default
 ``read_chunk_size`` to 64KB.
 """
 self.io_loop = io_loop or ioloop.IOLoop.current()
 self.max_buffer_size = max_buffer_size or 104857600
 # A chunk size that is too close to max_buffer_size can cause
 # spurious failures.
 self.read_chunk_size = min(read_chunk_size or 65536,
 self.max_buffer_size // 2)
 self.max_write_buffer_size = max_write_buffer_size
 self.error = None
 self._read_buffer = collections.deque()
 self._write_buffer = collections.deque()
 self._read_buffer_size = 0
 self._write_buffer_size = 0
 self._write_buffer_frozen = False
 self._read_delimiter = None
 self._read_regex = None
 self._read_max_bytes = None
 self._read_bytes = None
 self._read_partial = False
 self._read_until_close = False
 self._read_callback = None
 self._read_future = None
 self._streaming_callback = None
 self._write_callback = None
 self._write_future = None
 self._close_callback = None
 self._connect_callback = None
 self._connect_future = None
 # _ssl_connect_future should be defined in SSLIOStream
 # but it's here so we can clean it up in maybe_run_close_callback.
 # TODO: refactor that so subclasses can add additional futures
 # to be cancelled.
 self._ssl_connect_future = None
 self._connecting = False
 self._state = None
 self._pending_callbacks = 0
 self._closed = False

[docs] def fileno(self):
 """Returns the file descriptor for this stream."""
 raise NotImplementedError()

[docs] def close_fd(self):
 """Closes the file underlying this stream.

 ``close_fd`` is called by `BaseIOStream` and should not be called
 elsewhere; other users should call `close` instead.
 """
 raise NotImplementedError()

[docs] def write_to_fd(self, data):
 """Attempts to write ``data`` to the underlying file.

 Returns the number of bytes written.
 """
 raise NotImplementedError()

[docs] def read_from_fd(self):
 """Attempts to read from the underlying file.

 Returns ``None`` if there was nothing to read (the socket
 returned `~errno.EWOULDBLOCK` or equivalent), otherwise
 returns the data. When possible, should return no more than
 ``self.read_chunk_size`` bytes at a time.
 """
 raise NotImplementedError()

[docs] def get_fd_error(self):
 """Returns information about any error on the underlying file.

 This method is called after the `.IOLoop` has signaled an error on the
 file descriptor, and should return an Exception (such as `socket.error`
 with additional information, or None if no such information is
 available.
 """
 return None

[docs] def read_until_regex(self, regex, callback=None, max_bytes=None):
 """Asynchronously read until we have matched the given regex.

 The result includes the data that matches the regex and anything
 that came before it. If a callback is given, it will be run
 with the data as an argument; if not, this method returns a
 `.Future`.

 If ``max_bytes`` is not None, the connection will be closed
 if more than ``max_bytes`` bytes have been read and the regex is
 not satisfied.

 .. versionchanged:: 4.0
 Added the ``max_bytes`` argument. The ``callback`` argument is
 now optional and a `.Future` will be returned if it is omitted.
 """
 future = self._set_read_callback(callback)
 self._read_regex = re.compile(regex)
 self._read_max_bytes = max_bytes
 try:
 self._try_inline_read()
 except UnsatisfiableReadError as e:
 # Handle this the same way as in _handle_events.
 gen_log.info("Unsatisfiable read, closing connection: %s" % e)
 self.close(exc_info=True)
 return future
 except:
 if future is not None:
 # Ensure that the future doesn't log an error because its
 # failure was never examined.
 future.add_done_callback(lambda f: f.exception())
 raise
 return future

[docs] def read_until(self, delimiter, callback=None, max_bytes=None):
 """Asynchronously read until we have found the given delimiter.

 The result includes all the data read including the delimiter.
 If a callback is given, it will be run with the data as an argument;
 if not, this method returns a `.Future`.

 If ``max_bytes`` is not None, the connection will be closed
 if more than ``max_bytes`` bytes have been read and the delimiter
 is not found.

 .. versionchanged:: 4.0
 Added the ``max_bytes`` argument. The ``callback`` argument is
 now optional and a `.Future` will be returned if it is omitted.
 """
 future = self._set_read_callback(callback)
 self._read_delimiter = delimiter
 self._read_max_bytes = max_bytes
 try:
 self._try_inline_read()
 except UnsatisfiableReadError as e:
 # Handle this the same way as in _handle_events.
 gen_log.info("Unsatisfiable read, closing connection: %s" % e)
 self.close(exc_info=True)
 return future
 except:
 if future is not None:
 future.add_done_callback(lambda f: f.exception())
 raise
 return future

[docs] def read_bytes(self, num_bytes, callback=None, streaming_callback=None,
 partial=False):
 """Asynchronously read a number of bytes.

 If a ``streaming_callback`` is given, it will be called with chunks
 of data as they become available, and the final result will be empty.
 Otherwise, the result is all the data that was read.
 If a callback is given, it will be run with the data as an argument;
 if not, this method returns a `.Future`.

 If ``partial`` is true, the callback is run as soon as we have
 any bytes to return (but never more than ``num_bytes``)

 .. versionchanged:: 4.0
 Added the ``partial`` argument. The callback argument is now
 optional and a `.Future` will be returned if it is omitted.
 """
 future = self._set_read_callback(callback)
 assert isinstance(num_bytes, numbers.Integral)
 self._read_bytes = num_bytes
 self._read_partial = partial
 self._streaming_callback = stack_context.wrap(streaming_callback)
 try:
 self._try_inline_read()
 except:
 if future is not None:
 future.add_done_callback(lambda f: f.exception())
 raise
 return future

[docs] def read_until_close(self, callback=None, streaming_callback=None):
 """Asynchronously reads all data from the socket until it is closed.

 If a ``streaming_callback`` is given, it will be called with chunks
 of data as they become available, and the final result will be empty.
 Otherwise, the result is all the data that was read.
 If a callback is given, it will be run with the data as an argument;
 if not, this method returns a `.Future`.

 Note that if a ``streaming_callback`` is used, data will be
 read from the socket as quickly as it becomes available; there
 is no way to apply backpressure or cancel the reads. If flow
 control or cancellation are desired, use a loop with
 `read_bytes(partial=True) <.read_bytes>` instead.

 .. versionchanged:: 4.0
 The callback argument is now optional and a `.Future` will
 be returned if it is omitted.

 """
 future = self._set_read_callback(callback)
 self._streaming_callback = stack_context.wrap(streaming_callback)
 if self.closed():
 if self._streaming_callback is not None:
 self._run_read_callback(self._read_buffer_size, True)
 self._run_read_callback(self._read_buffer_size, False)
 return future
 self._read_until_close = True
 try:
 self._try_inline_read()
 except:
 if future is not None:
 future.add_done_callback(lambda f: f.exception())
 raise
 return future

[docs] def write(self, data, callback=None):
 """Asynchronously write the given data to this stream.

 If ``callback`` is given, we call it when all of the buffered write
 data has been successfully written to the stream. If there was
 previously buffered write data and an old write callback, that
 callback is simply overwritten with this new callback.

 If no ``callback`` is given, this method returns a `.Future` that
 resolves (with a result of ``None``) when the write has been
 completed. If `write` is called again before that `.Future` has
 resolved, the previous future will be orphaned and will never resolve.

 .. versionchanged:: 4.0
 Now returns a `.Future` if no callback is given.
 """
 assert isinstance(data, bytes)
 self._check_closed()
 # We use bool(_write_buffer) as a proxy for write_buffer_size>0,
 # so never put empty strings in the buffer.
 if data:
 if (self.max_write_buffer_size is not None and
 self._write_buffer_size + len(data) > self.max_write_buffer_size):
 raise StreamBufferFullError("Reached maximum write buffer size")
 # Break up large contiguous strings before inserting them in the
 # write buffer, so we don't have to recopy the entire thing
 # as we slice off pieces to send to the socket.
 WRITE_BUFFER_CHUNK_SIZE = 128 * 1024
 for i in range(0, len(data), WRITE_BUFFER_CHUNK_SIZE):
 self._write_buffer.append(data[i:i + WRITE_BUFFER_CHUNK_SIZE])
 self._write_buffer_size += len(data)
 if callback is not None:
 self._write_callback = stack_context.wrap(callback)
 future = None
 else:
 future = self._write_future = TracebackFuture()
 future.add_done_callback(lambda f: f.exception())
 if not self._connecting:
 self._handle_write()
 if self._write_buffer:
 self._add_io_state(self.io_loop.WRITE)
 self._maybe_add_error_listener()
 return future

[docs] def set_close_callback(self, callback):
 """Call the given callback when the stream is closed.

 This is not necessary for applications that use the `.Future`
 interface; all outstanding ``Futures`` will resolve with a
 `StreamClosedError` when the stream is closed.
 """
 self._close_callback = stack_context.wrap(callback)
 self._maybe_add_error_listener()

[docs] def close(self, exc_info=False):
 """Close this stream.

 If ``exc_info`` is true, set the ``error`` attribute to the current
 exception from `sys.exc_info` (or if ``exc_info`` is a tuple,
 use that instead of `sys.exc_info`).
 """
 if not self.closed():
 if exc_info:
 if not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 if any(exc_info):
 self.error = exc_info[1]
 if self._read_until_close:
 if (self._streaming_callback is not None and
 self._read_buffer_size):
 self._run_read_callback(self._read_buffer_size, True)
 self._read_until_close = False
 self._run_read_callback(self._read_buffer_size, False)
 if self._state is not None:
 self.io_loop.remove_handler(self.fileno())
 self._state = None
 self.close_fd()
 self._closed = True
 self._maybe_run_close_callback()

 def _maybe_run_close_callback(self):
 # If there are pending callbacks, don't run the close callback
 # until they're done (see _maybe_add_error_handler)
 if self.closed() and self._pending_callbacks == 0:
 futures = []
 if self._read_future is not None:
 futures.append(self._read_future)
 self._read_future = None
 if self._write_future is not None:
 futures.append(self._write_future)
 self._write_future = None
 if self._connect_future is not None:
 futures.append(self._connect_future)
 self._connect_future = None
 if self._ssl_connect_future is not None:
 futures.append(self._ssl_connect_future)
 self._ssl_connect_future = None
 for future in futures:
 future.set_exception(StreamClosedError(real_error=self.error))
 if self._close_callback is not None:
 cb = self._close_callback
 self._close_callback = None
 self._run_callback(cb)
 # Delete any unfinished callbacks to break up reference cycles.
 self._read_callback = self._write_callback = None
 # Clear the buffers so they can be cleared immediately even
 # if the IOStream object is kept alive by a reference cycle.
 # TODO: Clear the read buffer too; it currently breaks some tests.
 self._write_buffer = None

[docs] def reading(self):
 """Returns true if we are currently reading from the stream."""
 return self._read_callback is not None or self._read_future is not None

[docs] def writing(self):
 """Returns true if we are currently writing to the stream."""
 return bool(self._write_buffer)

[docs] def closed(self):
 """Returns true if the stream has been closed."""
 return self._closed

[docs] def set_nodelay(self, value):
 """Sets the no-delay flag for this stream.

 By default, data written to TCP streams may be held for a time
 to make the most efficient use of bandwidth (according to
 Nagle's algorithm). The no-delay flag requests that data be
 written as soon as possible, even if doing so would consume
 additional bandwidth.

 This flag is currently defined only for TCP-based ``IOStreams``.

 .. versionadded:: 3.1
 """
 pass

 def _handle_events(self, fd, events):
 if self.closed():
 gen_log.warning("Got events for closed stream %s", fd)
 return
 try:
 if self._connecting:
 # Most IOLoops will report a write failed connect
 # with the WRITE event, but SelectIOLoop reports a
 # READ as well so we must check for connecting before
 # either.
 self._handle_connect()
 if self.closed():
 return
 if events & self.io_loop.READ:
 self._handle_read()
 if self.closed():
 return
 if events & self.io_loop.WRITE:
 self._handle_write()
 if self.closed():
 return
 if events & self.io_loop.ERROR:
 self.error = self.get_fd_error()
 # We may have queued up a user callback in _handle_read or
 # _handle_write, so don't close the IOStream until those
 # callbacks have had a chance to run.
 self.io_loop.add_callback(self.close)
 return
 state = self.io_loop.ERROR
 if self.reading():
 state |= self.io_loop.READ
 if self.writing():
 state |= self.io_loop.WRITE
 if state == self.io_loop.ERROR and self._read_buffer_size == 0:
 # If the connection is idle, listen for reads too so
 # we can tell if the connection is closed. If there is
 # data in the read buffer we won't run the close callback
 # yet anyway, so we don't need to listen in this case.
 state |= self.io_loop.READ
 if state != self._state:
 assert self._state is not None, \
 "shouldn't happen: _handle_events without self._state"
 self._state = state
 self.io_loop.update_handler(self.fileno(), self._state)
 except UnsatisfiableReadError as e:
 gen_log.info("Unsatisfiable read, closing connection: %s" % e)
 self.close(exc_info=True)
 except Exception:
 gen_log.error("Uncaught exception, closing connection.",
 exc_info=True)
 self.close(exc_info=True)
 raise

 def _run_callback(self, callback, *args):
 def wrapper():
 self._pending_callbacks -= 1
 try:
 return callback(*args)
 except Exception:
 app_log.error("Uncaught exception, closing connection.",
 exc_info=True)
 # Close the socket on an uncaught exception from a user callback
 # (It would eventually get closed when the socket object is
 # gc'd, but we don't want to rely on gc happening before we
 # run out of file descriptors)
 self.close(exc_info=True)
 # Re-raise the exception so that IOLoop.handle_callback_exception
 # can see it and log the error
 raise
 finally:
 self._maybe_add_error_listener()
 # We schedule callbacks to be run on the next IOLoop iteration
 # rather than running them directly for several reasons:
 # * Prevents unbounded stack growth when a callback calls an
 # IOLoop operation that immediately runs another callback
 # * Provides a predictable execution context for e.g.
 # non-reentrant mutexes
 # * Ensures that the try/except in wrapper() is run outside
 # of the application's StackContexts
 with stack_context.NullContext():
 # stack_context was already captured in callback, we don't need to
 # capture it again for IOStream's wrapper. This is especially
 # important if the callback was pre-wrapped before entry to
 # IOStream (as in HTTPConnection._header_callback), as we could
 # capture and leak the wrong context here.
 self._pending_callbacks += 1
 self.io_loop.add_callback(wrapper)

 def _read_to_buffer_loop(self):
 # This method is called from _handle_read and _try_inline_read.
 try:
 if self._read_bytes is not None:
 target_bytes = self._read_bytes
 elif self._read_max_bytes is not None:
 target_bytes = self._read_max_bytes
 elif self.reading():
 # For read_until without max_bytes, or
 # read_until_close, read as much as we can before
 # scanning for the delimiter.
 target_bytes = None
 else:
 target_bytes = 0
 next_find_pos = 0
 # Pretend to have a pending callback so that an EOF in
 # _read_to_buffer doesn't trigger an immediate close
 # callback. At the end of this method we'll either
 # establish a real pending callback via
 # _read_from_buffer or run the close callback.
 #
 # We need two try statements here so that
 # pending_callbacks is decremented before the `except`
 # clause below (which calls `close` and does need to
 # trigger the callback)
 self._pending_callbacks += 1
 while not self.closed():
 # Read from the socket until we get EWOULDBLOCK or equivalent.
 # SSL sockets do some internal buffering, and if the data is
 # sitting in the SSL object's buffer select() and friends
 # can't see it; the only way to find out if it's there is to
 # try to read it.
 if self._read_to_buffer() == 0:
 break

 self._run_streaming_callback()

 # If we've read all the bytes we can use, break out of
 # this loop. We can't just call read_from_buffer here
 # because of subtle interactions with the
 # pending_callback and error_listener mechanisms.
 #
 # If we've reached target_bytes, we know we're done.
 if (target_bytes is not None and
 self._read_buffer_size >= target_bytes):
 break

 # Otherwise, we need to call the more expensive find_read_pos.
 # It's inefficient to do this on every read, so instead
 # do it on the first read and whenever the read buffer
 # size has doubled.
 if self._read_buffer_size >= next_find_pos:
 pos = self._find_read_pos()
 if pos is not None:
 return pos
 next_find_pos = self._read_buffer_size * 2
 return self._find_read_pos()
 finally:
 self._pending_callbacks -= 1

 def _handle_read(self):
 try:
 pos = self._read_to_buffer_loop()
 except UnsatisfiableReadError:
 raise
 except Exception as e:
 gen_log.warning("error on read: %s" % e)
 self.close(exc_info=True)
 return
 if pos is not None:
 self._read_from_buffer(pos)
 return
 else:
 self._maybe_run_close_callback()

 def _set_read_callback(self, callback):
 assert self._read_callback is None, "Already reading"
 assert self._read_future is None, "Already reading"
 if callback is not None:
 self._read_callback = stack_context.wrap(callback)
 else:
 self._read_future = TracebackFuture()
 return self._read_future

 def _run_read_callback(self, size, streaming):
 if streaming:
 callback = self._streaming_callback
 else:
 callback = self._read_callback
 self._read_callback = self._streaming_callback = None
 if self._read_future is not None:
 assert callback is None
 future = self._read_future
 self._read_future = None
 future.set_result(self._consume(size))
 if callback is not None:
 assert (self._read_future is None) or streaming
 self._run_callback(callback, self._consume(size))
 else:
 # If we scheduled a callback, we will add the error listener
 # afterwards. If we didn't, we have to do it now.
 self._maybe_add_error_listener()

 def _try_inline_read(self):
 """Attempt to complete the current read operation from buffered data.

 If the read can be completed without blocking, schedules the
 read callback on the next IOLoop iteration; otherwise starts
 listening for reads on the socket.
 """
 # See if we've already got the data from a previous read
 self._run_streaming_callback()
 pos = self._find_read_pos()
 if pos is not None:
 self._read_from_buffer(pos)
 return
 self._check_closed()
 try:
 pos = self._read_to_buffer_loop()
 except Exception:
 # If there was an in _read_to_buffer, we called close() already,
 # but couldn't run the close callback because of _pending_callbacks.
 # Before we escape from this function, run the close callback if
 # applicable.
 self._maybe_run_close_callback()
 raise
 if pos is not None:
 self._read_from_buffer(pos)
 return
 # We couldn't satisfy the read inline, so either close the stream
 # or listen for new data.
 if self.closed():
 self._maybe_run_close_callback()
 else:
 self._add_io_state(ioloop.IOLoop.READ)

 def _read_to_buffer(self):
 """Reads from the socket and appends the result to the read buffer.

 Returns the number of bytes read. Returns 0 if there is nothing
 to read (i.e. the read returns EWOULDBLOCK or equivalent). On
 error closes the socket and raises an exception.
 """
 while True:
 try:
 chunk = self.read_from_fd()
 except (socket.error, IOError, OSError) as e:
 if errno_from_exception(e) == errno.EINTR:
 continue
 # ssl.SSLError is a subclass of socket.error
 if self._is_connreset(e):
 # Treat ECONNRESET as a connection close rather than
 # an error to minimize log spam (the exception will
 # be available on self.error for apps that care).
 self.close(exc_info=True)
 return
 self.close(exc_info=True)
 raise
 break
 if chunk is None:
 return 0
 self._read_buffer.append(chunk)
 self._read_buffer_size += len(chunk)
 if self._read_buffer_size > self.max_buffer_size:
 gen_log.error("Reached maximum read buffer size")
 self.close()
 raise StreamBufferFullError("Reached maximum read buffer size")
 return len(chunk)

 def _run_streaming_callback(self):
 if self._streaming_callback is not None and self._read_buffer_size:
 bytes_to_consume = self._read_buffer_size
 if self._read_bytes is not None:
 bytes_to_consume = min(self._read_bytes, bytes_to_consume)
 self._read_bytes -= bytes_to_consume
 self._run_read_callback(bytes_to_consume, True)

 def _read_from_buffer(self, pos):
 """Attempts to complete the currently-pending read from the buffer.

 The argument is either a position in the read buffer or None,
 as returned by _find_read_pos.
 """
 self._read_bytes = self._read_delimiter = self._read_regex = None
 self._read_partial = False
 self._run_read_callback(pos, False)

 def _find_read_pos(self):
 """Attempts to find a position in the read buffer that satisfies
 the currently-pending read.

 Returns a position in the buffer if the current read can be satisfied,
 or None if it cannot.
 """
 if (self._read_bytes is not None and
 (self._read_buffer_size >= self._read_bytes or
 (self._read_partial and self._read_buffer_size > 0))):
 num_bytes = min(self._read_bytes, self._read_buffer_size)
 return num_bytes
 elif self._read_delimiter is not None:
 # Multi-byte delimiters (e.g. '\r\n') may straddle two
 # chunks in the read buffer, so we can't easily find them
 # without collapsing the buffer. However, since protocols
 # using delimited reads (as opposed to reads of a known
 # length) tend to be "line" oriented, the delimiter is likely
 # to be in the first few chunks. Merge the buffer gradually
 # since large merges are relatively expensive and get undone in
 # _consume().
 if self._read_buffer:
 while True:
 loc = self._read_buffer[0].find(self._read_delimiter)
 if loc != -1:
 delimiter_len = len(self._read_delimiter)
 self._check_max_bytes(self._read_delimiter,
 loc + delimiter_len)
 return loc + delimiter_len
 if len(self._read_buffer) == 1:
 break
 _double_prefix(self._read_buffer)
 self._check_max_bytes(self._read_delimiter,
 len(self._read_buffer[0]))
 elif self._read_regex is not None:
 if self._read_buffer:
 while True:
 m = self._read_regex.search(self._read_buffer[0])
 if m is not None:
 self._check_max_bytes(self._read_regex, m.end())
 return m.end()
 if len(self._read_buffer) == 1:
 break
 _double_prefix(self._read_buffer)
 self._check_max_bytes(self._read_regex,
 len(self._read_buffer[0]))
 return None

 def _check_max_bytes(self, delimiter, size):
 if (self._read_max_bytes is not None and
 size > self._read_max_bytes):
 raise UnsatisfiableReadError(
 "delimiter %r not found within %d bytes" % (
 delimiter, self._read_max_bytes))

 def _handle_write(self):
 while self._write_buffer:
 try:
 if not self._write_buffer_frozen:
 # On windows, socket.send blows up if given a
 # write buffer that's too large, instead of just
 # returning the number of bytes it was able to
 # process. Therefore we must not call socket.send
 # with more than 128KB at a time.
 _merge_prefix(self._write_buffer, 128 * 1024)
 num_bytes = self.write_to_fd(self._write_buffer[0])
 if num_bytes == 0:
 # With OpenSSL, if we couldn't write the entire buffer,
 # the very same string object must be used on the
 # next call to send. Therefore we suppress
 # merging the write buffer after an incomplete send.
 # A cleaner solution would be to set
 # SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER, but this is
 # not yet accessible from python
 # (http://bugs.python.org/issue8240)
 self._write_buffer_frozen = True
 break
 self._write_buffer_frozen = False
 _merge_prefix(self._write_buffer, num_bytes)
 self._write_buffer.popleft()
 self._write_buffer_size -= num_bytes
 except (socket.error, IOError, OSError) as e:
 if e.args[0] in _ERRNO_WOULDBLOCK:
 self._write_buffer_frozen = True
 break
 else:
 if not self._is_connreset(e):
 # Broken pipe errors are usually caused by connection
 # reset, and its better to not log EPIPE errors to
 # minimize log spam
 gen_log.warning("Write error on %s: %s",
 self.fileno(), e)
 self.close(exc_info=True)
 return
 if not self._write_buffer:
 if self._write_callback:
 callback = self._write_callback
 self._write_callback = None
 self._run_callback(callback)
 if self._write_future:
 future = self._write_future
 self._write_future = None
 future.set_result(None)

 def _consume(self, loc):
 if loc == 0:
 return b""
 _merge_prefix(self._read_buffer, loc)
 self._read_buffer_size -= loc
 return self._read_buffer.popleft()

 def _check_closed(self):
 if self.closed():
 raise StreamClosedError(real_error=self.error)

 def _maybe_add_error_listener(self):
 # This method is part of an optimization: to detect a connection that
 # is closed when we're not actively reading or writing, we must listen
 # for read events. However, it is inefficient to do this when the
 # connection is first established because we are going to read or write
 # immediately anyway. Instead, we insert checks at various times to
 # see if the connection is idle and add the read listener then.
 if self._pending_callbacks != 0:
 return
 if self._state is None or self._state == ioloop.IOLoop.ERROR:
 if self.closed():
 self._maybe_run_close_callback()
 elif (self._read_buffer_size == 0 and
 self._close_callback is not None):
 self._add_io_state(ioloop.IOLoop.READ)

 def _add_io_state(self, state):
 """Adds `state` (IOLoop.{READ,WRITE} flags) to our event handler.

 Implementation notes: Reads and writes have a fast path and a
 slow path. The fast path reads synchronously from socket
 buffers, while the slow path uses `_add_io_state` to schedule
 an IOLoop callback. Note that in both cases, the callback is
 run asynchronously with `_run_callback`.

 To detect closed connections, we must have called
 `_add_io_state` at some point, but we want to delay this as
 much as possible so we don't have to set an `IOLoop.ERROR`
 listener that will be overwritten by the next slow-path
 operation. As long as there are callbacks scheduled for
 fast-path ops, those callbacks may do more reads.
 If a sequence of fast-path ops do not end in a slow-path op,
 (e.g. for an @asynchronous long-poll request), we must add
 the error handler. This is done in `_run_callback` and `write`
 (since the write callback is optional so we can have a
 fast-path write with no `_run_callback`)
 """
 if self.closed():
 # connection has been closed, so there can be no future events
 return
 if self._state is None:
 self._state = ioloop.IOLoop.ERROR | state
 with stack_context.NullContext():
 self.io_loop.add_handler(
 self.fileno(), self._handle_events, self._state)
 elif not self._state & state:
 self._state = self._state | state
 self.io_loop.update_handler(self.fileno(), self._state)

 def _is_connreset(self, exc):
 """Return true if exc is ECONNRESET or equivalent.

 May be overridden in subclasses.
 """
 return (isinstance(exc, (socket.error, IOError)) and
 errno_from_exception(exc) in _ERRNO_CONNRESET)

[docs]class IOStream(BaseIOStream):
 r"""Socket-based `IOStream` implementation.

 This class supports the read and write methods from `BaseIOStream`
 plus a `connect` method.

 The ``socket`` parameter may either be connected or unconnected.
 For server operations the socket is the result of calling
 `socket.accept <socket.socket.accept>`. For client operations the
 socket is created with `socket.socket`, and may either be
 connected before passing it to the `IOStream` or connected with
 `IOStream.connect`.

 A very simple (and broken) HTTP client using this class:

 .. testcode::

 import tornado.ioloop
 import tornado.iostream
 import socket

 def send_request():
 stream.write(b"GET / HTTP/1.0\r\nHost: friendfeed.com\r\n\r\n")
 stream.read_until(b"\r\n\r\n", on_headers)

 def on_headers(data):
 headers = {}
 for line in data.split(b"\r\n"):
 parts = line.split(b":")
 if len(parts) == 2:
 headers[parts[0].strip()] = parts[1].strip()
 stream.read_bytes(int(headers[b"Content-Length"]), on_body)

 def on_body(data):
 print(data)
 stream.close()
 tornado.ioloop.IOLoop.current().stop()

 if __name__ == '__main__':
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
 stream = tornado.iostream.IOStream(s)
 stream.connect(("friendfeed.com", 80), send_request)
 tornado.ioloop.IOLoop.current().start()

 .. testoutput::
 :hide:

 """
 def __init__(self, socket, *args, **kwargs):
 self.socket = socket
 self.socket.setblocking(False)
 super(IOStream, self).__init__(*args, **kwargs)

 def fileno(self):
 return self.socket

 def close_fd(self):
 self.socket.close()
 self.socket = None

 def get_fd_error(self):
 errno = self.socket.getsockopt(socket.SOL_SOCKET,
 socket.SO_ERROR)
 return socket.error(errno, os.strerror(errno))

 def read_from_fd(self):
 try:
 chunk = self.socket.recv(self.read_chunk_size)
 except socket.error as e:
 if e.args[0] in _ERRNO_WOULDBLOCK:
 return None
 else:
 raise
 if not chunk:
 self.close()
 return None
 return chunk

 def write_to_fd(self, data):
 return self.socket.send(data)

[docs] def connect(self, address, callback=None, server_hostname=None):
 """Connects the socket to a remote address without blocking.

 May only be called if the socket passed to the constructor was
 not previously connected. The address parameter is in the
 same format as for `socket.connect <socket.socket.connect>` for
 the type of socket passed to the IOStream constructor,
 e.g. an ``(ip, port)`` tuple. Hostnames are accepted here,
 but will be resolved synchronously and block the IOLoop.
 If you have a hostname instead of an IP address, the `.TCPClient`
 class is recommended instead of calling this method directly.
 `.TCPClient` will do asynchronous DNS resolution and handle
 both IPv4 and IPv6.

 If ``callback`` is specified, it will be called with no
 arguments when the connection is completed; if not this method
 returns a `.Future` (whose result after a successful
 connection will be the stream itself).

 In SSL mode, the ``server_hostname`` parameter will be used
 for certificate validation (unless disabled in the
 ``ssl_options``) and SNI (if supported; requires Python
 2.7.9+).

 Note that it is safe to call `IOStream.write
 <BaseIOStream.write>` while the connection is pending, in
 which case the data will be written as soon as the connection
 is ready. Calling `IOStream` read methods before the socket is
 connected works on some platforms but is non-portable.

 .. versionchanged:: 4.0
 If no callback is given, returns a `.Future`.

 .. versionchanged:: 4.2
 SSL certificates are validated by default; pass
 ``ssl_options=dict(cert_reqs=ssl.CERT_NONE)`` or a
 suitably-configured `ssl.SSLContext` to the
 `SSLIOStream` constructor to disable.
 """
 self._connecting = True
 if callback is not None:
 self._connect_callback = stack_context.wrap(callback)
 future = None
 else:
 future = self._connect_future = TracebackFuture()
 try:
 self.socket.connect(address)
 except socket.error as e:
 # In non-blocking mode we expect connect() to raise an
 # exception with EINPROGRESS or EWOULDBLOCK.
 #
 # On freebsd, other errors such as ECONNREFUSED may be
 # returned immediately when attempting to connect to
 # localhost, so handle them the same way as an error
 # reported later in _handle_connect.
 if (errno_from_exception(e) not in _ERRNO_INPROGRESS and
 errno_from_exception(e) not in _ERRNO_WOULDBLOCK):
 if future is None:
 gen_log.warning("Connect error on fd %s: %s",
 self.socket.fileno(), e)
 self.close(exc_info=True)
 return future
 self._add_io_state(self.io_loop.WRITE)
 return future

[docs] def start_tls(self, server_side, ssl_options=None, server_hostname=None):
 """Convert this `IOStream` to an `SSLIOStream`.

 This enables protocols that begin in clear-text mode and
 switch to SSL after some initial negotiation (such as the
 ``STARTTLS`` extension to SMTP and IMAP).

 This method cannot be used if there are outstanding reads
 or writes on the stream, or if there is any data in the
 IOStream's buffer (data in the operating system's socket
 buffer is allowed). This means it must generally be used
 immediately after reading or writing the last clear-text
 data. It can also be used immediately after connecting,
 before any reads or writes.

 The ``ssl_options`` argument may be either an `ssl.SSLContext`
 object or a dictionary of keyword arguments for the
 `ssl.wrap_socket` function. The ``server_hostname`` argument
 will be used for certificate validation unless disabled
 in the ``ssl_options``.

 This method returns a `.Future` whose result is the new
 `SSLIOStream`. After this method has been called,
 any other operation on the original stream is undefined.

 If a close callback is defined on this stream, it will be
 transferred to the new stream.

 .. versionadded:: 4.0

 .. versionchanged:: 4.2
 SSL certificates are validated by default; pass
 ``ssl_options=dict(cert_reqs=ssl.CERT_NONE)`` or a
 suitably-configured `ssl.SSLContext` to disable.
 """
 if (self._read_callback or self._read_future or
 self._write_callback or self._write_future or
 self._connect_callback or self._connect_future or
 self._pending_callbacks or self._closed or
 self._read_buffer or self._write_buffer):
 raise ValueError("IOStream is not idle; cannot convert to SSL")
 if ssl_options is None:
 if server_side:
 ssl_options = _server_ssl_defaults
 else:
 ssl_options = _client_ssl_defaults

 socket = self.socket
 self.io_loop.remove_handler(socket)
 self.socket = None
 socket = ssl_wrap_socket(socket, ssl_options,
 server_hostname=server_hostname,
 server_side=server_side,
 do_handshake_on_connect=False)
 orig_close_callback = self._close_callback
 self._close_callback = None

 future = TracebackFuture()
 ssl_stream = SSLIOStream(socket, ssl_options=ssl_options,
 io_loop=self.io_loop)
 # Wrap the original close callback so we can fail our Future as well.
 # If we had an "unwrap" counterpart to this method we would need
 # to restore the original callback after our Future resolves
 # so that repeated wrap/unwrap calls don't build up layers.

 def close_callback():
 if not future.done():
 # Note that unlike most Futures returned by IOStream,
 # this one passes the underlying error through directly
 # instead of wrapping everything in a StreamClosedError
 # with a real_error attribute. This is because once the
 # connection is established it's more helpful to raise
 # the SSLError directly than to hide it behind a
 # StreamClosedError (and the client is expecting SSL
 # issues rather than network issues since this method is
 # named start_tls).
 future.set_exception(ssl_stream.error or StreamClosedError())
 if orig_close_callback is not None:
 orig_close_callback()
 ssl_stream.set_close_callback(close_callback)
 ssl_stream._ssl_connect_callback = lambda: future.set_result(ssl_stream)
 ssl_stream.max_buffer_size = self.max_buffer_size
 ssl_stream.read_chunk_size = self.read_chunk_size
 return future

 def _handle_connect(self):
 err = self.socket.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR)
 if err != 0:
 self.error = socket.error(err, os.strerror(err))
 # IOLoop implementations may vary: some of them return
 # an error state before the socket becomes writable, so
 # in that case a connection failure would be handled by the
 # error path in _handle_events instead of here.
 if self._connect_future is None:
 gen_log.warning("Connect error on fd %s: %s",
 self.socket.fileno(), errno.errorcode[err])
 self.close()
 return
 if self._connect_callback is not None:
 callback = self._connect_callback
 self._connect_callback = None
 self._run_callback(callback)
 if self._connect_future is not None:
 future = self._connect_future
 self._connect_future = None
 future.set_result(self)
 self._connecting = False

 def set_nodelay(self, value):
 if (self.socket is not None and
 self.socket.family in (socket.AF_INET, socket.AF_INET6)):
 try:
 self.socket.setsockopt(socket.IPPROTO_TCP,
 socket.TCP_NODELAY, 1 if value else 0)
 except socket.error as e:
 # Sometimes setsockopt will fail if the socket is closed
 # at the wrong time. This can happen with HTTPServer
 # resetting the value to false between requests.
 if e.errno != errno.EINVAL and not self._is_connreset(e):
 raise

[docs]class SSLIOStream(IOStream):
 """A utility class to write to and read from a non-blocking SSL socket.

 If the socket passed to the constructor is already connected,
 it should be wrapped with::

 ssl.wrap_socket(sock, do_handshake_on_connect=False, **kwargs)

 before constructing the `SSLIOStream`. Unconnected sockets will be
 wrapped when `IOStream.connect` is finished.
 """
 def __init__(self, *args, **kwargs):
 """The ``ssl_options`` keyword argument may either be an
 `ssl.SSLContext` object or a dictionary of keywords arguments
 for `ssl.wrap_socket`
 """
 self._ssl_options = kwargs.pop('ssl_options', _client_ssl_defaults)
 super(SSLIOStream, self).__init__(*args, **kwargs)
 self._ssl_accepting = True
 self._handshake_reading = False
 self._handshake_writing = False
 self._ssl_connect_callback = None
 self._server_hostname = None

 # If the socket is already connected, attempt to start the handshake.
 try:
 self.socket.getpeername()
 except socket.error:
 pass
 else:
 # Indirectly start the handshake, which will run on the next
 # IOLoop iteration and then the real IO state will be set in
 # _handle_events.
 self._add_io_state(self.io_loop.WRITE)

 def reading(self):
 return self._handshake_reading or super(SSLIOStream, self).reading()

 def writing(self):
 return self._handshake_writing or super(SSLIOStream, self).writing()

 def _do_ssl_handshake(self):
 # Based on code from test_ssl.py in the python stdlib
 try:
 self._handshake_reading = False
 self._handshake_writing = False
 self.socket.do_handshake()
 except ssl.SSLError as err:
 if err.args[0] == ssl.SSL_ERROR_WANT_READ:
 self._handshake_reading = True
 return
 elif err.args[0] == ssl.SSL_ERROR_WANT_WRITE:
 self._handshake_writing = True
 return
 elif err.args[0] in (ssl.SSL_ERROR_EOF,
 ssl.SSL_ERROR_ZERO_RETURN):
 return self.close(exc_info=True)
 elif err.args[0] == ssl.SSL_ERROR_SSL:
 try:
 peer = self.socket.getpeername()
 except Exception:
 peer = '(not connected)'
 gen_log.warning("SSL Error on %s %s: %s",
 self.socket.fileno(), peer, err)
 return self.close(exc_info=True)
 raise
 except socket.error as err:
 # Some port scans (e.g. nmap in -sT mode) have been known
 # to cause do_handshake to raise EBADF and ENOTCONN, so make
 # those errors quiet as well.
 # https://groups.google.com/forum/?fromgroups#!topic/python-tornado/ApucKJat1_0
 if (self._is_connreset(err) or
 err.args[0] in (errno.EBADF, errno.ENOTCONN)):
 return self.close(exc_info=True)
 raise
 except AttributeError:
 # On Linux, if the connection was reset before the call to
 # wrap_socket, do_handshake will fail with an
 # AttributeError.
 return self.close(exc_info=True)
 else:
 self._ssl_accepting = False
 if not self._verify_cert(self.socket.getpeercert()):
 self.close()
 return
 self._run_ssl_connect_callback()

 def _run_ssl_connect_callback(self):
 if self._ssl_connect_callback is not None:
 callback = self._ssl_connect_callback
 self._ssl_connect_callback = None
 self._run_callback(callback)
 if self._ssl_connect_future is not None:
 future = self._ssl_connect_future
 self._ssl_connect_future = None
 future.set_result(self)

 def _verify_cert(self, peercert):
 """Returns True if peercert is valid according to the configured
 validation mode and hostname.

 The ssl handshake already tested the certificate for a valid
 CA signature; the only thing that remains is to check
 the hostname.
 """
 if isinstance(self._ssl_options, dict):
 verify_mode = self._ssl_options.get('cert_reqs', ssl.CERT_NONE)
 elif isinstance(self._ssl_options, ssl.SSLContext):
 verify_mode = self._ssl_options.verify_mode
 assert verify_mode in (ssl.CERT_NONE, ssl.CERT_REQUIRED, ssl.CERT_OPTIONAL)
 if verify_mode == ssl.CERT_NONE or self._server_hostname is None:
 return True
 cert = self.socket.getpeercert()
 if cert is None and verify_mode == ssl.CERT_REQUIRED:
 gen_log.warning("No SSL certificate given")
 return False
 try:
 ssl_match_hostname(peercert, self._server_hostname)
 except SSLCertificateError as e:
 gen_log.warning("Invalid SSL certificate: %s" % e)
 return False
 else:
 return True

 def _handle_read(self):
 if self._ssl_accepting:
 self._do_ssl_handshake()
 return
 super(SSLIOStream, self)._handle_read()

 def _handle_write(self):
 if self._ssl_accepting:
 self._do_ssl_handshake()
 return
 super(SSLIOStream, self)._handle_write()

 def connect(self, address, callback=None, server_hostname=None):
 self._server_hostname = server_hostname
 # Pass a dummy callback to super.connect(), which is slightly
 # more efficient than letting it return a Future we ignore.
 super(SSLIOStream, self).connect(address, callback=lambda: None)
 return self.wait_for_handshake(callback)

 def _handle_connect(self):
 # Call the superclass method to check for errors.
 super(SSLIOStream, self)._handle_connect()
 if self.closed():
 return
 # When the connection is complete, wrap the socket for SSL
 # traffic. Note that we do this by overriding _handle_connect
 # instead of by passing a callback to super().connect because
 # user callbacks are enqueued asynchronously on the IOLoop,
 # but since _handle_events calls _handle_connect immediately
 # followed by _handle_write we need this to be synchronous.
 #
 # The IOLoop will get confused if we swap out self.socket while the
 # fd is registered, so remove it now and re-register after
 # wrap_socket().
 self.io_loop.remove_handler(self.socket)
 old_state = self._state
 self._state = None
 self.socket = ssl_wrap_socket(self.socket, self._ssl_options,
 server_hostname=self._server_hostname,
 do_handshake_on_connect=False)
 self._add_io_state(old_state)

[docs] def wait_for_handshake(self, callback=None):
 """Wait for the initial SSL handshake to complete.

 If a ``callback`` is given, it will be called with no
 arguments once the handshake is complete; otherwise this
 method returns a `.Future` which will resolve to the
 stream itself after the handshake is complete.

 Once the handshake is complete, information such as
 the peer's certificate and NPN/ALPN selections may be
 accessed on ``self.socket``.

 This method is intended for use on server-side streams
 or after using `IOStream.start_tls`; it should not be used
 with `IOStream.connect` (which already waits for the
 handshake to complete). It may only be called once per stream.

 .. versionadded:: 4.2
 """
 if (self._ssl_connect_callback is not None or
 self._ssl_connect_future is not None):
 raise RuntimeError("Already waiting")
 if callback is not None:
 self._ssl_connect_callback = stack_context.wrap(callback)
 future = None
 else:
 future = self._ssl_connect_future = TracebackFuture()
 if not self._ssl_accepting:
 self._run_ssl_connect_callback()
 return future

 def write_to_fd(self, data):
 try:
 return self.socket.send(data)
 except ssl.SSLError as e:
 if e.args[0] == ssl.SSL_ERROR_WANT_WRITE:
 # In Python 3.5+, SSLSocket.send raises a WANT_WRITE error if
 # the socket is not writeable; we need to transform this into
 # an EWOULDBLOCK socket.error or a zero return value,
 # either of which will be recognized by the caller of this
 # method. Prior to Python 3.5, an unwriteable socket would
 # simply return 0 bytes written.
 return 0
 raise

 def read_from_fd(self):
 if self._ssl_accepting:
 # If the handshake hasn't finished yet, there can't be anything
 # to read (attempting to read may or may not raise an exception
 # depending on the SSL version)
 return None
 try:
 # SSLSocket objects have both a read() and recv() method,
 # while regular sockets only have recv().
 # The recv() method blocks (at least in python 2.6) if it is
 # called when there is nothing to read, so we have to use
 # read() instead.
 chunk = self.socket.read(self.read_chunk_size)
 except ssl.SSLError as e:
 # SSLError is a subclass of socket.error, so this except
 # block must come first.
 if e.args[0] == ssl.SSL_ERROR_WANT_READ:
 return None
 else:
 raise
 except socket.error as e:
 if e.args[0] in _ERRNO_WOULDBLOCK:
 return None
 else:
 raise
 if not chunk:
 self.close()
 return None
 return chunk

 def _is_connreset(self, e):
 if isinstance(e, ssl.SSLError) and e.args[0] == ssl.SSL_ERROR_EOF:
 return True
 return super(SSLIOStream, self)._is_connreset(e)

[docs]class PipeIOStream(BaseIOStream):
 """Pipe-based `IOStream` implementation.

 The constructor takes an integer file descriptor (such as one returned
 by `os.pipe`) rather than an open file object. Pipes are generally
 one-way, so a `PipeIOStream` can be used for reading or writing but not
 both.
 """
 def __init__(self, fd, *args, **kwargs):
 self.fd = fd
 _set_nonblocking(fd)
 super(PipeIOStream, self).__init__(*args, **kwargs)

 def fileno(self):
 return self.fd

 def close_fd(self):
 os.close(self.fd)

 def write_to_fd(self, data):
 return os.write(self.fd, data)

 def read_from_fd(self):
 try:
 chunk = os.read(self.fd, self.read_chunk_size)
 except (IOError, OSError) as e:
 if errno_from_exception(e) in _ERRNO_WOULDBLOCK:
 return None
 elif errno_from_exception(e) == errno.EBADF:
 # If the writing half of a pipe is closed, select will
 # report it as readable but reads will fail with EBADF.
 self.close(exc_info=True)
 return None
 else:
 raise
 if not chunk:
 self.close()
 return None
 return chunk

def _double_prefix(deque):
 """Grow by doubling, but don't split the second chunk just because the
 first one is small.
 """
 new_len = max(len(deque[0]) * 2,
 (len(deque[0]) + len(deque[1])))
 _merge_prefix(deque, new_len)

def _merge_prefix(deque, size):
 """Replace the first entries in a deque of strings with a single
 string of up to size bytes.

 >>> d = collections.deque(['abc', 'de', 'fghi', 'j'])
 >>> _merge_prefix(d, 5); print(d)
 deque(['abcde', 'fghi', 'j'])

 Strings will be split as necessary to reach the desired size.
 >>> _merge_prefix(d, 7); print(d)
 deque(['abcdefg', 'hi', 'j'])

 >>> _merge_prefix(d, 3); print(d)
 deque(['abc', 'defg', 'hi', 'j'])

 >>> _merge_prefix(d, 100); print(d)
 deque(['abcdefghij'])
 """
 if len(deque) == 1 and len(deque[0]) <= size:
 return
 prefix = []
 remaining = size
 while deque and remaining > 0:
 chunk = deque.popleft()
 if len(chunk) > remaining:
 deque.appendleft(chunk[remaining:])
 chunk = chunk[:remaining]
 prefix.append(chunk)
 remaining -= len(chunk)
 # This data structure normally just contains byte strings, but
 # the unittest gets messy if it doesn't use the default str() type,
 # so do the merge based on the type of data that's actually present.
 if prefix:
 deque.appendleft(type(prefix[0])().join(prefix))
 if not deque:
 deque.appendleft(b"")

def doctests():
 import doctest
 return doctest.DocTestSuite()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/stack_context.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.stack_context

#!/usr/bin/env python
#
Copyright 2010 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""`StackContext` allows applications to maintain threadlocal-like state
that follows execution as it moves to other execution contexts.

The motivating examples are to eliminate the need for explicit
``async_callback`` wrappers (as in `tornado.web.RequestHandler`), and to
allow some additional context to be kept for logging.

This is slightly magic, but it's an extension of the idea that an
exception handler is a kind of stack-local state and when that stack
is suspended and resumed in a new context that state needs to be
preserved. `StackContext` shifts the burden of restoring that state
from each call site (e.g. wrapping each `.AsyncHTTPClient` callback
in ``async_callback``) to the mechanisms that transfer control from
one context to another (e.g. `.AsyncHTTPClient` itself, `.IOLoop`,
thread pools, etc).

Example usage::

 @contextlib.contextmanager
 def die_on_error():
 try:
 yield
 except Exception:
 logging.error("exception in asynchronous operation",exc_info=True)
 sys.exit(1)

 with StackContext(die_on_error):
 # Any exception thrown here *or in callback and its descendants*
 # will cause the process to exit instead of spinning endlessly
 # in the ioloop.
 http_client.fetch(url, callback)
 ioloop.start()

Most applications shouldn't have to work with `StackContext` directly.
Here are a few rules of thumb for when it's necessary:

* If you're writing an asynchronous library that doesn't rely on a
 stack_context-aware library like `tornado.ioloop` or `tornado.iostream`
 (for example, if you're writing a thread pool), use
 `.stack_context.wrap()` before any asynchronous operations to capture the
 stack context from where the operation was started.

* If you're writing an asynchronous library that has some shared
 resources (such as a connection pool), create those shared resources
 within a ``with stack_context.NullContext():`` block. This will prevent
 ``StackContexts`` from leaking from one request to another.

* If you want to write something like an exception handler that will
 persist across asynchronous calls, create a new `StackContext` (or
 `ExceptionStackContext`), and make your asynchronous calls in a ``with``
 block that references your `StackContext`.
"""

from __future__ import absolute_import, division, print_function, with_statement

import sys
import threading

from tornado.util import raise_exc_info

class StackContextInconsistentError(Exception):
 pass

class _State(threading.local):
 def __init__(self):
 self.contexts = (tuple(), None)
_state = _State()

[docs]class StackContext(object):
 """Establishes the given context as a StackContext that will be transferred.

 Note that the parameter is a callable that returns a context
 manager, not the context itself. That is, where for a
 non-transferable context manager you would say::

 with my_context():

 StackContext takes the function itself rather than its result::

 with StackContext(my_context):

 The result of ``with StackContext() as cb:`` is a deactivation
 callback. Run this callback when the StackContext is no longer
 needed to ensure that it is not propagated any further (note that
 deactivating a context does not affect any instances of that
 context that are currently pending). This is an advanced feature
 and not necessary in most applications.
 """
 def __init__(self, context_factory):
 self.context_factory = context_factory
 self.contexts = []
 self.active = True

 def _deactivate(self):
 self.active = False

 # StackContext protocol
 def enter(self):
 context = self.context_factory()
 self.contexts.append(context)
 context.__enter__()

 def exit(self, type, value, traceback):
 context = self.contexts.pop()
 context.__exit__(type, value, traceback)

 # Note that some of this code is duplicated in ExceptionStackContext
 # below. ExceptionStackContext is more common and doesn't need
 # the full generality of this class.
 def __enter__(self):
 self.old_contexts = _state.contexts
 self.new_contexts = (self.old_contexts[0] + (self,), self)
 _state.contexts = self.new_contexts

 try:
 self.enter()
 except:
 _state.contexts = self.old_contexts
 raise

 return self._deactivate

 def __exit__(self, type, value, traceback):
 try:
 self.exit(type, value, traceback)
 finally:
 final_contexts = _state.contexts
 _state.contexts = self.old_contexts

 # Generator coroutines and with-statements with non-local
 # effects interact badly. Check here for signs of
 # the stack getting out of sync.
 # Note that this check comes after restoring _state.context
 # so that if it fails things are left in a (relatively)
 # consistent state.
 if final_contexts is not self.new_contexts:
 raise StackContextInconsistentError(
 'stack_context inconsistency (may be caused by yield '
 'within a "with StackContext" block)')

 # Break up a reference to itself to allow for faster GC on CPython.
 self.new_contexts = None

[docs]class ExceptionStackContext(object):
 """Specialization of StackContext for exception handling.

 The supplied ``exception_handler`` function will be called in the
 event of an uncaught exception in this context. The semantics are
 similar to a try/finally clause, and intended use cases are to log
 an error, close a socket, or similar cleanup actions. The
 ``exc_info`` triple ``(type, value, traceback)`` will be passed to the
 exception_handler function.

 If the exception handler returns true, the exception will be
 consumed and will not be propagated to other exception handlers.
 """
 def __init__(self, exception_handler):
 self.exception_handler = exception_handler
 self.active = True

 def _deactivate(self):
 self.active = False

 def exit(self, type, value, traceback):
 if type is not None:
 return self.exception_handler(type, value, traceback)

 def __enter__(self):
 self.old_contexts = _state.contexts
 self.new_contexts = (self.old_contexts[0], self)
 _state.contexts = self.new_contexts

 return self._deactivate

 def __exit__(self, type, value, traceback):
 try:
 if type is not None:
 return self.exception_handler(type, value, traceback)
 finally:
 final_contexts = _state.contexts
 _state.contexts = self.old_contexts

 if final_contexts is not self.new_contexts:
 raise StackContextInconsistentError(
 'stack_context inconsistency (may be caused by yield '
 'within a "with StackContext" block)')

 # Break up a reference to itself to allow for faster GC on CPython.
 self.new_contexts = None

[docs]class NullContext(object):
 """Resets the `StackContext`.

 Useful when creating a shared resource on demand (e.g. an
 `.AsyncHTTPClient`) where the stack that caused the creating is
 not relevant to future operations.
 """
 def __enter__(self):
 self.old_contexts = _state.contexts
 _state.contexts = (tuple(), None)

 def __exit__(self, type, value, traceback):
 _state.contexts = self.old_contexts

def _remove_deactivated(contexts):
 """Remove deactivated handlers from the chain"""
 # Clean ctx handlers
 stack_contexts = tuple([h for h in contexts[0] if h.active])

 # Find new head
 head = contexts[1]
 while head is not None and not head.active:
 head = head.old_contexts[1]

 # Process chain
 ctx = head
 while ctx is not None:
 parent = ctx.old_contexts[1]

 while parent is not None:
 if parent.active:
 break
 ctx.old_contexts = parent.old_contexts
 parent = parent.old_contexts[1]

 ctx = parent

 return (stack_contexts, head)

[docs]def wrap(fn):
 """Returns a callable object that will restore the current `StackContext`
 when executed.

 Use this whenever saving a callback to be executed later in a
 different execution context (either in a different thread or
 asynchronously in the same thread).
 """
 # Check if function is already wrapped
 if fn is None or hasattr(fn, '_wrapped'):
 return fn

 # Capture current stack head
 # TODO: Any other better way to store contexts and update them in wrapped function?
 cap_contexts = [_state.contexts]

 if not cap_contexts[0][0] and not cap_contexts[0][1]:
 # Fast path when there are no active contexts.
 def null_wrapper(*args, **kwargs):
 try:
 current_state = _state.contexts
 _state.contexts = cap_contexts[0]
 return fn(*args, **kwargs)
 finally:
 _state.contexts = current_state
 null_wrapper._wrapped = True
 return null_wrapper

 def wrapped(*args, **kwargs):
 ret = None
 try:
 # Capture old state
 current_state = _state.contexts

 # Remove deactivated items
 cap_contexts[0] = contexts = _remove_deactivated(cap_contexts[0])

 # Force new state
 _state.contexts = contexts

 # Current exception
 exc = (None, None, None)
 top = None

 # Apply stack contexts
 last_ctx = 0
 stack = contexts[0]

 # Apply state
 for n in stack:
 try:
 n.enter()
 last_ctx += 1
 except:
 # Exception happened. Record exception info and store top-most handler
 exc = sys.exc_info()
 top = n.old_contexts[1]

 # Execute callback if no exception happened while restoring state
 if top is None:
 try:
 ret = fn(*args, **kwargs)
 except:
 exc = sys.exc_info()
 top = contexts[1]

 # If there was exception, try to handle it by going through the exception chain
 if top is not None:
 exc = _handle_exception(top, exc)
 else:
 # Otherwise take shorter path and run stack contexts in reverse order
 while last_ctx > 0:
 last_ctx -= 1
 c = stack[last_ctx]

 try:
 c.exit(*exc)
 except:
 exc = sys.exc_info()
 top = c.old_contexts[1]
 break
 else:
 top = None

 # If if exception happened while unrolling, take longer exception handler path
 if top is not None:
 exc = _handle_exception(top, exc)

 # If exception was not handled, raise it
 if exc != (None, None, None):
 raise_exc_info(exc)
 finally:
 _state.contexts = current_state
 return ret

 wrapped._wrapped = True
 return wrapped

def _handle_exception(tail, exc):
 while tail is not None:
 try:
 if tail.exit(*exc):
 exc = (None, None, None)
 except:
 exc = sys.exc_info()

 tail = tail.old_contexts[1]

 return exc

[docs]def run_with_stack_context(context, func):
 """Run a coroutine ``func`` in the given `StackContext`.

 It is not safe to have a ``yield`` statement within a ``with StackContext``
 block, so it is difficult to use stack context with `.gen.coroutine`.
 This helper function runs the function in the correct context while
 keeping the ``yield`` and ``with`` statements syntactically separate.

 Example::

 @gen.coroutine
 def incorrect():
 with StackContext(ctx):
 # ERROR: this will raise StackContextInconsistentError
 yield other_coroutine()

 @gen.coroutine
 def correct():
 yield run_with_stack_context(StackContext(ctx), other_coroutine)

 .. versionadded:: 3.1
 """
 with context:
 return func()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/tcpclient.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.tcpclient

#!/usr/bin/env python
#
Copyright 2014 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""A non-blocking TCP connection factory.
"""
from __future__ import absolute_import, division, print_function, with_statement

import functools
import socket

from tornado.concurrent import Future
from tornado.ioloop import IOLoop
from tornado.iostream import IOStream
from tornado import gen
from tornado.netutil import Resolver

_INITIAL_CONNECT_TIMEOUT = 0.3

class _Connector(object):
 """A stateless implementation of the "Happy Eyeballs" algorithm.

 "Happy Eyeballs" is documented in RFC6555 as the recommended practice
 for when both IPv4 and IPv6 addresses are available.

 In this implementation, we partition the addresses by family, and
 make the first connection attempt to whichever address was
 returned first by ``getaddrinfo``. If that connection fails or
 times out, we begin a connection in parallel to the first address
 of the other family. If there are additional failures we retry
 with other addresses, keeping one connection attempt per family
 in flight at a time.

 http://tools.ietf.org/html/rfc6555

 """
 def __init__(self, addrinfo, io_loop, connect):
 self.io_loop = io_loop
 self.connect = connect

 self.future = Future()
 self.timeout = None
 self.last_error = None
 self.remaining = len(addrinfo)
 self.primary_addrs, self.secondary_addrs = self.split(addrinfo)

 @staticmethod
 def split(addrinfo):
 """Partition the ``addrinfo`` list by address family.

 Returns two lists. The first list contains the first entry from
 ``addrinfo`` and all others with the same family, and the
 second list contains all other addresses (normally one list will
 be AF_INET and the other AF_INET6, although non-standard resolvers
 may return additional families).
 """
 primary = []
 secondary = []
 primary_af = addrinfo[0][0]
 for af, addr in addrinfo:
 if af == primary_af:
 primary.append((af, addr))
 else:
 secondary.append((af, addr))
 return primary, secondary

 def start(self, timeout=_INITIAL_CONNECT_TIMEOUT):
 self.try_connect(iter(self.primary_addrs))
 self.set_timout(timeout)
 return self.future

 def try_connect(self, addrs):
 try:
 af, addr = next(addrs)
 except StopIteration:
 # We've reached the end of our queue, but the other queue
 # might still be working. Send a final error on the future
 # only when both queues are finished.
 if self.remaining == 0 and not self.future.done():
 self.future.set_exception(self.last_error or
 IOError("connection failed"))
 return
 future = self.connect(af, addr)
 future.add_done_callback(functools.partial(self.on_connect_done,
 addrs, af, addr))

 def on_connect_done(self, addrs, af, addr, future):
 self.remaining -= 1
 try:
 stream = future.result()
 except Exception as e:
 if self.future.done():
 return
 # Error: try again (but remember what happened so we have an
 # error to raise in the end)
 self.last_error = e
 self.try_connect(addrs)
 if self.timeout is not None:
 # If the first attempt failed, don't wait for the
 # timeout to try an address from the secondary queue.
 self.io_loop.remove_timeout(self.timeout)
 self.on_timeout()
 return
 self.clear_timeout()
 if self.future.done():
 # This is a late arrival; just drop it.
 stream.close()
 else:
 self.future.set_result((af, addr, stream))

 def set_timout(self, timeout):
 self.timeout = self.io_loop.add_timeout(self.io_loop.time() + timeout,
 self.on_timeout)

 def on_timeout(self):
 self.timeout = None
 self.try_connect(iter(self.secondary_addrs))

 def clear_timeout(self):
 if self.timeout is not None:
 self.io_loop.remove_timeout(self.timeout)

[docs]class TCPClient(object):
 """A non-blocking TCP connection factory.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 def __init__(self, resolver=None, io_loop=None):
 self.io_loop = io_loop or IOLoop.current()
 if resolver is not None:
 self.resolver = resolver
 self._own_resolver = False
 else:
 self.resolver = Resolver(io_loop=io_loop)
 self._own_resolver = True

 def close(self):
 if self._own_resolver:
 self.resolver.close()

 @gen.coroutine
[docs] def connect(self, host, port, af=socket.AF_UNSPEC, ssl_options=None,
 max_buffer_size=None):
 """Connect to the given host and port.

 Asynchronously returns an `.IOStream` (or `.SSLIOStream` if
 ``ssl_options`` is not None).
 """
 addrinfo = yield self.resolver.resolve(host, port, af)
 connector = _Connector(
 addrinfo, self.io_loop,
 functools.partial(self._create_stream, max_buffer_size))
 af, addr, stream = yield connector.start()
 # TODO: For better performance we could cache the (af, addr)
 # information here and re-use it on subsequent connections to
 # the same host. (http://tools.ietf.org/html/rfc6555#section-4.2)
 if ssl_options is not None:
 stream = yield stream.start_tls(False, ssl_options=ssl_options,
 server_hostname=host)
 raise gen.Return(stream)

 def _create_stream(self, max_buffer_size, af, addr):
 # Always connect in plaintext; we'll convert to ssl if necessary
 # after one connection has completed.
 try:
 stream = IOStream(socket.socket(af),
 io_loop=self.io_loop,
 max_buffer_size=max_buffer_size)
 except socket.error as e:
 fu = Future()
 fu.set_exception(e)
 return fu
 else:
 return stream.connect(addr)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/tcpserver.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.tcpserver

#!/usr/bin/env python
#
Copyright 2011 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""A non-blocking, single-threaded TCP server."""
from __future__ import absolute_import, division, print_function, with_statement

import errno
import os
import socket

from tornado.log import app_log
from tornado.ioloop import IOLoop
from tornado.iostream import IOStream, SSLIOStream
from tornado.netutil import bind_sockets, add_accept_handler, ssl_wrap_socket
from tornado import process
from tornado.util import errno_from_exception

try:
 import ssl
except ImportError:
 # ssl is not available on Google App Engine.
 ssl = None

[docs]class TCPServer(object):
 r"""A non-blocking, single-threaded TCP server.

 To use `TCPServer`, define a subclass which overrides the `handle_stream`
 method. For example, a simple echo server could be defined like this::

 from tornado.tcpserver import TCPServer
 from tornado.iostream import StreamClosedError
 from tornado import gen

 class EchoServer(TCPServer):
 @gen.coroutine
 def handle_stream(self, stream, address):
 while True:
 try:
 data = yield stream.read_until(b"\n")
 yield stream.write(data)
 except StreamClosedError:
 break

 To make this server serve SSL traffic, send the ``ssl_options`` keyword
 argument with an `ssl.SSLContext` object. For compatibility with older
 versions of Python ``ssl_options`` may also be a dictionary of keyword
 arguments for the `ssl.wrap_socket` method.::

 ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
 ssl_ctx.load_cert_chain(os.path.join(data_dir, "mydomain.crt"),
 os.path.join(data_dir, "mydomain.key"))
 TCPServer(ssl_options=ssl_ctx)

 `TCPServer` initialization follows one of three patterns:

 1. `listen`: simple single-process::

 server = TCPServer()
 server.listen(8888)
 IOLoop.current().start()

 2. `bind`/`start`: simple multi-process::

 server = TCPServer()
 server.bind(8888)
 server.start(0) # Forks multiple sub-processes
 IOLoop.current().start()

 When using this interface, an `.IOLoop` must *not* be passed
 to the `TCPServer` constructor. `start` will always start
 the server on the default singleton `.IOLoop`.

 3. `add_sockets`: advanced multi-process::

 sockets = bind_sockets(8888)
 tornado.process.fork_processes(0)
 server = TCPServer()
 server.add_sockets(sockets)
 IOLoop.current().start()

 The `add_sockets` interface is more complicated, but it can be
 used with `tornado.process.fork_processes` to give you more
 flexibility in when the fork happens. `add_sockets` can
 also be used in single-process servers if you want to create
 your listening sockets in some way other than
 `~tornado.netutil.bind_sockets`.

 .. versionadded:: 3.1
 The ``max_buffer_size`` argument.
 """
 def __init__(self, io_loop=None, ssl_options=None, max_buffer_size=None,
 read_chunk_size=None):
 self.io_loop = io_loop
 self.ssl_options = ssl_options
 self._sockets = {} # fd -> socket object
 self._pending_sockets = []
 self._started = False
 self.max_buffer_size = max_buffer_size
 self.read_chunk_size = read_chunk_size

 # Verify the SSL options. Otherwise we don't get errors until clients
 # connect. This doesn't verify that the keys are legitimate, but
 # the SSL module doesn't do that until there is a connected socket
 # which seems like too much work
 if self.ssl_options is not None and isinstance(self.ssl_options, dict):
 # Only certfile is required: it can contain both keys
 if 'certfile' not in self.ssl_options:
 raise KeyError('missing key "certfile" in ssl_options')

 if not os.path.exists(self.ssl_options['certfile']):
 raise ValueError('certfile "%s" does not exist' %
 self.ssl_options['certfile'])
 if ('keyfile' in self.ssl_options and
 not os.path.exists(self.ssl_options['keyfile'])):
 raise ValueError('keyfile "%s" does not exist' %
 self.ssl_options['keyfile'])

[docs] def listen(self, port, address=""):
 """Starts accepting connections on the given port.

 This method may be called more than once to listen on multiple ports.
 `listen` takes effect immediately; it is not necessary to call
 `TCPServer.start` afterwards. It is, however, necessary to start
 the `.IOLoop`.
 """
 sockets = bind_sockets(port, address=address)
 self.add_sockets(sockets)

[docs] def add_sockets(self, sockets):
 """Makes this server start accepting connections on the given sockets.

 The ``sockets`` parameter is a list of socket objects such as
 those returned by `~tornado.netutil.bind_sockets`.
 `add_sockets` is typically used in combination with that
 method and `tornado.process.fork_processes` to provide greater
 control over the initialization of a multi-process server.
 """
 if self.io_loop is None:
 self.io_loop = IOLoop.current()

 for sock in sockets:
 self._sockets[sock.fileno()] = sock
 add_accept_handler(sock, self._handle_connection,
 io_loop=self.io_loop)

[docs] def add_socket(self, socket):
 """Singular version of `add_sockets`. Takes a single socket object."""
 self.add_sockets([socket])

[docs] def bind(self, port, address=None, family=socket.AF_UNSPEC, backlog=128,
 reuse_port=False):
 """Binds this server to the given port on the given address.

 To start the server, call `start`. If you want to run this server
 in a single process, you can call `listen` as a shortcut to the
 sequence of `bind` and `start` calls.

 Address may be either an IP address or hostname. If it's a hostname,
 the server will listen on all IP addresses associated with the
 name. Address may be an empty string or None to listen on all
 available interfaces. Family may be set to either `socket.AF_INET`
 or `socket.AF_INET6` to restrict to IPv4 or IPv6 addresses, otherwise
 both will be used if available.

 The ``backlog`` argument has the same meaning as for
 `socket.listen <socket.socket.listen>`. The ``reuse_port`` argument
 has the same meaning as for `.bind_sockets`.

 This method may be called multiple times prior to `start` to listen
 on multiple ports or interfaces.

 .. versionchanged:: 4.4
 Added the ``reuse_port`` argument.
 """
 sockets = bind_sockets(port, address=address, family=family,
 backlog=backlog, reuse_port=reuse_port)
 if self._started:
 self.add_sockets(sockets)
 else:
 self._pending_sockets.extend(sockets)

[docs] def start(self, num_processes=1):
 """Starts this server in the `.IOLoop`.

 By default, we run the server in this process and do not fork any
 additional child process.

 If num_processes is ``None`` or <= 0, we detect the number of cores
 available on this machine and fork that number of child
 processes. If num_processes is given and > 1, we fork that
 specific number of sub-processes.

 Since we use processes and not threads, there is no shared memory
 between any server code.

 Note that multiple processes are not compatible with the autoreload
 module (or the ``autoreload=True`` option to `tornado.web.Application`
 which defaults to True when ``debug=True``).
 When using multiple processes, no IOLoops can be created or
 referenced until after the call to ``TCPServer.start(n)``.
 """
 assert not self._started
 self._started = True
 if num_processes != 1:
 process.fork_processes(num_processes)
 sockets = self._pending_sockets
 self._pending_sockets = []
 self.add_sockets(sockets)

[docs] def stop(self):
 """Stops listening for new connections.

 Requests currently in progress may still continue after the
 server is stopped.
 """
 for fd, sock in self._sockets.items():
 self.io_loop.remove_handler(fd)
 sock.close()

[docs] def handle_stream(self, stream, address):
 """Override to handle a new `.IOStream` from an incoming connection.

 This method may be a coroutine; if so any exceptions it raises
 asynchronously will be logged. Accepting of incoming connections
 will not be blocked by this coroutine.

 If this `TCPServer` is configured for SSL, ``handle_stream``
 may be called before the SSL handshake has completed. Use
 `.SSLIOStream.wait_for_handshake` if you need to verify the client's
 certificate or use NPN/ALPN.

 .. versionchanged:: 4.2
 Added the option for this method to be a coroutine.
 """
 raise NotImplementedError()

 def _handle_connection(self, connection, address):
 if self.ssl_options is not None:
 assert ssl, "Python 2.6+ and OpenSSL required for SSL"
 try:
 connection = ssl_wrap_socket(connection,
 self.ssl_options,
 server_side=True,
 do_handshake_on_connect=False)
 except ssl.SSLError as err:
 if err.args[0] == ssl.SSL_ERROR_EOF:
 return connection.close()
 else:
 raise
 except socket.error as err:
 # If the connection is closed immediately after it is created
 # (as in a port scan), we can get one of several errors.
 # wrap_socket makes an internal call to getpeername,
 # which may return either EINVAL (Mac OS X) or ENOTCONN
 # (Linux). If it returns ENOTCONN, this error is
 # silently swallowed by the ssl module, so we need to
 # catch another error later on (AttributeError in
 # SSLIOStream._do_ssl_handshake).
 # To test this behavior, try nmap with the -sT flag.
 # https://github.com/tornadoweb/tornado/pull/750
 if errno_from_exception(err) in (errno.ECONNABORTED, errno.EINVAL):
 return connection.close()
 else:
 raise
 try:
 if self.ssl_options is not None:
 stream = SSLIOStream(connection, io_loop=self.io_loop,
 max_buffer_size=self.max_buffer_size,
 read_chunk_size=self.read_chunk_size)
 else:
 stream = IOStream(connection, io_loop=self.io_loop,
 max_buffer_size=self.max_buffer_size,
 read_chunk_size=self.read_chunk_size)
 future = self.handle_stream(stream, address)
 if future is not None:
 self.io_loop.add_future(future, lambda f: f.result())
 except Exception:
 app_log.error("Error in connection callback", exc_info=True)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/netutil.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.netutil

#!/usr/bin/env python
#
Copyright 2011 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Miscellaneous network utility code."""

from __future__ import absolute_import, division, print_function, with_statement

import errno
import os
import sys
import socket
import stat

from tornado.concurrent import dummy_executor, run_on_executor
from tornado.ioloop import IOLoop
from tornado.platform.auto import set_close_exec
from tornado.util import PY3, Configurable, errno_from_exception

try:
 import ssl
except ImportError:
 # ssl is not available on Google App Engine
 ssl = None

try:
 import certifi
except ImportError:
 # certifi is optional as long as we have ssl.create_default_context.
 if ssl is None or hasattr(ssl, 'create_default_context'):
 certifi = None
 else:
 raise

if PY3:
 xrange = range

if hasattr(ssl, 'match_hostname') and hasattr(ssl, 'CertificateError'): # python 3.2+
 ssl_match_hostname = ssl.match_hostname
 SSLCertificateError = ssl.CertificateError
elif ssl is None:
 ssl_match_hostname = SSLCertificateError = None # type: ignore
else:
 import backports.ssl_match_hostname
 ssl_match_hostname = backports.ssl_match_hostname.match_hostname
 SSLCertificateError = backports.ssl_match_hostname.CertificateError # type: ignore

if hasattr(ssl, 'SSLContext'):
 if hasattr(ssl, 'create_default_context'):
 # Python 2.7.9+, 3.4+
 # Note that the naming of ssl.Purpose is confusing; the purpose
 # of a context is to authentiate the opposite side of the connection.
 _client_ssl_defaults = ssl.create_default_context(
 ssl.Purpose.SERVER_AUTH)
 _server_ssl_defaults = ssl.create_default_context(
 ssl.Purpose.CLIENT_AUTH)
 else:
 # Python 3.2-3.3
 _client_ssl_defaults = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
 _client_ssl_defaults.verify_mode = ssl.CERT_REQUIRED
 _client_ssl_defaults.load_verify_locations(certifi.where())
 _server_ssl_defaults = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
 if hasattr(ssl, 'OP_NO_COMPRESSION'):
 # Disable TLS compression to avoid CRIME and related attacks.
 # This constant wasn't added until python 3.3.
 _client_ssl_defaults.options |= ssl.OP_NO_COMPRESSION
 _server_ssl_defaults.options |= ssl.OP_NO_COMPRESSION

elif ssl:
 # Python 2.6-2.7.8
 _client_ssl_defaults = dict(cert_reqs=ssl.CERT_REQUIRED,
 ca_certs=certifi.where())
 _server_ssl_defaults = {}
else:
 # Google App Engine
 _client_ssl_defaults = dict(cert_reqs=None,
 ca_certs=None)
 _server_ssl_defaults = {}

ThreadedResolver runs getaddrinfo on a thread. If the hostname is unicode,
getaddrinfo attempts to import encodings.idna. If this is done at
module-import time, the import lock is already held by the main thread,
leading to deadlock. Avoid it by caching the idna encoder on the main
thread now.
u'foo'.encode('idna')

These errnos indicate that a non-blocking operation must be retried
at a later time. On most platforms they're the same value, but on
some they differ.
_ERRNO_WOULDBLOCK = (errno.EWOULDBLOCK, errno.EAGAIN)

if hasattr(errno, "WSAEWOULDBLOCK"):
 _ERRNO_WOULDBLOCK += (errno.WSAEWOULDBLOCK,) # type: ignore

Default backlog used when calling sock.listen()
_DEFAULT_BACKLOG = 128

[docs]def bind_sockets(port, address=None, family=socket.AF_UNSPEC,
 backlog=_DEFAULT_BACKLOG, flags=None, reuse_port=False):
 """Creates listening sockets bound to the given port and address.

 Returns a list of socket objects (multiple sockets are returned if
 the given address maps to multiple IP addresses, which is most common
 for mixed IPv4 and IPv6 use).

 Address may be either an IP address or hostname. If it's a hostname,
 the server will listen on all IP addresses associated with the
 name. Address may be an empty string or None to listen on all
 available interfaces. Family may be set to either `socket.AF_INET`
 or `socket.AF_INET6` to restrict to IPv4 or IPv6 addresses, otherwise
 both will be used if available.

 The ``backlog`` argument has the same meaning as for
 `socket.listen() <socket.socket.listen>`.

 ``flags`` is a bitmask of AI_* flags to `~socket.getaddrinfo`, like
 ``socket.AI_PASSIVE | socket.AI_NUMERICHOST``.

 ``reuse_port`` option sets ``SO_REUSEPORT`` option for every socket
 in the list. If your platform doesn't support this option ValueError will
 be raised.
 """
 if reuse_port and not hasattr(socket, "SO_REUSEPORT"):
 raise ValueError("the platform doesn't support SO_REUSEPORT")

 sockets = []
 if address == "":
 address = None
 if not socket.has_ipv6 and family == socket.AF_UNSPEC:
 # Python can be compiled with --disable-ipv6, which causes
 # operations on AF_INET6 sockets to fail, but does not
 # automatically exclude those results from getaddrinfo
 # results.
 # http://bugs.python.org/issue16208
 family = socket.AF_INET
 if flags is None:
 flags = socket.AI_PASSIVE
 bound_port = None
 for res in set(socket.getaddrinfo(address, port, family, socket.SOCK_STREAM,
 0, flags)):
 af, socktype, proto, canonname, sockaddr = res
 if (sys.platform == 'darwin' and address == 'localhost' and
 af == socket.AF_INET6 and sockaddr[3] != 0):
 # Mac OS X includes a link-local address fe80::1%lo0 in the
 # getaddrinfo results for 'localhost'. However, the firewall
 # doesn't understand that this is a local address and will
 # prompt for access (often repeatedly, due to an apparent
 # bug in its ability to remember granting access to an
 # application). Skip these addresses.
 continue
 try:
 sock = socket.socket(af, socktype, proto)
 except socket.error as e:
 if errno_from_exception(e) == errno.EAFNOSUPPORT:
 continue
 raise
 set_close_exec(sock.fileno())
 if os.name != 'nt':
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 if reuse_port:
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
 if af == socket.AF_INET6:
 # On linux, ipv6 sockets accept ipv4 too by default,
 # but this makes it impossible to bind to both
 # 0.0.0.0 in ipv4 and :: in ipv6. On other systems,
 # separate sockets *must* be used to listen for both ipv4
 # and ipv6. For consistency, always disable ipv4 on our
 # ipv6 sockets and use a separate ipv4 socket when needed.
 #
 # Python 2.x on windows doesn't have IPPROTO_IPV6.
 if hasattr(socket, "IPPROTO_IPV6"):
 sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1)

 # automatic port allocation with port=None
 # should bind on the same port on IPv4 and IPv6
 host, requested_port = sockaddr[:2]
 if requested_port == 0 and bound_port is not None:
 sockaddr = tuple([host, bound_port] + list(sockaddr[2:]))

 sock.setblocking(0)
 sock.bind(sockaddr)
 bound_port = sock.getsockname()[1]
 sock.listen(backlog)
 sockets.append(sock)
 return sockets

if hasattr(socket, 'AF_UNIX'):
[docs] def bind_unix_socket(file, mode=0o600, backlog=_DEFAULT_BACKLOG):
 """Creates a listening unix socket.

 If a socket with the given name already exists, it will be deleted.
 If any other file with that name exists, an exception will be
 raised.

 Returns a socket object (not a list of socket objects like
 `bind_sockets`)
 """
 sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 set_close_exec(sock.fileno())
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.setblocking(0)
 try:
 st = os.stat(file)
 except OSError as err:
 if errno_from_exception(err) != errno.ENOENT:
 raise
 else:
 if stat.S_ISSOCK(st.st_mode):
 os.remove(file)
 else:
 raise ValueError("File %s exists and is not a socket", file)
 sock.bind(file)
 os.chmod(file, mode)
 sock.listen(backlog)
 return sock

[docs]def add_accept_handler(sock, callback, io_loop=None):
 """Adds an `.IOLoop` event handler to accept new connections on ``sock``.

 When a connection is accepted, ``callback(connection, address)`` will
 be run (``connection`` is a socket object, and ``address`` is the
 address of the other end of the connection). Note that this signature
 is different from the ``callback(fd, events)`` signature used for
 `.IOLoop` handlers.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 if io_loop is None:
 io_loop = IOLoop.current()

 def accept_handler(fd, events):
 # More connections may come in while we're handling callbacks;
 # to prevent starvation of other tasks we must limit the number
 # of connections we accept at a time. Ideally we would accept
 # up to the number of connections that were waiting when we
 # entered this method, but this information is not available
 # (and rearranging this method to call accept() as many times
 # as possible before running any callbacks would have adverse
 # effects on load balancing in multiprocess configurations).
 # Instead, we use the (default) listen backlog as a rough
 # heuristic for the number of connections we can reasonably
 # accept at once.
 for i in xrange(_DEFAULT_BACKLOG):
 try:
 connection, address = sock.accept()
 except socket.error as e:
 # _ERRNO_WOULDBLOCK indicate we have accepted every
 # connection that is available.
 if errno_from_exception(e) in _ERRNO_WOULDBLOCK:
 return
 # ECONNABORTED indicates that there was a connection
 # but it was closed while still in the accept queue.
 # (observed on FreeBSD).
 if errno_from_exception(e) == errno.ECONNABORTED:
 continue
 raise
 callback(connection, address)
 io_loop.add_handler(sock, accept_handler, IOLoop.READ)

[docs]def is_valid_ip(ip):
 """Returns true if the given string is a well-formed IP address.

 Supports IPv4 and IPv6.
 """
 if not ip or '\x00' in ip:
 # getaddrinfo resolves empty strings to localhost, and truncates
 # on zero bytes.
 return False
 try:
 res = socket.getaddrinfo(ip, 0, socket.AF_UNSPEC,
 socket.SOCK_STREAM,
 0, socket.AI_NUMERICHOST)
 return bool(res)
 except socket.gaierror as e:
 if e.args[0] == socket.EAI_NONAME:
 return False
 raise
 return True

[docs]class Resolver(Configurable):
 """Configurable asynchronous DNS resolver interface.

 By default, a blocking implementation is used (which simply calls
 `socket.getaddrinfo`). An alternative implementation can be
 chosen with the `Resolver.configure <.Configurable.configure>`
 class method::

 Resolver.configure('tornado.netutil.ThreadedResolver')

 The implementations of this interface included with Tornado are

 * `tornado.netutil.BlockingResolver`
 * `tornado.netutil.ThreadedResolver`
 * `tornado.netutil.OverrideResolver`
 * `tornado.platform.twisted.TwistedResolver`
 * `tornado.platform.caresresolver.CaresResolver`
 """
 @classmethod
 def configurable_base(cls):
 return Resolver

 @classmethod
 def configurable_default(cls):
 return BlockingResolver

[docs] def resolve(self, host, port, family=socket.AF_UNSPEC, callback=None):
 """Resolves an address.

 The ``host`` argument is a string which may be a hostname or a
 literal IP address.

 Returns a `.Future` whose result is a list of (family,
 address) pairs, where address is a tuple suitable to pass to
 `socket.connect <socket.socket.connect>` (i.e. a ``(host,
 port)`` pair for IPv4; additional fields may be present for
 IPv6). If a ``callback`` is passed, it will be run with the
 result as an argument when it is complete.

 :raises IOError: if the address cannot be resolved.

 .. versionchanged:: 4.4
 Standardized all implementations to raise `IOError`.
 """
 raise NotImplementedError()

[docs] def close(self):
 """Closes the `Resolver`, freeing any resources used.

 .. versionadded:: 3.1

 """
 pass

[docs]class ExecutorResolver(Resolver):
 """Resolver implementation using a `concurrent.futures.Executor`.

 Use this instead of `ThreadedResolver` when you require additional
 control over the executor being used.

 The executor will be shut down when the resolver is closed unless
 ``close_resolver=False``; use this if you want to reuse the same
 executor elsewhere.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 def initialize(self, io_loop=None, executor=None, close_executor=True):
 self.io_loop = io_loop or IOLoop.current()
 if executor is not None:
 self.executor = executor
 self.close_executor = close_executor
 else:
 self.executor = dummy_executor
 self.close_executor = False

 def close(self):
 if self.close_executor:
 self.executor.shutdown()
 self.executor = None

 @run_on_executor
 def resolve(self, host, port, family=socket.AF_UNSPEC):
 # On Solaris, getaddrinfo fails if the given port is not found
 # in /etc/services and no socket type is given, so we must pass
 # one here. The socket type used here doesn't seem to actually
 # matter (we discard the one we get back in the results),
 # so the addresses we return should still be usable with SOCK_DGRAM.
 addrinfo = socket.getaddrinfo(host, port, family, socket.SOCK_STREAM)
 results = []
 for family, socktype, proto, canonname, address in addrinfo:
 results.append((family, address))
 return results

[docs]class BlockingResolver(ExecutorResolver):
 """Default `Resolver` implementation, using `socket.getaddrinfo`.

 The `.IOLoop` will be blocked during the resolution, although the
 callback will not be run until the next `.IOLoop` iteration.
 """
 def initialize(self, io_loop=None):
 super(BlockingResolver, self).initialize(io_loop=io_loop)

[docs]class ThreadedResolver(ExecutorResolver):
 """Multithreaded non-blocking `Resolver` implementation.

 Requires the `concurrent.futures` package to be installed
 (available in the standard library since Python 3.2,
 installable with ``pip install futures`` in older versions).

 The thread pool size can be configured with::

 Resolver.configure('tornado.netutil.ThreadedResolver',
 num_threads=10)

 .. versionchanged:: 3.1
 All ``ThreadedResolvers`` share a single thread pool, whose
 size is set by the first one to be created.
 """
 _threadpool = None # type: ignore
 _threadpool_pid = None # type: int

 def initialize(self, io_loop=None, num_threads=10):
 threadpool = ThreadedResolver._create_threadpool(num_threads)
 super(ThreadedResolver, self).initialize(
 io_loop=io_loop, executor=threadpool, close_executor=False)

 @classmethod
 def _create_threadpool(cls, num_threads):
 pid = os.getpid()
 if cls._threadpool_pid != pid:
 # Threads cannot survive after a fork, so if our pid isn't what it
 # was when we created the pool then delete it.
 cls._threadpool = None
 if cls._threadpool is None:
 from concurrent.futures import ThreadPoolExecutor
 cls._threadpool = ThreadPoolExecutor(num_threads)
 cls._threadpool_pid = pid
 return cls._threadpool

[docs]class OverrideResolver(Resolver):
 """Wraps a resolver with a mapping of overrides.

 This can be used to make local DNS changes (e.g. for testing)
 without modifying system-wide settings.

 The mapping can contain either host strings or host-port pairs.
 """
 def initialize(self, resolver, mapping):
 self.resolver = resolver
 self.mapping = mapping

 def close(self):
 self.resolver.close()

 def resolve(self, host, port, *args, **kwargs):
 if (host, port) in self.mapping:
 host, port = self.mapping[(host, port)]
 elif host in self.mapping:
 host = self.mapping[host]
 return self.resolver.resolve(host, port, *args, **kwargs)

These are the keyword arguments to ssl.wrap_socket that must be translated
to their SSLContext equivalents (the other arguments are still passed
to SSLContext.wrap_socket).
_SSL_CONTEXT_KEYWORDS = frozenset(['ssl_version', 'certfile', 'keyfile',
 'cert_reqs', 'ca_certs', 'ciphers'])

[docs]def ssl_options_to_context(ssl_options):
 """Try to convert an ``ssl_options`` dictionary to an
 `~ssl.SSLContext` object.

 The ``ssl_options`` dictionary contains keywords to be passed to
 `ssl.wrap_socket`. In Python 2.7.9+, `ssl.SSLContext` objects can
 be used instead. This function converts the dict form to its
 `~ssl.SSLContext` equivalent, and may be used when a component which
 accepts both forms needs to upgrade to the `~ssl.SSLContext` version
 to use features like SNI or NPN.
 """
 if isinstance(ssl_options, dict):
 assert all(k in _SSL_CONTEXT_KEYWORDS for k in ssl_options), ssl_options
 if (not hasattr(ssl, 'SSLContext') or
 isinstance(ssl_options, ssl.SSLContext)):
 return ssl_options
 context = ssl.SSLContext(
 ssl_options.get('ssl_version', ssl.PROTOCOL_SSLv23))
 if 'certfile' in ssl_options:
 context.load_cert_chain(ssl_options['certfile'], ssl_options.get('keyfile', None))
 if 'cert_reqs' in ssl_options:
 context.verify_mode = ssl_options['cert_reqs']
 if 'ca_certs' in ssl_options:
 context.load_verify_locations(ssl_options['ca_certs'])
 if 'ciphers' in ssl_options:
 context.set_ciphers(ssl_options['ciphers'])
 if hasattr(ssl, 'OP_NO_COMPRESSION'):
 # Disable TLS compression to avoid CRIME and related attacks.
 # This constant wasn't added until python 3.3.
 context.options |= ssl.OP_NO_COMPRESSION
 return context

[docs]def ssl_wrap_socket(socket, ssl_options, server_hostname=None, **kwargs):
 """Returns an ``ssl.SSLSocket`` wrapping the given socket.

 ``ssl_options`` may be either an `ssl.SSLContext` object or a
 dictionary (as accepted by `ssl_options_to_context`). Additional
 keyword arguments are passed to ``wrap_socket`` (either the
 `~ssl.SSLContext` method or the `ssl` module function as
 appropriate).
 """
 context = ssl_options_to_context(ssl_options)
 if hasattr(ssl, 'SSLContext') and isinstance(context, ssl.SSLContext):
 if server_hostname is not None and getattr(ssl, 'HAS_SNI'):
 # Python doesn't have server-side SNI support so we can't
 # really unittest this, but it can be manually tested with
 # python3.2 -m tornado.httpclient https://sni.velox.ch
 return context.wrap_socket(socket, server_hostname=server_hostname,
 **kwargs)
 else:
 return context.wrap_socket(socket, **kwargs)
 else:
 return ssl.wrap_socket(socket, **dict(context, **kwargs)) # type: ignore

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/autoreload.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.autoreload

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Automatically restart the server when a source file is modified.

Most applications should not access this module directly. Instead,
pass the keyword argument ``autoreload=True`` to the
`tornado.web.Application` constructor (or ``debug=True``, which
enables this setting and several others). This will enable autoreload
mode as well as checking for changes to templates and static
resources. Note that restarting is a destructive operation and any
requests in progress will be aborted when the process restarts. (If
you want to disable autoreload while using other debug-mode features,
pass both ``debug=True`` and ``autoreload=False``).

This module can also be used as a command-line wrapper around scripts
such as unit test runners. See the `main` method for details.

The command-line wrapper and Application debug modes can be used together.
This combination is encouraged as the wrapper catches syntax errors and
other import-time failures, while debug mode catches changes once
the server has started.

This module depends on `.IOLoop`, so it will not work in WSGI applications
and Google App Engine. It also will not work correctly when `.HTTPServer`'s
multi-process mode is used.

Reloading loses any Python interpreter command-line arguments (e.g. ``-u``)
because it re-executes Python using ``sys.executable`` and ``sys.argv``.
Additionally, modifying these variables will cause reloading to behave
incorrectly.

"""

from __future__ import absolute_import, division, print_function, with_statement

import os
import sys

sys.path handling

#
If a module is run with "python -m", the current directory (i.e. "")
is automatically prepended to sys.path, but not if it is run as
"path/to/file.py". The processing for "-m" rewrites the former to
the latter, so subsequent executions won't have the same path as the
original.
#
Conversely, when run as path/to/file.py, the directory containing
file.py gets added to the path, which can cause confusion as imports
may become relative in spite of the future import.
#
We address the former problem by setting the $PYTHONPATH environment
variable before re-execution so the new process will see the correct
path. We attempt to address the latter problem when tornado.autoreload
is run as __main__, although we can't fix the general case because
we cannot reliably reconstruct the original command line
(http://bugs.python.org/issue14208).

if __name__ == "__main__":
 # This sys.path manipulation must come before our imports (as much
 # as possible - if we introduced a tornado.sys or tornado.os
 # module we'd be in trouble), or else our imports would become
 # relative again despite the future import.
 #
 # There is a separate __main__ block at the end of the file to call main().
 if sys.path[0] == os.path.dirname(__file__):
 del sys.path[0]

import functools
import logging
import os
import pkgutil # type: ignore
import sys
import traceback
import types
import subprocess
import weakref

from tornado import ioloop
from tornado.log import gen_log
from tornado import process
from tornado.util import exec_in

try:
 import signal
except ImportError:
 signal = None

os.execv is broken on Windows and can't properly parse command line
arguments and executable name if they contain whitespaces. subprocess
fixes that behavior.
This distinction is also important because when we use execv, we want to
close the IOLoop and all its file descriptors, to guard against any
file descriptors that were not set CLOEXEC. When execv is not available,
we must not close the IOLoop because we want the process to exit cleanly.
_has_execv = sys.platform != 'win32'

_watched_files = set()
_reload_hooks = []
_reload_attempted = False
_io_loops = weakref.WeakKeyDictionary() # type: ignore

[docs]def start(io_loop=None, check_time=500):
 """Begins watching source files for changes.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 io_loop = io_loop or ioloop.IOLoop.current()
 if io_loop in _io_loops:
 return
 _io_loops[io_loop] = True
 if len(_io_loops) > 1:
 gen_log.warning("tornado.autoreload started more than once in the same process")
 if _has_execv:
 add_reload_hook(functools.partial(io_loop.close, all_fds=True))
 modify_times = {}
 callback = functools.partial(_reload_on_update, modify_times)
 scheduler = ioloop.PeriodicCallback(callback, check_time, io_loop=io_loop)
 scheduler.start()

[docs]def wait():
 """Wait for a watched file to change, then restart the process.

 Intended to be used at the end of scripts like unit test runners,
 to run the tests again after any source file changes (but see also
 the command-line interface in `main`)
 """
 io_loop = ioloop.IOLoop()
 start(io_loop)
 io_loop.start()

[docs]def watch(filename):
 """Add a file to the watch list.

 All imported modules are watched by default.
 """
 _watched_files.add(filename)

[docs]def add_reload_hook(fn):
 """Add a function to be called before reloading the process.

 Note that for open file and socket handles it is generally
 preferable to set the ``FD_CLOEXEC`` flag (using `fcntl` or
 ``tornado.platform.auto.set_close_exec``) instead
 of using a reload hook to close them.
 """
 _reload_hooks.append(fn)

def _reload_on_update(modify_times):
 if _reload_attempted:
 # We already tried to reload and it didn't work, so don't try again.
 return
 if process.task_id() is not None:
 # We're in a child process created by fork_processes. If child
 # processes restarted themselves, they'd all restart and then
 # all call fork_processes again.
 return
 for module in list(sys.modules.values()):
 # Some modules play games with sys.modules (e.g. email/__init__.py
 # in the standard library), and occasionally this can cause strange
 # failures in getattr. Just ignore anything that's not an ordinary
 # module.
 if not isinstance(module, types.ModuleType):
 continue
 path = getattr(module, "__file__", None)
 if not path:
 continue
 if path.endswith(".pyc") or path.endswith(".pyo"):
 path = path[:-1]
 _check_file(modify_times, path)
 for path in _watched_files:
 _check_file(modify_times, path)

def _check_file(modify_times, path):
 try:
 modified = os.stat(path).st_mtime
 except Exception:
 return
 if path not in modify_times:
 modify_times[path] = modified
 return
 if modify_times[path] != modified:
 gen_log.info("%s modified; restarting server", path)
 _reload()

def _reload():
 global _reload_attempted
 _reload_attempted = True
 for fn in _reload_hooks:
 fn()
 if hasattr(signal, "setitimer"):
 # Clear the alarm signal set by
 # ioloop.set_blocking_log_threshold so it doesn't fire
 # after the exec.
 signal.setitimer(signal.ITIMER_REAL, 0, 0)
 # sys.path fixes: see comments at top of file. If sys.path[0] is an empty
 # string, we were (probably) invoked with -m and the effective path
 # is about to change on re-exec. Add the current directory to $PYTHONPATH
 # to ensure that the new process sees the same path we did.
 path_prefix = '.' + os.pathsep
 if (sys.path[0] == '' and
 not os.environ.get("PYTHONPATH", "").startswith(path_prefix)):
 os.environ["PYTHONPATH"] = (path_prefix +
 os.environ.get("PYTHONPATH", ""))
 if not _has_execv:
 subprocess.Popen([sys.executable] + sys.argv)
 sys.exit(0)
 else:
 try:
 os.execv(sys.executable, [sys.executable] + sys.argv)
 except OSError:
 # Mac OS X versions prior to 10.6 do not support execv in
 # a process that contains multiple threads. Instead of
 # re-executing in the current process, start a new one
 # and cause the current process to exit. This isn't
 # ideal since the new process is detached from the parent
 # terminal and thus cannot easily be killed with ctrl-C,
 # but it's better than not being able to autoreload at
 # all.
 # Unfortunately the errno returned in this case does not
 # appear to be consistent, so we can't easily check for
 # this error specifically.
 os.spawnv(os.P_NOWAIT, sys.executable,
 [sys.executable] + sys.argv)
 # At this point the IOLoop has been closed and finally
 # blocks will experience errors if we allow the stack to
 # unwind, so just exit uncleanly.
 os._exit(0)

_USAGE = """\
Usage:
 python -m tornado.autoreload -m module.to.run [args...]
 python -m tornado.autoreload path/to/script.py [args...]
"""

[docs]def main():
 """Command-line wrapper to re-run a script whenever its source changes.

 Scripts may be specified by filename or module name::

 python -m tornado.autoreload -m tornado.test.runtests
 python -m tornado.autoreload tornado/test/runtests.py

 Running a script with this wrapper is similar to calling
 `tornado.autoreload.wait` at the end of the script, but this wrapper
 can catch import-time problems like syntax errors that would otherwise
 prevent the script from reaching its call to `wait`.
 """
 original_argv = sys.argv
 sys.argv = sys.argv[:]
 if len(sys.argv) >= 3 and sys.argv[1] == "-m":
 mode = "module"
 module = sys.argv[2]
 del sys.argv[1:3]
 elif len(sys.argv) >= 2:
 mode = "script"
 script = sys.argv[1]
 sys.argv = sys.argv[1:]
 else:
 print(_USAGE, file=sys.stderr)
 sys.exit(1)

 try:
 if mode == "module":
 import runpy
 runpy.run_module(module, run_name="__main__", alter_sys=True)
 elif mode == "script":
 with open(script) as f:
 # Execute the script in our namespace instead of creating
 # a new one so that something that tries to import __main__
 # (e.g. the unittest module) will see names defined in the
 # script instead of just those defined in this module.
 global __file__
 __file__ = script
 # If __package__ is defined, imports may be incorrectly
 # interpreted as relative to this module.
 global __package__
 del __package__
 exec_in(f.read(), globals(), globals())
 except SystemExit as e:
 logging.basicConfig()
 gen_log.info("Script exited with status %s", e.code)
 except Exception as e:
 logging.basicConfig()
 gen_log.warning("Script exited with uncaught exception", exc_info=True)
 # If an exception occurred at import time, the file with the error
 # never made it into sys.modules and so we won't know to watch it.
 # Just to make sure we've covered everything, walk the stack trace
 # from the exception and watch every file.
 for (filename, lineno, name, line) in traceback.extract_tb(sys.exc_info()[2]):
 watch(filename)
 if isinstance(e, SyntaxError):
 # SyntaxErrors are special: their innermost stack frame is fake
 # so extract_tb won't see it and we have to get the filename
 # from the exception object.
 watch(e.filename)
 else:
 logging.basicConfig()
 gen_log.info("Script exited normally")
 # restore sys.argv so subsequent executions will include autoreload
 sys.argv = original_argv

 if mode == 'module':
 # runpy did a fake import of the module as __main__, but now it's
 # no longer in sys.modules. Figure out where it is and watch it.
 loader = pkgutil.get_loader(module)
 if loader is not None:
 watch(loader.get_filename())

 wait()

if __name__ == "__main__":
 # See also the other __main__ block at the top of the file, which modifies
 # sys.path before our imports
 main()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/httpserver.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.httpserver

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""A non-blocking, single-threaded HTTP server.

Typical applications have little direct interaction with the `HTTPServer`
class except to start a server at the beginning of the process
(and even that is often done indirectly via `tornado.web.Application.listen`).

.. versionchanged:: 4.0

 The ``HTTPRequest`` class that used to live in this module has been moved
 to `tornado.httputil.HTTPServerRequest`. The old name remains as an alias.
"""

from __future__ import absolute_import, division, print_function, with_statement

import socket

from tornado.escape import native_str
from tornado.http1connection import HTTP1ServerConnection, HTTP1ConnectionParameters
from tornado import gen
from tornado import httputil
from tornado import iostream
from tornado import netutil
from tornado.tcpserver import TCPServer
from tornado.util import Configurable

[docs]class HTTPServer(TCPServer, Configurable,
 httputil.HTTPServerConnectionDelegate):
 r"""A non-blocking, single-threaded HTTP server.

 A server is defined by a subclass of `.HTTPServerConnectionDelegate`,
 or, for backwards compatibility, a callback that takes an
 `.HTTPServerRequest` as an argument. The delegate is usually a
 `tornado.web.Application`.

 `HTTPServer` supports keep-alive connections by default
 (automatically for HTTP/1.1, or for HTTP/1.0 when the client
 requests ``Connection: keep-alive``).

 If ``xheaders`` is ``True``, we support the
 ``X-Real-Ip``/``X-Forwarded-For`` and
 ``X-Scheme``/``X-Forwarded-Proto`` headers, which override the
 remote IP and URI scheme/protocol for all requests. These headers
 are useful when running Tornado behind a reverse proxy or load
 balancer. The ``protocol`` argument can also be set to ``https``
 if Tornado is run behind an SSL-decoding proxy that does not set one of
 the supported ``xheaders``.

 To make this server serve SSL traffic, send the ``ssl_options`` keyword
 argument with an `ssl.SSLContext` object. For compatibility with older
 versions of Python ``ssl_options`` may also be a dictionary of keyword
 arguments for the `ssl.wrap_socket` method.::

 ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
 ssl_ctx.load_cert_chain(os.path.join(data_dir, "mydomain.crt"),
 os.path.join(data_dir, "mydomain.key"))
 HTTPServer(applicaton, ssl_options=ssl_ctx)

 `HTTPServer` initialization follows one of three patterns (the
 initialization methods are defined on `tornado.tcpserver.TCPServer`):

 1. `~tornado.tcpserver.TCPServer.listen`: simple single-process::

 server = HTTPServer(app)
 server.listen(8888)
 IOLoop.current().start()

 In many cases, `tornado.web.Application.listen` can be used to avoid
 the need to explicitly create the `HTTPServer`.

 2. `~tornado.tcpserver.TCPServer.bind`/`~tornado.tcpserver.TCPServer.start`:
 simple multi-process::

 server = HTTPServer(app)
 server.bind(8888)
 server.start(0) # Forks multiple sub-processes
 IOLoop.current().start()

 When using this interface, an `.IOLoop` must *not* be passed
 to the `HTTPServer` constructor. `~.TCPServer.start` will always start
 the server on the default singleton `.IOLoop`.

 3. `~tornado.tcpserver.TCPServer.add_sockets`: advanced multi-process::

 sockets = tornado.netutil.bind_sockets(8888)
 tornado.process.fork_processes(0)
 server = HTTPServer(app)
 server.add_sockets(sockets)
 IOLoop.current().start()

 The `~.TCPServer.add_sockets` interface is more complicated,
 but it can be used with `tornado.process.fork_processes` to
 give you more flexibility in when the fork happens.
 `~.TCPServer.add_sockets` can also be used in single-process
 servers if you want to create your listening sockets in some
 way other than `tornado.netutil.bind_sockets`.

 .. versionchanged:: 4.0
 Added ``decompress_request``, ``chunk_size``, ``max_header_size``,
 ``idle_connection_timeout``, ``body_timeout``, ``max_body_size``
 arguments. Added support for `.HTTPServerConnectionDelegate`
 instances as ``request_callback``.

 .. versionchanged:: 4.1
 `.HTTPServerConnectionDelegate.start_request` is now called with
 two arguments ``(server_conn, request_conn)`` (in accordance with the
 documentation) instead of one ``(request_conn)``.

 .. versionchanged:: 4.2
 `HTTPServer` is now a subclass of `tornado.util.Configurable`.
 """
 def __init__(self, *args, **kwargs):
 # Ignore args to __init__; real initialization belongs in
 # initialize since we're Configurable. (there's something
 # weird in initialization order between this class,
 # Configurable, and TCPServer so we can't leave __init__ out
 # completely)
 pass

 def initialize(self, request_callback, no_keep_alive=False, io_loop=None,
 xheaders=False, ssl_options=None, protocol=None,
 decompress_request=False,
 chunk_size=None, max_header_size=None,
 idle_connection_timeout=None, body_timeout=None,
 max_body_size=None, max_buffer_size=None):
 self.request_callback = request_callback
 self.no_keep_alive = no_keep_alive
 self.xheaders = xheaders
 self.protocol = protocol
 self.conn_params = HTTP1ConnectionParameters(
 decompress=decompress_request,
 chunk_size=chunk_size,
 max_header_size=max_header_size,
 header_timeout=idle_connection_timeout or 3600,
 max_body_size=max_body_size,
 body_timeout=body_timeout)
 TCPServer.__init__(self, io_loop=io_loop, ssl_options=ssl_options,
 max_buffer_size=max_buffer_size,
 read_chunk_size=chunk_size)
 self._connections = set()

 @classmethod
 def configurable_base(cls):
 return HTTPServer

 @classmethod
 def configurable_default(cls):
 return HTTPServer

 @gen.coroutine
 def close_all_connections(self):
 while self._connections:
 # Peek at an arbitrary element of the set
 conn = next(iter(self._connections))
 yield conn.close()

 def handle_stream(self, stream, address):
 context = _HTTPRequestContext(stream, address,
 self.protocol)
 conn = HTTP1ServerConnection(
 stream, self.conn_params, context)
 self._connections.add(conn)
 conn.start_serving(self)

 def start_request(self, server_conn, request_conn):
 return _ServerRequestAdapter(self, server_conn, request_conn)

 def on_close(self, server_conn):
 self._connections.remove(server_conn)

class _HTTPRequestContext(object):
 def __init__(self, stream, address, protocol):
 self.address = address
 # Save the socket's address family now so we know how to
 # interpret self.address even after the stream is closed
 # and its socket attribute replaced with None.
 if stream.socket is not None:
 self.address_family = stream.socket.family
 else:
 self.address_family = None
 # In HTTPServerRequest we want an IP, not a full socket address.
 if (self.address_family in (socket.AF_INET, socket.AF_INET6) and
 address is not None):
 self.remote_ip = address[0]
 else:
 # Unix (or other) socket; fake the remote address.
 self.remote_ip = '0.0.0.0'
 if protocol:
 self.protocol = protocol
 elif isinstance(stream, iostream.SSLIOStream):
 self.protocol = "https"
 else:
 self.protocol = "http"
 self._orig_remote_ip = self.remote_ip
 self._orig_protocol = self.protocol

 def __str__(self):
 if self.address_family in (socket.AF_INET, socket.AF_INET6):
 return self.remote_ip
 elif isinstance(self.address, bytes):
 # Python 3 with the -bb option warns about str(bytes),
 # so convert it explicitly.
 # Unix socket addresses are str on mac but bytes on linux.
 return native_str(self.address)
 else:
 return str(self.address)

 def _apply_xheaders(self, headers):
 """Rewrite the ``remote_ip`` and ``protocol`` fields."""
 # Squid uses X-Forwarded-For, others use X-Real-Ip
 ip = headers.get("X-Forwarded-For", self.remote_ip)
 ip = ip.split(',')[-1].strip()
 ip = headers.get("X-Real-Ip", ip)
 if netutil.is_valid_ip(ip):
 self.remote_ip = ip
 # AWS uses X-Forwarded-Proto
 proto_header = headers.get(
 "X-Scheme", headers.get("X-Forwarded-Proto",
 self.protocol))
 if proto_header in ("http", "https"):
 self.protocol = proto_header

 def _unapply_xheaders(self):
 """Undo changes from `_apply_xheaders`.

 Xheaders are per-request so they should not leak to the next
 request on the same connection.
 """
 self.remote_ip = self._orig_remote_ip
 self.protocol = self._orig_protocol

class _ServerRequestAdapter(httputil.HTTPMessageDelegate):
 """Adapts the `HTTPMessageDelegate` interface to the interface expected
 by our clients.
 """
 def __init__(self, server, server_conn, request_conn):
 self.server = server
 self.connection = request_conn
 self.request = None
 if isinstance(server.request_callback,
 httputil.HTTPServerConnectionDelegate):
 self.delegate = server.request_callback.start_request(
 server_conn, request_conn)
 self._chunks = None
 else:
 self.delegate = None
 self._chunks = []

 def headers_received(self, start_line, headers):
 if self.server.xheaders:
 self.connection.context._apply_xheaders(headers)
 if self.delegate is None:
 self.request = httputil.HTTPServerRequest(
 connection=self.connection, start_line=start_line,
 headers=headers)
 else:
 return self.delegate.headers_received(start_line, headers)

 def data_received(self, chunk):
 if self.delegate is None:
 self._chunks.append(chunk)
 else:
 return self.delegate.data_received(chunk)

 def finish(self):
 if self.delegate is None:
 self.request.body = b''.join(self._chunks)
 self.request._parse_body()
 self.server.request_callback(self.request)
 else:
 self.delegate.finish()
 self._cleanup()

 def on_connection_close(self):
 if self.delegate is None:
 self._chunks = None
 else:
 self.delegate.on_connection_close()
 self._cleanup()

 def _cleanup(self):
 if self.server.xheaders:
 self.connection.context._unapply_xheaders()

HTTPRequest = httputil.HTTPServerRequest

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/ioloop.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.ioloop

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""An I/O event loop for non-blocking sockets.

Typical applications will use a single `IOLoop` object, in the
`IOLoop.instance` singleton. The `IOLoop.start` method should usually
be called at the end of the ``main()`` function. Atypical applications may
use more than one `IOLoop`, such as one `IOLoop` per thread, or per `unittest`
case.

In addition to I/O events, the `IOLoop` can also schedule time-based events.
`IOLoop.add_timeout` is a non-blocking alternative to `time.sleep`.
"""

from __future__ import absolute_import, division, print_function, with_statement

import datetime
import errno
import functools
import heapq
import itertools
import logging
import numbers
import os
import select
import sys
import threading
import time
import traceback
import math

from tornado.concurrent import TracebackFuture, is_future
from tornado.log import app_log, gen_log
from tornado.platform.auto import set_close_exec, Waker
from tornado import stack_context
from tornado.util import PY3, Configurable, errno_from_exception, timedelta_to_seconds

try:
 import signal
except ImportError:
 signal = None

if PY3:
 import _thread as thread
else:
 import thread

_POLL_TIMEOUT = 3600.0

class TimeoutError(Exception):
 pass

[docs]class IOLoop(Configurable):
 """A level-triggered I/O loop.

 We use ``epoll`` (Linux) or ``kqueue`` (BSD and Mac OS X) if they
 are available, or else we fall back on select(). If you are
 implementing a system that needs to handle thousands of
 simultaneous connections, you should use a system that supports
 either ``epoll`` or ``kqueue``.

 Example usage for a simple TCP server:

 .. testcode::

 import errno
 import functools
 import tornado.ioloop
 import socket

 def connection_ready(sock, fd, events):
 while True:
 try:
 connection, address = sock.accept()
 except socket.error as e:
 if e.args[0] not in (errno.EWOULDBLOCK, errno.EAGAIN):
 raise
 return
 connection.setblocking(0)
 handle_connection(connection, address)

 if __name__ == '__main__':
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.setblocking(0)
 sock.bind(("", port))
 sock.listen(128)

 io_loop = tornado.ioloop.IOLoop.current()
 callback = functools.partial(connection_ready, sock)
 io_loop.add_handler(sock.fileno(), callback, io_loop.READ)
 io_loop.start()

 .. testoutput::
 :hide:

 By default, a newly-constructed `IOLoop` becomes the thread's current
 `IOLoop`, unless there already is a current `IOLoop`. This behavior
 can be controlled with the ``make_current`` argument to the `IOLoop`
 constructor: if ``make_current=True``, the new `IOLoop` will always
 try to become current and it raises an error if there is already a
 current instance. If ``make_current=False``, the new `IOLoop` will
 not try to become current.

 .. versionchanged:: 4.2
 Added the ``make_current`` keyword argument to the `IOLoop`
 constructor.
 """
 # Constants from the epoll module
 _EPOLLIN = 0x001
 _EPOLLPRI = 0x002
 _EPOLLOUT = 0x004
 _EPOLLERR = 0x008
 _EPOLLHUP = 0x010
 _EPOLLRDHUP = 0x2000
 _EPOLLONESHOT = (1 << 30)
 _EPOLLET = (1 << 31)

 # Our events map exactly to the epoll events
 NONE = 0
 READ = _EPOLLIN
 WRITE = _EPOLLOUT
 ERROR = _EPOLLERR | _EPOLLHUP

 # Global lock for creating global IOLoop instance
 _instance_lock = threading.Lock()

 _current = threading.local()

 @staticmethod
[docs] def instance():
 """Returns a global `IOLoop` instance.

 Most applications have a single, global `IOLoop` running on the
 main thread. Use this method to get this instance from
 another thread. In most other cases, it is better to use `current()`
 to get the current thread's `IOLoop`.
 """
 if not hasattr(IOLoop, "_instance"):
 with IOLoop._instance_lock:
 if not hasattr(IOLoop, "_instance"):
 # New instance after double check
 IOLoop._instance = IOLoop()
 return IOLoop._instance

 @staticmethod
[docs] def initialized():
 """Returns true if the singleton instance has been created."""
 return hasattr(IOLoop, "_instance")

[docs] def install(self):
 """Installs this `IOLoop` object as the singleton instance.

 This is normally not necessary as `instance()` will create
 an `IOLoop` on demand, but you may want to call `install` to use
 a custom subclass of `IOLoop`.

 When using an `IOLoop` subclass, `install` must be called prior
 to creating any objects that implicitly create their own
 `IOLoop` (e.g., :class:`tornado.httpclient.AsyncHTTPClient`).
 """
 assert not IOLoop.initialized()
 IOLoop._instance = self

 @staticmethod
[docs] def clear_instance():
 """Clear the global `IOLoop` instance.

 .. versionadded:: 4.0
 """
 if hasattr(IOLoop, "_instance"):
 del IOLoop._instance

 @staticmethod
[docs] def current(instance=True):
 """Returns the current thread's `IOLoop`.

 If an `IOLoop` is currently running or has been marked as
 current by `make_current`, returns that instance. If there is
 no current `IOLoop`, returns `IOLoop.instance()` (i.e. the
 main thread's `IOLoop`, creating one if necessary) if ``instance``
 is true.

 In general you should use `IOLoop.current` as the default when
 constructing an asynchronous object, and use `IOLoop.instance`
 when you mean to communicate to the main thread from a different
 one.

 .. versionchanged:: 4.1
 Added ``instance`` argument to control the fallback to
 `IOLoop.instance()`.
 """
 current = getattr(IOLoop._current, "instance", None)
 if current is None and instance:
 return IOLoop.instance()
 return current

[docs] def make_current(self):
 """Makes this the `IOLoop` for the current thread.

 An `IOLoop` automatically becomes current for its thread
 when it is started, but it is sometimes useful to call
 `make_current` explicitly before starting the `IOLoop`,
 so that code run at startup time can find the right
 instance.

 .. versionchanged:: 4.1
 An `IOLoop` created while there is no current `IOLoop`
 will automatically become current.
 """
 IOLoop._current.instance = self

 @staticmethod
 def clear_current():
 IOLoop._current.instance = None

 @classmethod
 def configurable_base(cls):
 return IOLoop

 @classmethod
 def configurable_default(cls):
 if hasattr(select, "epoll"):
 from tornado.platform.epoll import EPollIOLoop
 return EPollIOLoop
 if hasattr(select, "kqueue"):
 # Python 2.6+ on BSD or Mac
 from tornado.platform.kqueue import KQueueIOLoop
 return KQueueIOLoop
 from tornado.platform.select import SelectIOLoop
 return SelectIOLoop

[docs] def initialize(self, make_current=None):
 if make_current is None:
 if IOLoop.current(instance=False) is None:
 self.make_current()
 elif make_current:
 if IOLoop.current(instance=False) is not None:
 raise RuntimeError("current IOLoop already exists")
 self.make_current()

[docs] def close(self, all_fds=False):
 """Closes the `IOLoop`, freeing any resources used.

 If ``all_fds`` is true, all file descriptors registered on the
 IOLoop will be closed (not just the ones created by the
 `IOLoop` itself).

 Many applications will only use a single `IOLoop` that runs for the
 entire lifetime of the process. In that case closing the `IOLoop`
 is not necessary since everything will be cleaned up when the
 process exits. `IOLoop.close` is provided mainly for scenarios
 such as unit tests, which create and destroy a large number of
 ``IOLoops``.

 An `IOLoop` must be completely stopped before it can be closed. This
 means that `IOLoop.stop()` must be called *and* `IOLoop.start()` must
 be allowed to return before attempting to call `IOLoop.close()`.
 Therefore the call to `close` will usually appear just after
 the call to `start` rather than near the call to `stop`.

 .. versionchanged:: 3.1
 If the `IOLoop` implementation supports non-integer objects
 for "file descriptors", those objects will have their
 ``close`` method when ``all_fds`` is true.
 """
 raise NotImplementedError()

[docs] def add_handler(self, fd, handler, events):
 """Registers the given handler to receive the given events for ``fd``.

 The ``fd`` argument may either be an integer file descriptor or
 a file-like object with a ``fileno()`` method (and optionally a
 ``close()`` method, which may be called when the `IOLoop` is shut
 down).

 The ``events`` argument is a bitwise or of the constants
 ``IOLoop.READ``, ``IOLoop.WRITE``, and ``IOLoop.ERROR``.

 When an event occurs, ``handler(fd, events)`` will be run.

 .. versionchanged:: 4.0
 Added the ability to pass file-like objects in addition to
 raw file descriptors.
 """
 raise NotImplementedError()

[docs] def update_handler(self, fd, events):
 """Changes the events we listen for ``fd``.

 .. versionchanged:: 4.0
 Added the ability to pass file-like objects in addition to
 raw file descriptors.
 """
 raise NotImplementedError()

[docs] def remove_handler(self, fd):
 """Stop listening for events on ``fd``.

 .. versionchanged:: 4.0
 Added the ability to pass file-like objects in addition to
 raw file descriptors.
 """
 raise NotImplementedError()

[docs] def set_blocking_signal_threshold(self, seconds, action):
 """Sends a signal if the `IOLoop` is blocked for more than
 ``s`` seconds.

 Pass ``seconds=None`` to disable. Requires Python 2.6 on a unixy
 platform.

 The action parameter is a Python signal handler. Read the
 documentation for the `signal` module for more information.
 If ``action`` is None, the process will be killed if it is
 blocked for too long.
 """
 raise NotImplementedError()

[docs] def set_blocking_log_threshold(self, seconds):
 """Logs a stack trace if the `IOLoop` is blocked for more than
 ``s`` seconds.

 Equivalent to ``set_blocking_signal_threshold(seconds,
 self.log_stack)``
 """
 self.set_blocking_signal_threshold(seconds, self.log_stack)

[docs] def log_stack(self, signal, frame):
 """Signal handler to log the stack trace of the current thread.

 For use with `set_blocking_signal_threshold`.
 """
 gen_log.warning('IOLoop blocked for %f seconds in\n%s',
 self._blocking_signal_threshold,
 ''.join(traceback.format_stack(frame)))

[docs] def start(self):
 """Starts the I/O loop.

 The loop will run until one of the callbacks calls `stop()`, which
 will make the loop stop after the current event iteration completes.
 """
 raise NotImplementedError()

 def _setup_logging(self):
 """The IOLoop catches and logs exceptions, so it's
 important that log output be visible. However, python's
 default behavior for non-root loggers (prior to python
 3.2) is to print an unhelpful "no handlers could be
 found" message rather than the actual log entry, so we
 must explicitly configure logging if we've made it this
 far without anything.

 This method should be called from start() in subclasses.
 """
 if not any([logging.getLogger().handlers,
 logging.getLogger('tornado').handlers,
 logging.getLogger('tornado.application').handlers]):
 logging.basicConfig()

[docs] def stop(self):
 """Stop the I/O loop.

 If the event loop is not currently running, the next call to `start()`
 will return immediately.

 To use asynchronous methods from otherwise-synchronous code (such as
 unit tests), you can start and stop the event loop like this::

 ioloop = IOLoop()
 async_method(ioloop=ioloop, callback=ioloop.stop)
 ioloop.start()

 ``ioloop.start()`` will return after ``async_method`` has run
 its callback, whether that callback was invoked before or
 after ``ioloop.start``.

 Note that even after `stop` has been called, the `IOLoop` is not
 completely stopped until `IOLoop.start` has also returned.
 Some work that was scheduled before the call to `stop` may still
 be run before the `IOLoop` shuts down.
 """
 raise NotImplementedError()

[docs] def run_sync(self, func, timeout=None):
 """Starts the `IOLoop`, runs the given function, and stops the loop.

 The function must return either a yieldable object or
 ``None``. If the function returns a yieldable object, the
 `IOLoop` will run until the yieldable is resolved (and
 `run_sync()` will return the yieldable's result). If it raises
 an exception, the `IOLoop` will stop and the exception will be
 re-raised to the caller.

 The keyword-only argument ``timeout`` may be used to set
 a maximum duration for the function. If the timeout expires,
 a `TimeoutError` is raised.

 This method is useful in conjunction with `tornado.gen.coroutine`
 to allow asynchronous calls in a ``main()`` function::

 @gen.coroutine
 def main():
 # do stuff...

 if __name__ == '__main__':
 IOLoop.current().run_sync(main)

 .. versionchanged:: 4.3
 Returning a non-``None``, non-yieldable value is now an error.
 """
 future_cell = [None]

 def run():
 try:
 result = func()
 if result is not None:
 from tornado.gen import convert_yielded
 result = convert_yielded(result)
 except Exception:
 future_cell[0] = TracebackFuture()
 future_cell[0].set_exc_info(sys.exc_info())
 else:
 if is_future(result):
 future_cell[0] = result
 else:
 future_cell[0] = TracebackFuture()
 future_cell[0].set_result(result)
 self.add_future(future_cell[0], lambda future: self.stop())
 self.add_callback(run)
 if timeout is not None:
 timeout_handle = self.add_timeout(self.time() + timeout, self.stop)
 self.start()
 if timeout is not None:
 self.remove_timeout(timeout_handle)
 if not future_cell[0].done():
 raise TimeoutError('Operation timed out after %s seconds' % timeout)
 return future_cell[0].result()

[docs] def time(self):
 """Returns the current time according to the `IOLoop`'s clock.

 The return value is a floating-point number relative to an
 unspecified time in the past.

 By default, the `IOLoop`'s time function is `time.time`. However,
 it may be configured to use e.g. `time.monotonic` instead.
 Calls to `add_timeout` that pass a number instead of a
 `datetime.timedelta` should use this function to compute the
 appropriate time, so they can work no matter what time function
 is chosen.
 """
 return time.time()

[docs] def add_timeout(self, deadline, callback, *args, **kwargs):
 """Runs the ``callback`` at the time ``deadline`` from the I/O loop.

 Returns an opaque handle that may be passed to
 `remove_timeout` to cancel.

 ``deadline`` may be a number denoting a time (on the same
 scale as `IOLoop.time`, normally `time.time`), or a
 `datetime.timedelta` object for a deadline relative to the
 current time. Since Tornado 4.0, `call_later` is a more
 convenient alternative for the relative case since it does not
 require a timedelta object.

 Note that it is not safe to call `add_timeout` from other threads.
 Instead, you must use `add_callback` to transfer control to the
 `IOLoop`'s thread, and then call `add_timeout` from there.

 Subclasses of IOLoop must implement either `add_timeout` or
 `call_at`; the default implementations of each will call
 the other. `call_at` is usually easier to implement, but
 subclasses that wish to maintain compatibility with Tornado
 versions prior to 4.0 must use `add_timeout` instead.

 .. versionchanged:: 4.0
 Now passes through ``*args`` and ``**kwargs`` to the callback.
 """
 if isinstance(deadline, numbers.Real):
 return self.call_at(deadline, callback, *args, **kwargs)
 elif isinstance(deadline, datetime.timedelta):
 return self.call_at(self.time() + timedelta_to_seconds(deadline),
 callback, *args, **kwargs)
 else:
 raise TypeError("Unsupported deadline %r" % deadline)

[docs] def call_later(self, delay, callback, *args, **kwargs):
 """Runs the ``callback`` after ``delay`` seconds have passed.

 Returns an opaque handle that may be passed to `remove_timeout`
 to cancel. Note that unlike the `asyncio` method of the same
 name, the returned object does not have a ``cancel()`` method.

 See `add_timeout` for comments on thread-safety and subclassing.

 .. versionadded:: 4.0
 """
 return self.call_at(self.time() + delay, callback, *args, **kwargs)

[docs] def call_at(self, when, callback, *args, **kwargs):
 """Runs the ``callback`` at the absolute time designated by ``when``.

 ``when`` must be a number using the same reference point as
 `IOLoop.time`.

 Returns an opaque handle that may be passed to `remove_timeout`
 to cancel. Note that unlike the `asyncio` method of the same
 name, the returned object does not have a ``cancel()`` method.

 See `add_timeout` for comments on thread-safety and subclassing.

 .. versionadded:: 4.0
 """
 return self.add_timeout(when, callback, *args, **kwargs)

[docs] def remove_timeout(self, timeout):
 """Cancels a pending timeout.

 The argument is a handle as returned by `add_timeout`. It is
 safe to call `remove_timeout` even if the callback has already
 been run.
 """
 raise NotImplementedError()

[docs] def add_callback(self, callback, *args, **kwargs):
 """Calls the given callback on the next I/O loop iteration.

 It is safe to call this method from any thread at any time,
 except from a signal handler. Note that this is the **only**
 method in `IOLoop` that makes this thread-safety guarantee; all
 other interaction with the `IOLoop` must be done from that
 `IOLoop`'s thread. `add_callback()` may be used to transfer
 control from other threads to the `IOLoop`'s thread.

 To add a callback from a signal handler, see
 `add_callback_from_signal`.
 """
 raise NotImplementedError()

[docs] def add_callback_from_signal(self, callback, *args, **kwargs):
 """Calls the given callback on the next I/O loop iteration.

 Safe for use from a Python signal handler; should not be used
 otherwise.

 Callbacks added with this method will be run without any
 `.stack_context`, to avoid picking up the context of the function
 that was interrupted by the signal.
 """
 raise NotImplementedError()

[docs] def spawn_callback(self, callback, *args, **kwargs):
 """Calls the given callback on the next IOLoop iteration.

 Unlike all other callback-related methods on IOLoop,
 ``spawn_callback`` does not associate the callback with its caller's
 ``stack_context``, so it is suitable for fire-and-forget callbacks
 that should not interfere with the caller.

 .. versionadded:: 4.0
 """
 with stack_context.NullContext():
 self.add_callback(callback, *args, **kwargs)

[docs] def add_future(self, future, callback):
 """Schedules a callback on the ``IOLoop`` when the given
 `.Future` is finished.

 The callback is invoked with one argument, the
 `.Future`.
 """
 assert is_future(future)
 callback = stack_context.wrap(callback)
 future.add_done_callback(
 lambda future: self.add_callback(callback, future))

 def _run_callback(self, callback):
 """Runs a callback with error handling.

 For use in subclasses.
 """
 try:
 ret = callback()
 if ret is not None:
 from tornado import gen
 # Functions that return Futures typically swallow all
 # exceptions and store them in the Future. If a Future
 # makes it out to the IOLoop, ensure its exception (if any)
 # gets logged too.
 try:
 ret = gen.convert_yielded(ret)
 except gen.BadYieldError:
 # It's not unusual for add_callback to be used with
 # methods returning a non-None and non-yieldable
 # result, which should just be ignored.
 pass
 else:
 self.add_future(ret, lambda f: f.result())
 except Exception:
 self.handle_callback_exception(callback)

[docs] def handle_callback_exception(self, callback):
 """This method is called whenever a callback run by the `IOLoop`
 throws an exception.

 By default simply logs the exception as an error. Subclasses
 may override this method to customize reporting of exceptions.

 The exception itself is not passed explicitly, but is available
 in `sys.exc_info`.
 """
 app_log.error("Exception in callback %r", callback, exc_info=True)

[docs] def split_fd(self, fd):
 """Returns an (fd, obj) pair from an ``fd`` parameter.

 We accept both raw file descriptors and file-like objects as
 input to `add_handler` and related methods. When a file-like
 object is passed, we must retain the object itself so we can
 close it correctly when the `IOLoop` shuts down, but the
 poller interfaces favor file descriptors (they will accept
 file-like objects and call ``fileno()`` for you, but they
 always return the descriptor itself).

 This method is provided for use by `IOLoop` subclasses and should
 not generally be used by application code.

 .. versionadded:: 4.0
 """
 try:
 return fd.fileno(), fd
 except AttributeError:
 return fd, fd

[docs] def close_fd(self, fd):
 """Utility method to close an ``fd``.

 If ``fd`` is a file-like object, we close it directly; otherwise
 we use `os.close`.

 This method is provided for use by `IOLoop` subclasses (in
 implementations of ``IOLoop.close(all_fds=True)`` and should
 not generally be used by application code.

 .. versionadded:: 4.0
 """
 try:
 try:
 fd.close()
 except AttributeError:
 os.close(fd)
 except OSError:
 pass

class PollIOLoop(IOLoop):
 """Base class for IOLoops built around a select-like function.

 For concrete implementations, see `tornado.platform.epoll.EPollIOLoop`
 (Linux), `tornado.platform.kqueue.KQueueIOLoop` (BSD and Mac), or
 `tornado.platform.select.SelectIOLoop` (all platforms).
 """
 def initialize(self, impl, time_func=None, **kwargs):
 super(PollIOLoop, self).initialize(**kwargs)
 self._impl = impl
 if hasattr(self._impl, 'fileno'):
 set_close_exec(self._impl.fileno())
 self.time_func = time_func or time.time
 self._handlers = {}
 self._events = {}
 self._callbacks = []
 self._callback_lock = threading.Lock()
 self._timeouts = []
 self._cancellations = 0
 self._running = False
 self._stopped = False
 self._closing = False
 self._thread_ident = None
 self._blocking_signal_threshold = None
 self._timeout_counter = itertools.count()

 # Create a pipe that we send bogus data to when we want to wake
 # the I/O loop when it is idle
 self._waker = Waker()
 self.add_handler(self._waker.fileno(),
 lambda fd, events: self._waker.consume(),
 self.READ)

 def close(self, all_fds=False):
 with self._callback_lock:
 self._closing = True
 self.remove_handler(self._waker.fileno())
 if all_fds:
 for fd, handler in self._handlers.values():
 self.close_fd(fd)
 self._waker.close()
 self._impl.close()
 self._callbacks = None
 self._timeouts = None

 def add_handler(self, fd, handler, events):
 fd, obj = self.split_fd(fd)
 self._handlers[fd] = (obj, stack_context.wrap(handler))
 self._impl.register(fd, events | self.ERROR)

 def update_handler(self, fd, events):
 fd, obj = self.split_fd(fd)
 self._impl.modify(fd, events | self.ERROR)

 def remove_handler(self, fd):
 fd, obj = self.split_fd(fd)
 self._handlers.pop(fd, None)
 self._events.pop(fd, None)
 try:
 self._impl.unregister(fd)
 except Exception:
 gen_log.debug("Error deleting fd from IOLoop", exc_info=True)

 def set_blocking_signal_threshold(self, seconds, action):
 if not hasattr(signal, "setitimer"):
 gen_log.error("set_blocking_signal_threshold requires a signal module "
 "with the setitimer method")
 return
 self._blocking_signal_threshold = seconds
 if seconds is not None:
 signal.signal(signal.SIGALRM,
 action if action is not None else signal.SIG_DFL)

 def start(self):
 if self._running:
 raise RuntimeError("IOLoop is already running")
 self._setup_logging()
 if self._stopped:
 self._stopped = False
 return
 old_current = getattr(IOLoop._current, "instance", None)
 IOLoop._current.instance = self
 self._thread_ident = thread.get_ident()
 self._running = True

 # signal.set_wakeup_fd closes a race condition in event loops:
 # a signal may arrive at the beginning of select/poll/etc
 # before it goes into its interruptible sleep, so the signal
 # will be consumed without waking the select. The solution is
 # for the (C, synchronous) signal handler to write to a pipe,
 # which will then be seen by select.
 #
 # In python's signal handling semantics, this only matters on the
 # main thread (fortunately, set_wakeup_fd only works on the main
 # thread and will raise a ValueError otherwise).
 #
 # If someone has already set a wakeup fd, we don't want to
 # disturb it. This is an issue for twisted, which does its
 # SIGCHLD processing in response to its own wakeup fd being
 # written to. As long as the wakeup fd is registered on the IOLoop,
 # the loop will still wake up and everything should work.
 old_wakeup_fd = None
 if hasattr(signal, 'set_wakeup_fd') and os.name == 'posix':
 # requires python 2.6+, unix. set_wakeup_fd exists but crashes
 # the python process on windows.
 try:
 old_wakeup_fd = signal.set_wakeup_fd(self._waker.write_fileno())
 if old_wakeup_fd != -1:
 # Already set, restore previous value. This is a little racy,
 # but there's no clean get_wakeup_fd and in real use the
 # IOLoop is just started once at the beginning.
 signal.set_wakeup_fd(old_wakeup_fd)
 old_wakeup_fd = None
 except ValueError:
 # Non-main thread, or the previous value of wakeup_fd
 # is no longer valid.
 old_wakeup_fd = None

 try:
 while True:
 # Prevent IO event starvation by delaying new callbacks
 # to the next iteration of the event loop.
 with self._callback_lock:
 callbacks = self._callbacks
 self._callbacks = []

 # Add any timeouts that have come due to the callback list.
 # Do not run anything until we have determined which ones
 # are ready, so timeouts that call add_timeout cannot
 # schedule anything in this iteration.
 due_timeouts = []
 if self._timeouts:
 now = self.time()
 while self._timeouts:
 if self._timeouts[0].callback is None:
 # The timeout was cancelled. Note that the
 # cancellation check is repeated below for timeouts
 # that are cancelled by another timeout or callback.
 heapq.heappop(self._timeouts)
 self._cancellations -= 1
 elif self._timeouts[0].deadline <= now:
 due_timeouts.append(heapq.heappop(self._timeouts))
 else:
 break
 if (self._cancellations > 512 and
 self._cancellations > (len(self._timeouts) >> 1)):
 # Clean up the timeout queue when it gets large and it's
 # more than half cancellations.
 self._cancellations = 0
 self._timeouts = [x for x in self._timeouts
 if x.callback is not None]
 heapq.heapify(self._timeouts)

 for callback in callbacks:
 self._run_callback(callback)
 for timeout in due_timeouts:
 if timeout.callback is not None:
 self._run_callback(timeout.callback)
 # Closures may be holding on to a lot of memory, so allow
 # them to be freed before we go into our poll wait.
 callbacks = callback = due_timeouts = timeout = None

 if self._callbacks:
 # If any callbacks or timeouts called add_callback,
 # we don't want to wait in poll() before we run them.
 poll_timeout = 0.0
 elif self._timeouts:
 # If there are any timeouts, schedule the first one.
 # Use self.time() instead of 'now' to account for time
 # spent running callbacks.
 poll_timeout = self._timeouts[0].deadline - self.time()
 poll_timeout = max(0, min(poll_timeout, _POLL_TIMEOUT))
 else:
 # No timeouts and no callbacks, so use the default.
 poll_timeout = _POLL_TIMEOUT

 if not self._running:
 break

 if self._blocking_signal_threshold is not None:
 # clear alarm so it doesn't fire while poll is waiting for
 # events.
 signal.setitimer(signal.ITIMER_REAL, 0, 0)

 try:
 event_pairs = self._impl.poll(poll_timeout)
 except Exception as e:
 # Depending on python version and IOLoop implementation,
 # different exception types may be thrown and there are
 # two ways EINTR might be signaled:
 # * e.errno == errno.EINTR
 # * e.args is like (errno.EINTR, 'Interrupted system call')
 if errno_from_exception(e) == errno.EINTR:
 continue
 else:
 raise

 if self._blocking_signal_threshold is not None:
 signal.setitimer(signal.ITIMER_REAL,
 self._blocking_signal_threshold, 0)

 # Pop one fd at a time from the set of pending fds and run
 # its handler. Since that handler may perform actions on
 # other file descriptors, there may be reentrant calls to
 # this IOLoop that modify self._events
 self._events.update(event_pairs)
 while self._events:
 fd, events = self._events.popitem()
 try:
 fd_obj, handler_func = self._handlers[fd]
 handler_func(fd_obj, events)
 except (OSError, IOError) as e:
 if errno_from_exception(e) == errno.EPIPE:
 # Happens when the client closes the connection
 pass
 else:
 self.handle_callback_exception(self._handlers.get(fd))
 except Exception:
 self.handle_callback_exception(self._handlers.get(fd))
 fd_obj = handler_func = None

 finally:
 # reset the stopped flag so another start/stop pair can be issued
 self._stopped = False
 if self._blocking_signal_threshold is not None:
 signal.setitimer(signal.ITIMER_REAL, 0, 0)
 IOLoop._current.instance = old_current
 if old_wakeup_fd is not None:
 signal.set_wakeup_fd(old_wakeup_fd)

 def stop(self):
 self._running = False
 self._stopped = True
 self._waker.wake()

 def time(self):
 return self.time_func()

 def call_at(self, deadline, callback, *args, **kwargs):
 timeout = _Timeout(
 deadline,
 functools.partial(stack_context.wrap(callback), *args, **kwargs),
 self)
 heapq.heappush(self._timeouts, timeout)
 return timeout

 def remove_timeout(self, timeout):
 # Removing from a heap is complicated, so just leave the defunct
 # timeout object in the queue (see discussion in
 # http://docs.python.org/library/heapq.html).
 # If this turns out to be a problem, we could add a garbage
 # collection pass whenever there are too many dead timeouts.
 timeout.callback = None
 self._cancellations += 1

 def add_callback(self, callback, *args, **kwargs):
 if thread.get_ident() != self._thread_ident:
 # If we're not on the IOLoop's thread, we need to synchronize
 # with other threads, or waking logic will induce a race.
 with self._callback_lock:
 if self._closing:
 return
 list_empty = not self._callbacks
 self._callbacks.append(functools.partial(
 stack_context.wrap(callback), *args, **kwargs))
 if list_empty:
 # If we're not in the IOLoop's thread, and we added the
 # first callback to an empty list, we may need to wake it
 # up (it may wake up on its own, but an occasional extra
 # wake is harmless). Waking up a polling IOLoop is
 # relatively expensive, so we try to avoid it when we can.
 self._waker.wake()
 else:
 if self._closing:
 return
 # If we're on the IOLoop's thread, we don't need the lock,
 # since we don't need to wake anyone, just add the
 # callback. Blindly insert into self._callbacks. This is
 # safe even from signal handlers because the GIL makes
 # list.append atomic. One subtlety is that if the signal
 # is interrupting another thread holding the
 # _callback_lock block in IOLoop.start, we may modify
 # either the old or new version of self._callbacks, but
 # either way will work.
 self._callbacks.append(functools.partial(
 stack_context.wrap(callback), *args, **kwargs))

 def add_callback_from_signal(self, callback, *args, **kwargs):
 with stack_context.NullContext():
 self.add_callback(callback, *args, **kwargs)

class _Timeout(object):
 """An IOLoop timeout, a UNIX timestamp and a callback"""

 # Reduce memory overhead when there are lots of pending callbacks
 __slots__ = ['deadline', 'callback', 'tdeadline']

 def __init__(self, deadline, callback, io_loop):
 if not isinstance(deadline, numbers.Real):
 raise TypeError("Unsupported deadline %r" % deadline)
 self.deadline = deadline
 self.callback = callback
 self.tdeadline = (deadline, next(io_loop._timeout_counter))

 # Comparison methods to sort by deadline, with object id as a tiebreaker
 # to guarantee a consistent ordering. The heapq module uses __le__
 # in python2.5, and __lt__ in 2.6+ (sort() and most other comparisons
 # use __lt__).
 def __lt__(self, other):
 return self.tdeadline < other.tdeadline

 def __le__(self, other):
 return self.tdeadline <= other.tdeadline

[docs]class PeriodicCallback(object):
 """Schedules the given callback to be called periodically.

 The callback is called every ``callback_time`` milliseconds.
 Note that the timeout is given in milliseconds, while most other
 time-related functions in Tornado use seconds.

 If the callback runs for longer than ``callback_time`` milliseconds,
 subsequent invocations will be skipped to get back on schedule.

 `start` must be called after the `PeriodicCallback` is created.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 def __init__(self, callback, callback_time, io_loop=None):
 self.callback = callback
 if callback_time <= 0:
 raise ValueError("Periodic callback must have a positive callback_time")
 self.callback_time = callback_time
 self.io_loop = io_loop or IOLoop.current()
 self._running = False
 self._timeout = None

[docs] def start(self):
 """Starts the timer."""
 self._running = True
 self._next_timeout = self.io_loop.time()
 self._schedule_next()

[docs] def stop(self):
 """Stops the timer."""
 self._running = False
 if self._timeout is not None:
 self.io_loop.remove_timeout(self._timeout)
 self._timeout = None

[docs] def is_running(self):
 """Return True if this `.PeriodicCallback` has been started.

 .. versionadded:: 4.1
 """
 return self._running

 def _run(self):
 if not self._running:
 return
 try:
 return self.callback()
 except Exception:
 self.io_loop.handle_callback_exception(self.callback)
 finally:
 self._schedule_next()

 def _schedule_next(self):
 if self._running:
 current_time = self.io_loop.time()

 if self._next_timeout <= current_time:
 callback_time_sec = self.callback_time / 1000.0
 self._next_timeout += (math.floor((current_time - self._next_timeout) /
 callback_time_sec) + 1) * callback_time_sec

 self._timeout = self.io_loop.add_timeout(self._next_timeout, self._run)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/testing.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.testing

#!/usr/bin/env python
"""Support classes for automated testing.

* `AsyncTestCase` and `AsyncHTTPTestCase`: Subclasses of unittest.TestCase
 with additional support for testing asynchronous (`.IOLoop`-based) code.

* `ExpectLog` and `LogTrapTestCase`: Make test logs less spammy.

* `main()`: A simple test runner (wrapper around unittest.main()) with support
 for the tornado.autoreload module to rerun the tests when code changes.
"""

from __future__ import absolute_import, division, print_function, with_statement

try:
 from tornado import gen
 from tornado.httpclient import AsyncHTTPClient
 from tornado.httpserver import HTTPServer
 from tornado.simple_httpclient import SimpleAsyncHTTPClient
 from tornado.ioloop import IOLoop, TimeoutError
 from tornado import netutil
 from tornado.process import Subprocess
except ImportError:
 # These modules are not importable on app engine. Parts of this module
 # won't work, but e.g. LogTrapTestCase and main() will.
 AsyncHTTPClient = None # type: ignore
 gen = None # type: ignore
 HTTPServer = None # type: ignore
 IOLoop = None # type: ignore
 netutil = None # type: ignore
 SimpleAsyncHTTPClient = None # type: ignore
 Subprocess = None # type: ignore
from tornado.log import gen_log, app_log
from tornado.stack_context import ExceptionStackContext
from tornado.util import raise_exc_info, basestring_type, PY3
import functools
import inspect
import logging
import os
import re
import signal
import socket
import sys

if PY3:
 from io import StringIO
else:
 from cStringIO import StringIO

try:
 from collections.abc import Generator as GeneratorType # type: ignore
except ImportError:
 from types import GeneratorType # type: ignore

if sys.version_info >= (3, 5):
 iscoroutine = inspect.iscoroutine # type: ignore
 iscoroutinefunction = inspect.iscoroutinefunction # type: ignore
else:
 iscoroutine = iscoroutinefunction = lambda f: False

Tornado's own test suite requires the updated unittest module
(either py27+ or unittest2) so tornado.test.util enforces
this requirement, but for other users of tornado.testing we want
to allow the older version if unitest2 is not available.
if PY3:
 # On python 3, mixing unittest2 and unittest (including doctest)
 # doesn't seem to work, so always use unittest.
 import unittest
else:
 # On python 2, prefer unittest2 when available.
 try:
 import unittest2 as unittest # type: ignore
 except ImportError:
 import unittest # type: ignore

_next_port = 10000

[docs]def get_unused_port():
 """Returns a (hopefully) unused port number.

 This function does not guarantee that the port it returns is available,
 only that a series of get_unused_port calls in a single process return
 distinct ports.

 .. deprecated::
 Use bind_unused_port instead, which is guaranteed to find an unused port.
 """
 global _next_port
 port = _next_port
 _next_port = _next_port + 1
 return port

[docs]def bind_unused_port(reuse_port=False):
 """Binds a server socket to an available port on localhost.

 Returns a tuple (socket, port).

 .. versionchanged:: 4.4
 Always binds to ``127.0.0.1`` without resolving the name
 ``localhost``.
 """
 sock = netutil.bind_sockets(None, '127.0.0.1', family=socket.AF_INET,
 reuse_port=reuse_port)[0]
 port = sock.getsockname()[1]
 return sock, port

[docs]def get_async_test_timeout():
 """Get the global timeout setting for async tests.

 Returns a float, the timeout in seconds.

 .. versionadded:: 3.1
 """
 try:
 return float(os.environ.get('ASYNC_TEST_TIMEOUT'))
 except (ValueError, TypeError):
 return 5

class _TestMethodWrapper(object):
 """Wraps a test method to raise an error if it returns a value.

 This is mainly used to detect undecorated generators (if a test
 method yields it must use a decorator to consume the generator),
 but will also detect other kinds of return values (these are not
 necessarily errors, but we alert anyway since there is no good
 reason to return a value from a test).
 """
 def __init__(self, orig_method):
 self.orig_method = orig_method

 def __call__(self, *args, **kwargs):
 result = self.orig_method(*args, **kwargs)
 if isinstance(result, GeneratorType) or iscoroutine(result):
 raise TypeError("Generator and coroutine test methods should be"
 " decorated with tornado.testing.gen_test")
 elif result is not None:
 raise ValueError("Return value from test method ignored: %r" %
 result)

 def __getattr__(self, name):
 """Proxy all unknown attributes to the original method.

 This is important for some of the decorators in the `unittest`
 module, such as `unittest.skipIf`.
 """
 return getattr(self.orig_method, name)

[docs]class AsyncTestCase(unittest.TestCase):
 """`~unittest.TestCase` subclass for testing `.IOLoop`-based
 asynchronous code.

 The unittest framework is synchronous, so the test must be
 complete by the time the test method returns. This means that
 asynchronous code cannot be used in quite the same way as usual.
 To write test functions that use the same ``yield``-based patterns
 used with the `tornado.gen` module, decorate your test methods
 with `tornado.testing.gen_test` instead of
 `tornado.gen.coroutine`. This class also provides the `stop()`
 and `wait()` methods for a more manual style of testing. The test
 method itself must call ``self.wait()``, and asynchronous
 callbacks should call ``self.stop()`` to signal completion.

 By default, a new `.IOLoop` is constructed for each test and is available
 as ``self.io_loop``. This `.IOLoop` should be used in the construction of
 HTTP clients/servers, etc. If the code being tested requires a
 global `.IOLoop`, subclasses should override `get_new_ioloop` to return it.

 The `.IOLoop`'s ``start`` and ``stop`` methods should not be
 called directly. Instead, use `self.stop <stop>` and `self.wait
 <wait>`. Arguments passed to ``self.stop`` are returned from
 ``self.wait``. It is possible to have multiple ``wait``/``stop``
 cycles in the same test.

 Example::

 # This test uses coroutine style.
 class MyTestCase(AsyncTestCase):
 @tornado.testing.gen_test
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 response = yield client.fetch("http://www.tornadoweb.org")
 # Test contents of response
 self.assertIn("FriendFeed", response.body)

 # This test uses argument passing between self.stop and self.wait.
 class MyTestCase2(AsyncTestCase):
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 client.fetch("http://www.tornadoweb.org/", self.stop)
 response = self.wait()
 # Test contents of response
 self.assertIn("FriendFeed", response.body)

 # This test uses an explicit callback-based style.
 class MyTestCase3(AsyncTestCase):
 def test_http_fetch(self):
 client = AsyncHTTPClient(self.io_loop)
 client.fetch("http://www.tornadoweb.org/", self.handle_fetch)
 self.wait()

 def handle_fetch(self, response):
 # Test contents of response (failures and exceptions here
 # will cause self.wait() to throw an exception and end the
 # test).
 # Exceptions thrown here are magically propagated to
 # self.wait() in test_http_fetch() via stack_context.
 self.assertIn("FriendFeed", response.body)
 self.stop()
 """
 def __init__(self, methodName='runTest'):
 super(AsyncTestCase, self).__init__(methodName)
 self.__stopped = False
 self.__running = False
 self.__failure = None
 self.__stop_args = None
 self.__timeout = None

 # It's easy to forget the @gen_test decorator, but if you do
 # the test will silently be ignored because nothing will consume
 # the generator. Replace the test method with a wrapper that will
 # make sure it's not an undecorated generator.
 setattr(self, methodName, _TestMethodWrapper(getattr(self, methodName)))

 def setUp(self):
 super(AsyncTestCase, self).setUp()
 self.io_loop = self.get_new_ioloop()
 self.io_loop.make_current()

 def tearDown(self):
 # Clean up Subprocess, so it can be used again with a new ioloop.
 Subprocess.uninitialize()
 self.io_loop.clear_current()
 if (not IOLoop.initialized() or
 self.io_loop is not IOLoop.instance()):
 # Try to clean up any file descriptors left open in the ioloop.
 # This avoids leaks, especially when tests are run repeatedly
 # in the same process with autoreload (because curl does not
 # set FD_CLOEXEC on its file descriptors)
 self.io_loop.close(all_fds=True)
 super(AsyncTestCase, self).tearDown()
 # In case an exception escaped or the StackContext caught an exception
 # when there wasn't a wait() to re-raise it, do so here.
 # This is our last chance to raise an exception in a way that the
 # unittest machinery understands.
 self.__rethrow()

[docs] def get_new_ioloop(self):
 """Creates a new `.IOLoop` for this test. May be overridden in
 subclasses for tests that require a specific `.IOLoop` (usually
 the singleton `.IOLoop.instance()`).
 """
 return IOLoop()

 def _handle_exception(self, typ, value, tb):
 if self.__failure is None:
 self.__failure = (typ, value, tb)
 else:
 app_log.error("multiple unhandled exceptions in test",
 exc_info=(typ, value, tb))
 self.stop()
 return True

 def __rethrow(self):
 if self.__failure is not None:
 failure = self.__failure
 self.__failure = None
 raise_exc_info(failure)

 def run(self, result=None):
 with ExceptionStackContext(self._handle_exception):
 super(AsyncTestCase, self).run(result)
 # As a last resort, if an exception escaped super.run() and wasn't
 # re-raised in tearDown, raise it here. This will cause the
 # unittest run to fail messily, but that's better than silently
 # ignoring an error.
 self.__rethrow()

[docs] def stop(self, _arg=None, **kwargs):
 """Stops the `.IOLoop`, causing one pending (or future) call to `wait()`
 to return.

 Keyword arguments or a single positional argument passed to `stop()` are
 saved and will be returned by `wait()`.
 """
 assert _arg is None or not kwargs
 self.__stop_args = kwargs or _arg
 if self.__running:
 self.io_loop.stop()
 self.__running = False
 self.__stopped = True

[docs] def wait(self, condition=None, timeout=None):
 """Runs the `.IOLoop` until stop is called or timeout has passed.

 In the event of a timeout, an exception will be thrown. The
 default timeout is 5 seconds; it may be overridden with a
 ``timeout`` keyword argument or globally with the
 ``ASYNC_TEST_TIMEOUT`` environment variable.

 If ``condition`` is not None, the `.IOLoop` will be restarted
 after `stop()` until ``condition()`` returns true.

 .. versionchanged:: 3.1
 Added the ``ASYNC_TEST_TIMEOUT`` environment variable.
 """
 if timeout is None:
 timeout = get_async_test_timeout()

 if not self.__stopped:
 if timeout:
 def timeout_func():
 try:
 raise self.failureException(
 'Async operation timed out after %s seconds' %
 timeout)
 except Exception:
 self.__failure = sys.exc_info()
 self.stop()
 self.__timeout = self.io_loop.add_timeout(self.io_loop.time() + timeout, timeout_func)
 while True:
 self.__running = True
 self.io_loop.start()
 if (self.__failure is not None or
 condition is None or condition()):
 break
 if self.__timeout is not None:
 self.io_loop.remove_timeout(self.__timeout)
 self.__timeout = None
 assert self.__stopped
 self.__stopped = False
 self.__rethrow()
 result = self.__stop_args
 self.__stop_args = None
 return result

[docs]class AsyncHTTPTestCase(AsyncTestCase):
 """A test case that starts up an HTTP server.

 Subclasses must override `get_app()`, which returns the
 `tornado.web.Application` (or other `.HTTPServer` callback) to be tested.
 Tests will typically use the provided ``self.http_client`` to fetch
 URLs from this server.

 Example, assuming the "Hello, world" example from the user guide is in
 ``hello.py``::

 import hello

 class TestHelloApp(AsyncHTTPTestCase):
 def get_app(self):
 return hello.make_app()

 def test_homepage(self):
 response = self.fetch('/')
 self.assertEqual(response.code, 200)
 self.assertEqual(response.body, 'Hello, world')

 That call to ``self.fetch()`` is equivalent to ::

 self.http_client.fetch(self.get_url('/'), self.stop)
 response = self.wait()

 which illustrates how AsyncTestCase can turn an asynchronous operation,
 like ``http_client.fetch()``, into a synchronous operation. If you need
 to do other asynchronous operations in tests, you'll probably need to use
 ``stop()`` and ``wait()`` yourself.
 """
 def setUp(self):
 super(AsyncHTTPTestCase, self).setUp()
 sock, port = bind_unused_port()
 self.__port = port

 self.http_client = self.get_http_client()
 self._app = self.get_app()
 self.http_server = self.get_http_server()
 self.http_server.add_sockets([sock])

 def get_http_client(self):
 return AsyncHTTPClient(io_loop=self.io_loop)

 def get_http_server(self):
 return HTTPServer(self._app, io_loop=self.io_loop,
 **self.get_httpserver_options())

[docs] def get_app(self):
 """Should be overridden by subclasses to return a
 `tornado.web.Application` or other `.HTTPServer` callback.
 """
 raise NotImplementedError()

[docs] def fetch(self, path, **kwargs):
 """Convenience method to synchronously fetch a url.

 The given path will be appended to the local server's host and
 port. Any additional kwargs will be passed directly to
 `.AsyncHTTPClient.fetch` (and so could be used to pass
 ``method="POST"``, ``body="..."``, etc).
 """
 self.http_client.fetch(self.get_url(path), self.stop, **kwargs)
 return self.wait()

[docs] def get_httpserver_options(self):
 """May be overridden by subclasses to return additional
 keyword arguments for the server.
 """
 return {}

[docs] def get_http_port(self):
 """Returns the port used by the server.

 A new port is chosen for each test.
 """
 return self.__port

 def get_protocol(self):
 return 'http'

[docs] def get_url(self, path):
 """Returns an absolute url for the given path on the test server."""
 return '%s://localhost:%s%s' % (self.get_protocol(),
 self.get_http_port(), path)

 def tearDown(self):
 self.http_server.stop()
 self.io_loop.run_sync(self.http_server.close_all_connections,
 timeout=get_async_test_timeout())
 if (not IOLoop.initialized() or
 self.http_client.io_loop is not IOLoop.instance()):
 self.http_client.close()
 super(AsyncHTTPTestCase, self).tearDown()

[docs]class AsyncHTTPSTestCase(AsyncHTTPTestCase):
 """A test case that starts an HTTPS server.

 Interface is generally the same as `AsyncHTTPTestCase`.
 """
 def get_http_client(self):
 return AsyncHTTPClient(io_loop=self.io_loop, force_instance=True,
 defaults=dict(validate_cert=False))

 def get_httpserver_options(self):
 return dict(ssl_options=self.get_ssl_options())

[docs] def get_ssl_options(self):
 """May be overridden by subclasses to select SSL options.

 By default includes a self-signed testing certificate.
 """
 # Testing keys were generated with:
 # openssl req -new -keyout tornado/test/test.key -out tornado/test/test.crt -nodes -days 3650 -x509
 module_dir = os.path.dirname(__file__)
 return dict(
 certfile=os.path.join(module_dir, 'test', 'test.crt'),
 keyfile=os.path.join(module_dir, 'test', 'test.key'))

 def get_protocol(self):
 return 'https'

[docs]def gen_test(func=None, timeout=None):
 """Testing equivalent of ``@gen.coroutine``, to be applied to test methods.

 ``@gen.coroutine`` cannot be used on tests because the `.IOLoop` is not
 already running. ``@gen_test`` should be applied to test methods
 on subclasses of `AsyncTestCase`.

 Example::

 class MyTest(AsyncHTTPTestCase):
 @gen_test
 def test_something(self):
 response = yield gen.Task(self.fetch('/'))

 By default, ``@gen_test`` times out after 5 seconds. The timeout may be
 overridden globally with the ``ASYNC_TEST_TIMEOUT`` environment variable,
 or for each test with the ``timeout`` keyword argument::

 class MyTest(AsyncHTTPTestCase):
 @gen_test(timeout=10)
 def test_something_slow(self):
 response = yield gen.Task(self.fetch('/'))

 .. versionadded:: 3.1
 The ``timeout`` argument and ``ASYNC_TEST_TIMEOUT`` environment
 variable.

 .. versionchanged:: 4.0
 The wrapper now passes along ``*args, **kwargs`` so it can be used
 on functions with arguments.
 """
 if timeout is None:
 timeout = get_async_test_timeout()

 def wrap(f):
 # Stack up several decorators to allow us to access the generator
 # object itself. In the innermost wrapper, we capture the generator
 # and save it in an attribute of self. Next, we run the wrapped
 # function through @gen.coroutine. Finally, the coroutine is
 # wrapped again to make it synchronous with run_sync.
 #
 # This is a good case study arguing for either some sort of
 # extensibility in the gen decorators or cancellation support.
 @functools.wraps(f)
 def pre_coroutine(self, *args, **kwargs):
 result = f(self, *args, **kwargs)
 if isinstance(result, GeneratorType) or iscoroutine(result):
 self._test_generator = result
 else:
 self._test_generator = None
 return result

 if iscoroutinefunction(f):
 coro = pre_coroutine
 else:
 coro = gen.coroutine(pre_coroutine)

 @functools.wraps(coro)
 def post_coroutine(self, *args, **kwargs):
 try:
 return self.io_loop.run_sync(
 functools.partial(coro, self, *args, **kwargs),
 timeout=timeout)
 except TimeoutError as e:
 # run_sync raises an error with an unhelpful traceback.
 # Throw it back into the generator or coroutine so the stack
 # trace is replaced by the point where the test is stopped.
 self._test_generator.throw(e)
 # In case the test contains an overly broad except clause,
 # we may get back here. In this case re-raise the original
 # exception, which is better than nothing.
 raise
 return post_coroutine

 if func is not None:
 # Used like:
 # @gen_test
 # def f(self):
 # pass
 return wrap(func)
 else:
 # Used like @gen_test(timeout=10)
 return wrap

Without this attribute, nosetests will try to run gen_test as a test
anywhere it is imported.
gen_test.__test__ = False # type: ignore

[docs]class LogTrapTestCase(unittest.TestCase):
 """A test case that captures and discards all logging output
 if the test passes.

 Some libraries can produce a lot of logging output even when
 the test succeeds, so this class can be useful to minimize the noise.
 Simply use it as a base class for your test case. It is safe to combine
 with AsyncTestCase via multiple inheritance
 (``class MyTestCase(AsyncHTTPTestCase, LogTrapTestCase):``)

 This class assumes that only one log handler is configured and
 that it is a `~logging.StreamHandler`. This is true for both
 `logging.basicConfig` and the "pretty logging" configured by
 `tornado.options`. It is not compatible with other log buffering
 mechanisms, such as those provided by some test runners.

 .. deprecated:: 4.1
 Use the unittest module's ``--buffer`` option instead, or `.ExpectLog`.
 """
 def run(self, result=None):
 logger = logging.getLogger()
 if not logger.handlers:
 logging.basicConfig()
 handler = logger.handlers[0]
 if (len(logger.handlers) > 1 or
 not isinstance(handler, logging.StreamHandler)):
 # Logging has been configured in a way we don't recognize,
 # so just leave it alone.
 super(LogTrapTestCase, self).run(result)
 return
 old_stream = handler.stream
 try:
 handler.stream = StringIO()
 gen_log.info("RUNNING TEST: " + str(self))
 old_error_count = len(result.failures) + len(result.errors)
 super(LogTrapTestCase, self).run(result)
 new_error_count = len(result.failures) + len(result.errors)
 if new_error_count != old_error_count:
 old_stream.write(handler.stream.getvalue())
 finally:
 handler.stream = old_stream

[docs]class ExpectLog(logging.Filter):
 """Context manager to capture and suppress expected log output.

 Useful to make tests of error conditions less noisy, while still
 leaving unexpected log entries visible. *Not thread safe.*

 The attribute ``logged_stack`` is set to true if any exception
 stack trace was logged.

 Usage::

 with ExpectLog('tornado.application', "Uncaught exception"):
 error_response = self.fetch("/some_page")

 .. versionchanged:: 4.3
 Added the ``logged_stack`` attribute.
 """
 def __init__(self, logger, regex, required=True):
 """Constructs an ExpectLog context manager.

 :param logger: Logger object (or name of logger) to watch. Pass
 an empty string to watch the root logger.
 :param regex: Regular expression to match. Any log entries on
 the specified logger that match this regex will be suppressed.
 :param required: If true, an exception will be raised if the end of
 the ``with`` statement is reached without matching any log entries.
 """
 if isinstance(logger, basestring_type):
 logger = logging.getLogger(logger)
 self.logger = logger
 self.regex = re.compile(regex)
 self.required = required
 self.matched = False
 self.logged_stack = False

 def filter(self, record):
 if record.exc_info:
 self.logged_stack = True
 message = record.getMessage()
 if self.regex.match(message):
 self.matched = True
 return False
 return True

 def __enter__(self):
 self.logger.addFilter(self)
 return self

 def __exit__(self, typ, value, tb):
 self.logger.removeFilter(self)
 if not typ and self.required and not self.matched:
 raise Exception("did not get expected log message")

[docs]def main(**kwargs):
 """A simple test runner.

 This test runner is essentially equivalent to `unittest.main` from
 the standard library, but adds support for tornado-style option
 parsing and log formatting.

 The easiest way to run a test is via the command line::

 python -m tornado.testing tornado.test.stack_context_test

 See the standard library unittest module for ways in which tests can
 be specified.

 Projects with many tests may wish to define a test script like
 ``tornado/test/runtests.py``. This script should define a method
 ``all()`` which returns a test suite and then call
 `tornado.testing.main()`. Note that even when a test script is
 used, the ``all()`` test suite may be overridden by naming a
 single test on the command line::

 # Runs all tests
 python -m tornado.test.runtests
 # Runs one test
 python -m tornado.test.runtests tornado.test.stack_context_test

 Additional keyword arguments passed through to ``unittest.main()``.
 For example, use ``tornado.testing.main(verbosity=2)``
 to show many test details as they are run.
 See http://docs.python.org/library/unittest.html#unittest.main
 for full argument list.
 """
 from tornado.options import define, options, parse_command_line

 define('exception_on_interrupt', type=bool, default=True,
 help=("If true (default), ctrl-c raises a KeyboardInterrupt "
 "exception. This prints a stack trace but cannot interrupt "
 "certain operations. If false, the process is more reliably "
 "killed, but does not print a stack trace."))

 # support the same options as unittest's command-line interface
 define('verbose', type=bool)
 define('quiet', type=bool)
 define('failfast', type=bool)
 define('catch', type=bool)
 define('buffer', type=bool)

 argv = [sys.argv[0]] + parse_command_line(sys.argv)

 if not options.exception_on_interrupt:
 signal.signal(signal.SIGINT, signal.SIG_DFL)

 if options.verbose is not None:
 kwargs['verbosity'] = 2
 if options.quiet is not None:
 kwargs['verbosity'] = 0
 if options.failfast is not None:
 kwargs['failfast'] = True
 if options.catch is not None:
 kwargs['catchbreak'] = True
 if options.buffer is not None:
 kwargs['buffer'] = True

 if __name__ == '__main__' and len(argv) == 1:
 print("No tests specified", file=sys.stderr)
 sys.exit(1)
 try:
 # In order to be able to run tests by their fully-qualified name
 # on the command line without importing all tests here,
 # module must be set to None. Python 3.2's unittest.main ignores
 # defaultTest if no module is given (it tries to do its own
 # test discovery, which is incompatible with auto2to3), so don't
 # set module if we're not asking for a specific test.
 if len(argv) > 1:
 unittest.main(module=None, argv=argv, **kwargs)
 else:
 unittest.main(defaultTest="all", argv=argv, **kwargs)
 except SystemExit as e:
 if e.code == 0:
 gen_log.info('PASS')
 else:
 gen_log.error('FAIL')
 raise

if __name__ == '__main__':
 main()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/httpclient.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.httpclient

"""Blocking and non-blocking HTTP client interfaces.

This module defines a common interface shared by two implementations,
``simple_httpclient`` and ``curl_httpclient``. Applications may either
instantiate their chosen implementation class directly or use the
`AsyncHTTPClient` class from this module, which selects an implementation
that can be overridden with the `AsyncHTTPClient.configure` method.

The default implementation is ``simple_httpclient``, and this is expected
to be suitable for most users' needs. However, some applications may wish
to switch to ``curl_httpclient`` for reasons such as the following:

* ``curl_httpclient`` has some features not found in ``simple_httpclient``,
 including support for HTTP proxies and the ability to use a specified
 network interface.

* ``curl_httpclient`` is more likely to be compatible with sites that are
 not-quite-compliant with the HTTP spec, or sites that use little-exercised
 features of HTTP.

* ``curl_httpclient`` is faster.

* ``curl_httpclient`` was the default prior to Tornado 2.0.

Note that if you are using ``curl_httpclient``, it is highly
recommended that you use a recent version of ``libcurl`` and
``pycurl``. Currently the minimum supported version of libcurl is
7.22.0, and the minimum version of pycurl is 7.18.2. It is highly
recommended that your ``libcurl`` installation is built with
asynchronous DNS resolver (threaded or c-ares), otherwise you may
encounter various problems with request timeouts (for more
information, see
http://curl.haxx.se/libcurl/c/curl_easy_setopt.html#CURLOPTCONNECTTIMEOUTMS
and comments in curl_httpclient.py).

To select ``curl_httpclient``, call `AsyncHTTPClient.configure` at startup::

 AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")
"""

from __future__ import absolute_import, division, print_function, with_statement

import functools
import time
import weakref

from tornado.concurrent import TracebackFuture
from tornado.escape import utf8, native_str
from tornado import httputil, stack_context
from tornado.ioloop import IOLoop
from tornado.util import Configurable

[docs]class HTTPClient(object):
 """A blocking HTTP client.

 This interface is provided for convenience and testing; most applications
 that are running an IOLoop will want to use `AsyncHTTPClient` instead.
 Typical usage looks like this::

 http_client = httpclient.HTTPClient()
 try:
 response = http_client.fetch("http://www.google.com/")
 print(response.body)
 except httpclient.HTTPError as e:
 # HTTPError is raised for non-200 responses; the response
 # can be found in e.response.
 print("Error: " + str(e))
 except Exception as e:
 # Other errors are possible, such as IOError.
 print("Error: " + str(e))
 http_client.close()
 """
 def __init__(self, async_client_class=None, **kwargs):
 self._io_loop = IOLoop(make_current=False)
 if async_client_class is None:
 async_client_class = AsyncHTTPClient
 self._async_client = async_client_class(self._io_loop, **kwargs)
 self._closed = False

 def __del__(self):
 self.close()

[docs] def close(self):
 """Closes the HTTPClient, freeing any resources used."""
 if not self._closed:
 self._async_client.close()
 self._io_loop.close()
 self._closed = True

[docs] def fetch(self, request, **kwargs):
 """Executes a request, returning an `HTTPResponse`.

 The request may be either a string URL or an `HTTPRequest` object.
 If it is a string, we construct an `HTTPRequest` using any additional
 kwargs: ``HTTPRequest(request, **kwargs)``

 If an error occurs during the fetch, we raise an `HTTPError` unless
 the ``raise_error`` keyword argument is set to False.
 """
 response = self._io_loop.run_sync(functools.partial(
 self._async_client.fetch, request, **kwargs))
 return response

[docs]class AsyncHTTPClient(Configurable):
 """An non-blocking HTTP client.

 Example usage::

 def handle_response(response):
 if response.error:
 print("Error: %s" % response.error)
 else:
 print(response.body)

 http_client = AsyncHTTPClient()
 http_client.fetch("http://www.google.com/", handle_response)

 The constructor for this class is magic in several respects: It
 actually creates an instance of an implementation-specific
 subclass, and instances are reused as a kind of pseudo-singleton
 (one per `.IOLoop`). The keyword argument ``force_instance=True``
 can be used to suppress this singleton behavior. Unless
 ``force_instance=True`` is used, no arguments other than
 ``io_loop`` should be passed to the `AsyncHTTPClient` constructor.
 The implementation subclass as well as arguments to its
 constructor can be set with the static method `configure()`

 All `AsyncHTTPClient` implementations support a ``defaults``
 keyword argument, which can be used to set default values for
 `HTTPRequest` attributes. For example::

 AsyncHTTPClient.configure(
 None, defaults=dict(user_agent="MyUserAgent"))
 # or with force_instance:
 client = AsyncHTTPClient(force_instance=True,
 defaults=dict(user_agent="MyUserAgent"))

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 @classmethod
 def configurable_base(cls):
 return AsyncHTTPClient

 @classmethod
 def configurable_default(cls):
 from tornado.simple_httpclient import SimpleAsyncHTTPClient
 return SimpleAsyncHTTPClient

 @classmethod
 def _async_clients(cls):
 attr_name = '_async_client_dict_' + cls.__name__
 if not hasattr(cls, attr_name):
 setattr(cls, attr_name, weakref.WeakKeyDictionary())
 return getattr(cls, attr_name)

 def __new__(cls, io_loop=None, force_instance=False, **kwargs):
 io_loop = io_loop or IOLoop.current()
 if force_instance:
 instance_cache = None
 else:
 instance_cache = cls._async_clients()
 if instance_cache is not None and io_loop in instance_cache:
 return instance_cache[io_loop]
 instance = super(AsyncHTTPClient, cls).__new__(cls, io_loop=io_loop,
 **kwargs)
 # Make sure the instance knows which cache to remove itself from.
 # It can't simply call _async_clients() because we may be in
 # __new__(AsyncHTTPClient) but instance.__class__ may be
 # SimpleAsyncHTTPClient.
 instance._instance_cache = instance_cache
 if instance_cache is not None:
 instance_cache[instance.io_loop] = instance
 return instance

 def initialize(self, io_loop, defaults=None):
 self.io_loop = io_loop
 self.defaults = dict(HTTPRequest._DEFAULTS)
 if defaults is not None:
 self.defaults.update(defaults)
 self._closed = False

[docs] def close(self):
 """Destroys this HTTP client, freeing any file descriptors used.

 This method is **not needed in normal use** due to the way
 that `AsyncHTTPClient` objects are transparently reused.
 ``close()`` is generally only necessary when either the
 `.IOLoop` is also being closed, or the ``force_instance=True``
 argument was used when creating the `AsyncHTTPClient`.

 No other methods may be called on the `AsyncHTTPClient` after
 ``close()``.

 """
 if self._closed:
 return
 self._closed = True
 if self._instance_cache is not None:
 if self._instance_cache.get(self.io_loop) is not self:
 raise RuntimeError("inconsistent AsyncHTTPClient cache")
 del self._instance_cache[self.io_loop]

[docs] def fetch(self, request, callback=None, raise_error=True, **kwargs):
 """Executes a request, asynchronously returning an `HTTPResponse`.

 The request may be either a string URL or an `HTTPRequest` object.
 If it is a string, we construct an `HTTPRequest` using any additional
 kwargs: ``HTTPRequest(request, **kwargs)``

 This method returns a `.Future` whose result is an
 `HTTPResponse`. By default, the ``Future`` will raise an
 `HTTPError` if the request returned a non-200 response code
 (other errors may also be raised if the server could not be
 contacted). Instead, if ``raise_error`` is set to False, the
 response will always be returned regardless of the response
 code.

 If a ``callback`` is given, it will be invoked with the `HTTPResponse`.
 In the callback interface, `HTTPError` is not automatically raised.
 Instead, you must check the response's ``error`` attribute or
 call its `~HTTPResponse.rethrow` method.
 """
 if self._closed:
 raise RuntimeError("fetch() called on closed AsyncHTTPClient")
 if not isinstance(request, HTTPRequest):
 request = HTTPRequest(url=request, **kwargs)
 else:
 if kwargs:
 raise ValueError("kwargs can't be used if request is an HTTPRequest object")
 # We may modify this (to add Host, Accept-Encoding, etc),
 # so make sure we don't modify the caller's object. This is also
 # where normal dicts get converted to HTTPHeaders objects.
 request.headers = httputil.HTTPHeaders(request.headers)
 request = _RequestProxy(request, self.defaults)
 future = TracebackFuture()
 if callback is not None:
 callback = stack_context.wrap(callback)

 def handle_future(future):
 exc = future.exception()
 if isinstance(exc, HTTPError) and exc.response is not None:
 response = exc.response
 elif exc is not None:
 response = HTTPResponse(
 request, 599, error=exc,
 request_time=time.time() - request.start_time)
 else:
 response = future.result()
 self.io_loop.add_callback(callback, response)
 future.add_done_callback(handle_future)

 def handle_response(response):
 if raise_error and response.error:
 future.set_exception(response.error)
 else:
 future.set_result(response)
 self.fetch_impl(request, handle_response)
 return future

 def fetch_impl(self, request, callback):
 raise NotImplementedError()

 @classmethod
[docs] def configure(cls, impl, **kwargs):
 """Configures the `AsyncHTTPClient` subclass to use.

 ``AsyncHTTPClient()`` actually creates an instance of a subclass.
 This method may be called with either a class object or the
 fully-qualified name of such a class (or ``None`` to use the default,
 ``SimpleAsyncHTTPClient``)

 If additional keyword arguments are given, they will be passed
 to the constructor of each subclass instance created. The
 keyword argument ``max_clients`` determines the maximum number
 of simultaneous `~AsyncHTTPClient.fetch()` operations that can
 execute in parallel on each `.IOLoop`. Additional arguments
 may be supported depending on the implementation class in use.

 Example::

 AsyncHTTPClient.configure("tornado.curl_httpclient.CurlAsyncHTTPClient")
 """
 super(AsyncHTTPClient, cls).configure(impl, **kwargs)

[docs]class HTTPRequest(object):
 """HTTP client request object."""

 # Default values for HTTPRequest parameters.
 # Merged with the values on the request object by AsyncHTTPClient
 # implementations.
 _DEFAULTS = dict(
 connect_timeout=20.0,
 request_timeout=20.0,
 follow_redirects=True,
 max_redirects=5,
 decompress_response=True,
 proxy_password='',
 allow_nonstandard_methods=False,
 validate_cert=True)

 def __init__(self, url, method="GET", headers=None, body=None,
 auth_username=None, auth_password=None, auth_mode=None,
 connect_timeout=None, request_timeout=None,
 if_modified_since=None, follow_redirects=None,
 max_redirects=None, user_agent=None, use_gzip=None,
 network_interface=None, streaming_callback=None,
 header_callback=None, prepare_curl_callback=None,
 proxy_host=None, proxy_port=None, proxy_username=None,
 proxy_password=None, proxy_auth_mode=None,
 allow_nonstandard_methods=None, validate_cert=None,
 ca_certs=None, allow_ipv6=None, client_key=None,
 client_cert=None, body_producer=None,
 expect_100_continue=False, decompress_response=None,
 ssl_options=None):
 r"""All parameters except ``url`` are optional.

 :arg string url: URL to fetch
 :arg string method: HTTP method, e.g. "GET" or "POST"
 :arg headers: Additional HTTP headers to pass on the request
 :type headers: `~tornado.httputil.HTTPHeaders` or `dict`
 :arg body: HTTP request body as a string (byte or unicode; if unicode
 the utf-8 encoding will be used)
 :arg body_producer: Callable used for lazy/asynchronous request bodies.
 It is called with one argument, a ``write`` function, and should
 return a `.Future`. It should call the write function with new
 data as it becomes available. The write function returns a
 `.Future` which can be used for flow control.
 Only one of ``body`` and ``body_producer`` may
 be specified. ``body_producer`` is not supported on
 ``curl_httpclient``. When using ``body_producer`` it is recommended
 to pass a ``Content-Length`` in the headers as otherwise chunked
 encoding will be used, and many servers do not support chunked
 encoding on requests. New in Tornado 4.0
 :arg string auth_username: Username for HTTP authentication
 :arg string auth_password: Password for HTTP authentication
 :arg string auth_mode: Authentication mode; default is "basic".
 Allowed values are implementation-defined; ``curl_httpclient``
 supports "basic" and "digest"; ``simple_httpclient`` only supports
 "basic"
 :arg float connect_timeout: Timeout for initial connection in seconds
 :arg float request_timeout: Timeout for entire request in seconds
 :arg if_modified_since: Timestamp for ``If-Modified-Since`` header
 :type if_modified_since: `datetime` or `float`
 :arg bool follow_redirects: Should redirects be followed automatically
 or return the 3xx response?
 :arg int max_redirects: Limit for ``follow_redirects``
 :arg string user_agent: String to send as ``User-Agent`` header
 :arg bool decompress_response: Request a compressed response from
 the server and decompress it after downloading. Default is True.
 New in Tornado 4.0.
 :arg bool use_gzip: Deprecated alias for ``decompress_response``
 since Tornado 4.0.
 :arg string network_interface: Network interface to use for request.
 ``curl_httpclient`` only; see note below.
 :arg callable streaming_callback: If set, ``streaming_callback`` will
 be run with each chunk of data as it is received, and
 ``HTTPResponse.body`` and ``HTTPResponse.buffer`` will be empty in
 the final response.
 :arg callable header_callback: If set, ``header_callback`` will
 be run with each header line as it is received (including the
 first line, e.g. ``HTTP/1.0 200 OK\r\n``, and a final line
 containing only ``\r\n``. All lines include the trailing newline
 characters). ``HTTPResponse.headers`` will be empty in the final
 response. This is most useful in conjunction with
 ``streaming_callback``, because it's the only way to get access to
 header data while the request is in progress.
 :arg callable prepare_curl_callback: If set, will be called with
 a ``pycurl.Curl`` object to allow the application to make additional
 ``setopt`` calls.
 :arg string proxy_host: HTTP proxy hostname. To use proxies,
 ``proxy_host`` and ``proxy_port`` must be set; ``proxy_username``,
 ``proxy_pass`` and ``proxy_auth_mode`` are optional. Proxies are
 currently only supported with ``curl_httpclient``.
 :arg int proxy_port: HTTP proxy port
 :arg string proxy_username: HTTP proxy username
 :arg string proxy_password: HTTP proxy password
 :arg string proxy_auth_mode: HTTP proxy Authentication mode;
 default is "basic". supports "basic" and "digest"
 :arg bool allow_nonstandard_methods: Allow unknown values for ``method``
 argument?
 :arg bool validate_cert: For HTTPS requests, validate the server's
 certificate?
 :arg string ca_certs: filename of CA certificates in PEM format,
 or None to use defaults. See note below when used with
 ``curl_httpclient``.
 :arg string client_key: Filename for client SSL key, if any. See
 note below when used with ``curl_httpclient``.
 :arg string client_cert: Filename for client SSL certificate, if any.
 See note below when used with ``curl_httpclient``.
 :arg ssl.SSLContext ssl_options: `ssl.SSLContext` object for use in
 ``simple_httpclient`` (unsupported by ``curl_httpclient``).
 Overrides ``validate_cert``, ``ca_certs``, ``client_key``,
 and ``client_cert``.
 :arg bool allow_ipv6: Use IPv6 when available? Default is true.
 :arg bool expect_100_continue: If true, send the
 ``Expect: 100-continue`` header and wait for a continue response
 before sending the request body. Only supported with
 simple_httpclient.

 .. note::

 When using ``curl_httpclient`` certain options may be
 inherited by subsequent fetches because ``pycurl`` does
 not allow them to be cleanly reset. This applies to the
 ``ca_certs``, ``client_key``, ``client_cert``, and
 ``network_interface`` arguments. If you use these
 options, you should pass them on every request (you don't
 have to always use the same values, but it's not possible
 to mix requests that specify these options with ones that
 use the defaults).

 .. versionadded:: 3.1
 The ``auth_mode`` argument.

 .. versionadded:: 4.0
 The ``body_producer`` and ``expect_100_continue`` arguments.

 .. versionadded:: 4.2
 The ``ssl_options`` argument.
 """
 # Note that some of these attributes go through property setters
 # defined below.
 self.headers = headers
 if if_modified_since:
 self.headers["If-Modified-Since"] = httputil.format_timestamp(
 if_modified_since)
 self.proxy_host = proxy_host
 self.proxy_port = proxy_port
 self.proxy_username = proxy_username
 self.proxy_password = proxy_password
 self.proxy_auth_mode = proxy_auth_mode
 self.url = url
 self.method = method
 self.body = body
 self.body_producer = body_producer
 self.auth_username = auth_username
 self.auth_password = auth_password
 self.auth_mode = auth_mode
 self.connect_timeout = connect_timeout
 self.request_timeout = request_timeout
 self.follow_redirects = follow_redirects
 self.max_redirects = max_redirects
 self.user_agent = user_agent
 if decompress_response is not None:
 self.decompress_response = decompress_response
 else:
 self.decompress_response = use_gzip
 self.network_interface = network_interface
 self.streaming_callback = streaming_callback
 self.header_callback = header_callback
 self.prepare_curl_callback = prepare_curl_callback
 self.allow_nonstandard_methods = allow_nonstandard_methods
 self.validate_cert = validate_cert
 self.ca_certs = ca_certs
 self.allow_ipv6 = allow_ipv6
 self.client_key = client_key
 self.client_cert = client_cert
 self.ssl_options = ssl_options
 self.expect_100_continue = expect_100_continue
 self.start_time = time.time()

 @property
 def headers(self):
 return self._headers

 @headers.setter
 def headers(self, value):
 if value is None:
 self._headers = httputil.HTTPHeaders()
 else:
 self._headers = value

 @property
 def body(self):
 return self._body

 @body.setter
 def body(self, value):
 self._body = utf8(value)

 @property
 def body_producer(self):
 return self._body_producer

 @body_producer.setter
 def body_producer(self, value):
 self._body_producer = stack_context.wrap(value)

 @property
 def streaming_callback(self):
 return self._streaming_callback

 @streaming_callback.setter
 def streaming_callback(self, value):
 self._streaming_callback = stack_context.wrap(value)

 @property
 def header_callback(self):
 return self._header_callback

 @header_callback.setter
 def header_callback(self, value):
 self._header_callback = stack_context.wrap(value)

 @property
 def prepare_curl_callback(self):
 return self._prepare_curl_callback

 @prepare_curl_callback.setter
 def prepare_curl_callback(self, value):
 self._prepare_curl_callback = stack_context.wrap(value)

[docs]class HTTPResponse(object):
 """HTTP Response object.

 Attributes:

 * request: HTTPRequest object

 * code: numeric HTTP status code, e.g. 200 or 404

 * reason: human-readable reason phrase describing the status code

 * headers: `tornado.httputil.HTTPHeaders` object

 * effective_url: final location of the resource after following any
 redirects

 * buffer: ``cStringIO`` object for response body

 * body: response body as bytes (created on demand from ``self.buffer``)

 * error: Exception object, if any

 * request_time: seconds from request start to finish

 * time_info: dictionary of diagnostic timing information from the request.
 Available data are subject to change, but currently uses timings
 available from http://curl.haxx.se/libcurl/c/curl_easy_getinfo.html,
 plus ``queue``, which is the delay (if any) introduced by waiting for
 a slot under `AsyncHTTPClient`'s ``max_clients`` setting.
 """
 def __init__(self, request, code, headers=None, buffer=None,
 effective_url=None, error=None, request_time=None,
 time_info=None, reason=None):
 if isinstance(request, _RequestProxy):
 self.request = request.request
 else:
 self.request = request
 self.code = code
 self.reason = reason or httputil.responses.get(code, "Unknown")
 if headers is not None:
 self.headers = headers
 else:
 self.headers = httputil.HTTPHeaders()
 self.buffer = buffer
 self._body = None
 if effective_url is None:
 self.effective_url = request.url
 else:
 self.effective_url = effective_url
 if error is None:
 if self.code < 200 or self.code >= 300:
 self.error = HTTPError(self.code, message=self.reason,
 response=self)
 else:
 self.error = None
 else:
 self.error = error
 self.request_time = request_time
 self.time_info = time_info or {}

 @property
 def body(self):
 if self.buffer is None:
 return None
 elif self._body is None:
 self._body = self.buffer.getvalue()

 return self._body

[docs] def rethrow(self):
 """If there was an error on the request, raise an `HTTPError`."""
 if self.error:
 raise self.error

 def __repr__(self):
 args = ",".join("%s=%r" % i for i in sorted(self.__dict__.items()))
 return "%s(%s)" % (self.__class__.__name__, args)

[docs]class HTTPError(Exception):
 """Exception thrown for an unsuccessful HTTP request.

 Attributes:

 * ``code`` - HTTP error integer error code, e.g. 404. Error code 599 is
 used when no HTTP response was received, e.g. for a timeout.

 * ``response`` - `HTTPResponse` object, if any.

 Note that if ``follow_redirects`` is False, redirects become HTTPErrors,
 and you can look at ``error.response.headers['Location']`` to see the
 destination of the redirect.
 """
 def __init__(self, code, message=None, response=None):
 self.code = code
 self.message = message or httputil.responses.get(code, "Unknown")
 self.response = response
 super(HTTPError, self).__init__(code, message, response)

 def __str__(self):
 return "HTTP %d: %s" % (self.code, self.message)

 # There is a cyclic reference between self and self.response,
 # which breaks the default __repr__ implementation.
 # (especially on pypy, which doesn't have the same recursion
 # detection as cpython).
 __repr__ = __str__

class _RequestProxy(object):
 """Combines an object with a dictionary of defaults.

 Used internally by AsyncHTTPClient implementations.
 """
 def __init__(self, request, defaults):
 self.request = request
 self.defaults = defaults

 def __getattr__(self, name):
 request_attr = getattr(self.request, name)
 if request_attr is not None:
 return request_attr
 elif self.defaults is not None:
 return self.defaults.get(name, None)
 else:
 return None

def main():
 from tornado.options import define, options, parse_command_line
 define("print_headers", type=bool, default=False)
 define("print_body", type=bool, default=True)
 define("follow_redirects", type=bool, default=True)
 define("validate_cert", type=bool, default=True)
 args = parse_command_line()
 client = HTTPClient()
 for arg in args:
 try:
 response = client.fetch(arg,
 follow_redirects=options.follow_redirects,
 validate_cert=options.validate_cert,
)
 except HTTPError as e:
 if e.response is not None:
 response = e.response
 else:
 raise
 if options.print_headers:
 print(response.headers)
 if options.print_body:
 print(native_str(response.body))
 client.close()

if __name__ == "__main__":
 main()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/httputil.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.httputil

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""HTTP utility code shared by clients and servers.

This module also defines the `HTTPServerRequest` class which is exposed
via `tornado.web.RequestHandler.request`.
"""

from __future__ import absolute_import, division, print_function, with_statement

import calendar
import collections
import copy
import datetime
import email.utils
import numbers
import re
import time

from tornado.escape import native_str, parse_qs_bytes, utf8
from tornado.log import gen_log
from tornado.util import ObjectDict, PY3

if PY3:
 import http.cookies as Cookie
 from http.client import responses
 from urllib.parse import urlencode
else:
 import Cookie
 from httplib import responses
 from urllib import urlencode

responses is unused in this file, but we re-export it to other files.
Reference it so pyflakes doesn't complain.
responses

try:
 from ssl import SSLError
except ImportError:
 # ssl is unavailable on app engine.
 class _SSLError(Exception):
 pass
 # Hack around a mypy limitation. We can't simply put "type: ignore"
 # on the class definition itself; must go through an assignment.
 SSLError = _SSLError # type: ignore

try:
 import typing
except ImportError:
 pass

RFC 7230 section 3.5: a recipient MAY recognize a single LF as a line
terminator and ignore any preceding CR.
_CRLF_RE = re.compile(r'\r?\n')

class _NormalizedHeaderCache(dict):
 """Dynamic cached mapping of header names to Http-Header-Case.

 Implemented as a dict subclass so that cache hits are as fast as a
 normal dict lookup, without the overhead of a python function
 call.

 >>> normalized_headers = _NormalizedHeaderCache(10)
 >>> normalized_headers["coNtent-TYPE"]
 'Content-Type'
 """
 def __init__(self, size):
 super(_NormalizedHeaderCache, self).__init__()
 self.size = size
 self.queue = collections.deque()

 def __missing__(self, key):
 normalized = "-".join([w.capitalize() for w in key.split("-")])
 self[key] = normalized
 self.queue.append(key)
 if len(self.queue) > self.size:
 # Limit the size of the cache. LRU would be better, but this
 # simpler approach should be fine. In Python 2.7+ we could
 # use OrderedDict (or in 3.2+, @functools.lru_cache).
 old_key = self.queue.popleft()
 del self[old_key]
 return normalized

_normalized_headers = _NormalizedHeaderCache(1000)

[docs]class HTTPHeaders(collections.MutableMapping):
 """A dictionary that maintains ``Http-Header-Case`` for all keys.

 Supports multiple values per key via a pair of new methods,
 `add()` and `get_list()`. The regular dictionary interface
 returns a single value per key, with multiple values joined by a
 comma.

 >>> h = HTTPHeaders({"content-type": "text/html"})
 >>> list(h.keys())
 ['Content-Type']
 >>> h["Content-Type"]
 'text/html'

 >>> h.add("Set-Cookie", "A=B")
 >>> h.add("Set-Cookie", "C=D")
 >>> h["set-cookie"]
 'A=B,C=D'
 >>> h.get_list("set-cookie")
 ['A=B', 'C=D']

 >>> for (k,v) in sorted(h.get_all()):
 ... print('%s: %s' % (k,v))
 ...
 Content-Type: text/html
 Set-Cookie: A=B
 Set-Cookie: C=D
 """
 def __init__(self, *args, **kwargs):
 self._dict = {} # type: typing.Dict[str, str]
 self._as_list = {} # type: typing.Dict[str, typing.List[str]]
 self._last_key = None
 if (len(args) == 1 and len(kwargs) == 0 and
 isinstance(args[0], HTTPHeaders)):
 # Copy constructor
 for k, v in args[0].get_all():
 self.add(k, v)
 else:
 # Dict-style initialization
 self.update(*args, **kwargs)

 # new public methods

[docs] def add(self, name, value):
 # type: (str, str) -> None
 """Adds a new value for the given key."""
 norm_name = _normalized_headers[name]
 self._last_key = norm_name
 if norm_name in self:
 self._dict[norm_name] = (native_str(self[norm_name]) + ',' +
 native_str(value))
 self._as_list[norm_name].append(value)
 else:
 self[norm_name] = value

[docs] def get_list(self, name):
 """Returns all values for the given header as a list."""
 norm_name = _normalized_headers[name]
 return self._as_list.get(norm_name, [])

[docs] def get_all(self):
 # type: () -> typing.Iterable[typing.Tuple[str, str]]
 """Returns an iterable of all (name, value) pairs.

 If a header has multiple values, multiple pairs will be
 returned with the same name.
 """
 for name, values in self._as_list.items():
 for value in values:
 yield (name, value)

[docs] def parse_line(self, line):
 """Updates the dictionary with a single header line.

 >>> h = HTTPHeaders()
 >>> h.parse_line("Content-Type: text/html")
 >>> h.get('content-type')
 'text/html'
 """
 if line[0].isspace():
 # continuation of a multi-line header
 new_part = ' ' + line.lstrip()
 self._as_list[self._last_key][-1] += new_part
 self._dict[self._last_key] += new_part
 else:
 name, value = line.split(":", 1)
 self.add(name, value.strip())

 @classmethod
[docs] def parse(cls, headers):
 """Returns a dictionary from HTTP header text.

 >>> h = HTTPHeaders.parse("Content-Type: text/html\\r\\nContent-Length: 42\\r\\n")
 >>> sorted(h.items())
 [('Content-Length', '42'), ('Content-Type', 'text/html')]
 """
 h = cls()
 for line in _CRLF_RE.split(headers):
 if line:
 h.parse_line(line)
 return h

 # MutableMapping abstract method implementations.

 def __setitem__(self, name, value):
 norm_name = _normalized_headers[name]
 self._dict[norm_name] = value
 self._as_list[norm_name] = [value]

 def __getitem__(self, name):
 # type: (str) -> str
 return self._dict[_normalized_headers[name]]

 def __delitem__(self, name):
 norm_name = _normalized_headers[name]
 del self._dict[norm_name]
 del self._as_list[norm_name]

 def __len__(self):
 return len(self._dict)

 def __iter__(self):
 return iter(self._dict)

 def copy(self):
 # defined in dict but not in MutableMapping.
 return HTTPHeaders(self)

 # Use our overridden copy method for the copy.copy module.
 # This makes shallow copies one level deeper, but preserves
 # the appearance that HTTPHeaders is a single container.
 __copy__ = copy

 def __str__(self):
 lines = []
 for name, value in self.get_all():
 lines.append("%s: %s\n" % (name, value))
 return "".join(lines)

 __unicode__ = __str__

[docs]class HTTPServerRequest(object):
 """A single HTTP request.

 All attributes are type `str` unless otherwise noted.

 .. attribute:: method

 HTTP request method, e.g. "GET" or "POST"

 .. attribute:: uri

 The requested uri.

 .. attribute:: path

 The path portion of `uri`

 .. attribute:: query

 The query portion of `uri`

 .. attribute:: version

 HTTP version specified in request, e.g. "HTTP/1.1"

 .. attribute:: headers

 `.HTTPHeaders` dictionary-like object for request headers. Acts like
 a case-insensitive dictionary with additional methods for repeated
 headers.

 .. attribute:: body

 Request body, if present, as a byte string.

 .. attribute:: remote_ip

 Client's IP address as a string. If ``HTTPServer.xheaders`` is set,
 will pass along the real IP address provided by a load balancer
 in the ``X-Real-Ip`` or ``X-Forwarded-For`` header.

 .. versionchanged:: 3.1
 The list format of ``X-Forwarded-For`` is now supported.

 .. attribute:: protocol

 The protocol used, either "http" or "https". If ``HTTPServer.xheaders``
 is set, will pass along the protocol used by a load balancer if
 reported via an ``X-Scheme`` header.

 .. attribute:: host

 The requested hostname, usually taken from the ``Host`` header.

 .. attribute:: arguments

 GET/POST arguments are available in the arguments property, which
 maps arguments names to lists of values (to support multiple values
 for individual names). Names are of type `str`, while arguments
 are byte strings. Note that this is different from
 `.RequestHandler.get_argument`, which returns argument values as
 unicode strings.

 .. attribute:: query_arguments

 Same format as ``arguments``, but contains only arguments extracted
 from the query string.

 .. versionadded:: 3.2

 .. attribute:: body_arguments

 Same format as ``arguments``, but contains only arguments extracted
 from the request body.

 .. versionadded:: 3.2

 .. attribute:: files

 File uploads are available in the files property, which maps file
 names to lists of `.HTTPFile`.

 .. attribute:: connection

 An HTTP request is attached to a single HTTP connection, which can
 be accessed through the "connection" attribute. Since connections
 are typically kept open in HTTP/1.1, multiple requests can be handled
 sequentially on a single connection.

 .. versionchanged:: 4.0
 Moved from ``tornado.httpserver.HTTPRequest``.
 """
 def __init__(self, method=None, uri=None, version="HTTP/1.0", headers=None,
 body=None, host=None, files=None, connection=None,
 start_line=None):
 if start_line is not None:
 method, uri, version = start_line
 self.method = method
 self.uri = uri
 self.version = version
 self.headers = headers or HTTPHeaders()
 self.body = body or b""

 # set remote IP and protocol
 context = getattr(connection, 'context', None)
 self.remote_ip = getattr(context, 'remote_ip', None)
 self.protocol = getattr(context, 'protocol', "http")

 self.host = host or self.headers.get("Host") or "127.0.0.1"
 self.files = files or {}
 self.connection = connection
 self._start_time = time.time()
 self._finish_time = None

 self.path, sep, self.query = uri.partition('?')
 self.arguments = parse_qs_bytes(self.query, keep_blank_values=True)
 self.query_arguments = copy.deepcopy(self.arguments)
 self.body_arguments = {}

[docs] def supports_http_1_1(self):
 """Returns True if this request supports HTTP/1.1 semantics.

 .. deprecated:: 4.0
 Applications are less likely to need this information with the
 introduction of `.HTTPConnection`. If you still need it, access
 the ``version`` attribute directly.
 """
 return self.version == "HTTP/1.1"

 @property
 def cookies(self):
 """A dictionary of Cookie.Morsel objects."""
 if not hasattr(self, "_cookies"):
 self._cookies = Cookie.SimpleCookie()
 if "Cookie" in self.headers:
 try:
 self._cookies.load(
 native_str(self.headers["Cookie"]))
 except Exception:
 self._cookies = {}
 return self._cookies

[docs] def write(self, chunk, callback=None):
 """Writes the given chunk to the response stream.

 .. deprecated:: 4.0
 Use ``request.connection`` and the `.HTTPConnection` methods
 to write the response.
 """
 assert isinstance(chunk, bytes)
 assert self.version.startswith("HTTP/1."), \
 "deprecated interface only supported in HTTP/1.x"
 self.connection.write(chunk, callback=callback)

[docs] def finish(self):
 """Finishes this HTTP request on the open connection.

 .. deprecated:: 4.0
 Use ``request.connection`` and the `.HTTPConnection` methods
 to write the response.
 """
 self.connection.finish()
 self._finish_time = time.time()

[docs] def full_url(self):
 """Reconstructs the full URL for this request."""
 return self.protocol + "://" + self.host + self.uri

[docs] def request_time(self):
 """Returns the amount of time it took for this request to execute."""
 if self._finish_time is None:
 return time.time() - self._start_time
 else:
 return self._finish_time - self._start_time

[docs] def get_ssl_certificate(self, binary_form=False):
 """Returns the client's SSL certificate, if any.

 To use client certificates, the HTTPServer's
 `ssl.SSLContext.verify_mode` field must be set, e.g.::

 ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
 ssl_ctx.load_cert_chain("foo.crt", "foo.key")
 ssl_ctx.load_verify_locations("cacerts.pem")
 ssl_ctx.verify_mode = ssl.CERT_REQUIRED
 server = HTTPServer(app, ssl_options=ssl_ctx)

 By default, the return value is a dictionary (or None, if no
 client certificate is present). If ``binary_form`` is true, a
 DER-encoded form of the certificate is returned instead. See
 SSLSocket.getpeercert() in the standard library for more
 details.
 http://docs.python.org/library/ssl.html#sslsocket-objects
 """
 try:
 return self.connection.stream.socket.getpeercert(
 binary_form=binary_form)
 except SSLError:
 return None

 def _parse_body(self):
 parse_body_arguments(
 self.headers.get("Content-Type", ""), self.body,
 self.body_arguments, self.files,
 self.headers)

 for k, v in self.body_arguments.items():
 self.arguments.setdefault(k, []).extend(v)

 def __repr__(self):
 attrs = ("protocol", "host", "method", "uri", "version", "remote_ip")
 args = ", ".join(["%s=%r" % (n, getattr(self, n)) for n in attrs])
 return "%s(%s, headers=%s)" % (
 self.__class__.__name__, args, dict(self.headers))

[docs]class HTTPInputError(Exception):
 """Exception class for malformed HTTP requests or responses
 from remote sources.

 .. versionadded:: 4.0
 """
 pass

[docs]class HTTPOutputError(Exception):
 """Exception class for errors in HTTP output.

 .. versionadded:: 4.0
 """
 pass

[docs]class HTTPServerConnectionDelegate(object):
 """Implement this interface to handle requests from `.HTTPServer`.

 .. versionadded:: 4.0
 """
[docs] def start_request(self, server_conn, request_conn):
 """This method is called by the server when a new request has started.

 :arg server_conn: is an opaque object representing the long-lived
 (e.g. tcp-level) connection.
 :arg request_conn: is a `.HTTPConnection` object for a single
 request/response exchange.

 This method should return a `.HTTPMessageDelegate`.
 """
 raise NotImplementedError()

[docs] def on_close(self, server_conn):
 """This method is called when a connection has been closed.

 :arg server_conn: is a server connection that has previously been
 passed to ``start_request``.
 """
 pass

[docs]class HTTPMessageDelegate(object):
 """Implement this interface to handle an HTTP request or response.

 .. versionadded:: 4.0
 """
[docs] def headers_received(self, start_line, headers):
 """Called when the HTTP headers have been received and parsed.

 :arg start_line: a `.RequestStartLine` or `.ResponseStartLine`
 depending on whether this is a client or server message.
 :arg headers: a `.HTTPHeaders` instance.

 Some `.HTTPConnection` methods can only be called during
 ``headers_received``.

 May return a `.Future`; if it does the body will not be read
 until it is done.
 """
 pass

[docs] def data_received(self, chunk):
 """Called when a chunk of data has been received.

 May return a `.Future` for flow control.
 """
 pass

[docs] def finish(self):
 """Called after the last chunk of data has been received."""
 pass

[docs] def on_connection_close(self):
 """Called if the connection is closed without finishing the request.

 If ``headers_received`` is called, either ``finish`` or
 ``on_connection_close`` will be called, but not both.
 """
 pass

[docs]class HTTPConnection(object):
 """Applications use this interface to write their responses.

 .. versionadded:: 4.0
 """
[docs] def write_headers(self, start_line, headers, chunk=None, callback=None):
 """Write an HTTP header block.

 :arg start_line: a `.RequestStartLine` or `.ResponseStartLine`.
 :arg headers: a `.HTTPHeaders` instance.
 :arg chunk: the first (optional) chunk of data. This is an optimization
 so that small responses can be written in the same call as their
 headers.
 :arg callback: a callback to be run when the write is complete.

 The ``version`` field of ``start_line`` is ignored.

 Returns a `.Future` if no callback is given.
 """
 raise NotImplementedError()

[docs] def write(self, chunk, callback=None):
 """Writes a chunk of body data.

 The callback will be run when the write is complete. If no callback
 is given, returns a Future.
 """
 raise NotImplementedError()

[docs] def finish(self):
 """Indicates that the last body data has been written.
 """
 raise NotImplementedError()

[docs]def url_concat(url, args):
 """Concatenate url and arguments regardless of whether
 url has existing query parameters.

 ``args`` may be either a dictionary or a list of key-value pairs
 (the latter allows for multiple values with the same key.

 >>> url_concat("http://example.com/foo", dict(c="d"))
 'http://example.com/foo?c=d'
 >>> url_concat("http://example.com/foo?a=b", dict(c="d"))
 'http://example.com/foo?a=b&c=d'
 >>> url_concat("http://example.com/foo?a=b", [("c", "d"), ("c", "d2")])
 'http://example.com/foo?a=b&c=d&c=d2'
 """
 if not args:
 return url
 if url[-1] not in ('?', '&'):
 url += '&' if ('?' in url) else '?'
 return url + urlencode(args)

[docs]class HTTPFile(ObjectDict):
 """Represents a file uploaded via a form.

 For backwards compatibility, its instance attributes are also
 accessible as dictionary keys.

 * ``filename``
 * ``body``
 * ``content_type``
 """
 pass

def _parse_request_range(range_header):
 """Parses a Range header.

 Returns either ``None`` or tuple ``(start, end)``.
 Note that while the HTTP headers use inclusive byte positions,
 this method returns indexes suitable for use in slices.

 >>> start, end = _parse_request_range("bytes=1-2")
 >>> start, end
 (1, 3)
 >>> [0, 1, 2, 3, 4][start:end]
 [1, 2]
 >>> _parse_request_range("bytes=6-")
 (6, None)
 >>> _parse_request_range("bytes=-6")
 (-6, None)
 >>> _parse_request_range("bytes=-0")
 (None, 0)
 >>> _parse_request_range("bytes=")
 (None, None)
 >>> _parse_request_range("foo=42")
 >>> _parse_request_range("bytes=1-2,6-10")

 Note: only supports one range (ex, ``bytes=1-2,6-10`` is not allowed).

 See [0] for the details of the range header.

 [0]: http://greenbytes.de/tech/webdav/draft-ietf-httpbis-p5-range-latest.html#byte.ranges
 """
 unit, _, value = range_header.partition("=")
 unit, value = unit.strip(), value.strip()
 if unit != "bytes":
 return None
 start_b, _, end_b = value.partition("-")
 try:
 start = _int_or_none(start_b)
 end = _int_or_none(end_b)
 except ValueError:
 return None
 if end is not None:
 if start is None:
 if end != 0:
 start = -end
 end = None
 else:
 end += 1
 return (start, end)

def _get_content_range(start, end, total):
 """Returns a suitable Content-Range header:

 >>> print(_get_content_range(None, 1, 4))
 bytes 0-0/4
 >>> print(_get_content_range(1, 3, 4))
 bytes 1-2/4
 >>> print(_get_content_range(None, None, 4))
 bytes 0-3/4
 """
 start = start or 0
 end = (end or total) - 1
 return "bytes %s-%s/%s" % (start, end, total)

def _int_or_none(val):
 val = val.strip()
 if val == "":
 return None
 return int(val)

[docs]def parse_body_arguments(content_type, body, arguments, files, headers=None):
 """Parses a form request body.

 Supports ``application/x-www-form-urlencoded`` and
 ``multipart/form-data``. The ``content_type`` parameter should be
 a string and ``body`` should be a byte string. The ``arguments``
 and ``files`` parameters are dictionaries that will be updated
 with the parsed contents.
 """
 if headers and 'Content-Encoding' in headers:
 gen_log.warning("Unsupported Content-Encoding: %s",
 headers['Content-Encoding'])
 return
 if content_type.startswith("application/x-www-form-urlencoded"):
 try:
 uri_arguments = parse_qs_bytes(native_str(body), keep_blank_values=True)
 except Exception as e:
 gen_log.warning('Invalid x-www-form-urlencoded body: %s', e)
 uri_arguments = {}
 for name, values in uri_arguments.items():
 if values:
 arguments.setdefault(name, []).extend(values)
 elif content_type.startswith("multipart/form-data"):
 try:
 fields = content_type.split(";")
 for field in fields:
 k, sep, v = field.strip().partition("=")
 if k == "boundary" and v:
 parse_multipart_form_data(utf8(v), body, arguments, files)
 break
 else:
 raise ValueError("multipart boundary not found")
 except Exception as e:
 gen_log.warning("Invalid multipart/form-data: %s", e)

[docs]def parse_multipart_form_data(boundary, data, arguments, files):
 """Parses a ``multipart/form-data`` body.

 The ``boundary`` and ``data`` parameters are both byte strings.
 The dictionaries given in the arguments and files parameters
 will be updated with the contents of the body.
 """
 # The standard allows for the boundary to be quoted in the header,
 # although it's rare (it happens at least for google app engine
 # xmpp). I think we're also supposed to handle backslash-escapes
 # here but I'll save that until we see a client that uses them
 # in the wild.
 if boundary.startswith(b'"') and boundary.endswith(b'"'):
 boundary = boundary[1:-1]
 final_boundary_index = data.rfind(b"--" + boundary + b"--")
 if final_boundary_index == -1:
 gen_log.warning("Invalid multipart/form-data: no final boundary")
 return
 parts = data[:final_boundary_index].split(b"--" + boundary + b"\r\n")
 for part in parts:
 if not part:
 continue
 eoh = part.find(b"\r\n\r\n")
 if eoh == -1:
 gen_log.warning("multipart/form-data missing headers")
 continue
 headers = HTTPHeaders.parse(part[:eoh].decode("utf-8"))
 disp_header = headers.get("Content-Disposition", "")
 disposition, disp_params = _parse_header(disp_header)
 if disposition != "form-data" or not part.endswith(b"\r\n"):
 gen_log.warning("Invalid multipart/form-data")
 continue
 value = part[eoh + 4:-2]
 if not disp_params.get("name"):
 gen_log.warning("multipart/form-data value missing name")
 continue
 name = disp_params["name"]
 if disp_params.get("filename"):
 ctype = headers.get("Content-Type", "application/unknown")
 files.setdefault(name, []).append(HTTPFile(# type: ignore
 filename=disp_params["filename"], body=value,
 content_type=ctype))
 else:
 arguments.setdefault(name, []).append(value)

[docs]def format_timestamp(ts):
 """Formats a timestamp in the format used by HTTP.

 The argument may be a numeric timestamp as returned by `time.time`,
 a time tuple as returned by `time.gmtime`, or a `datetime.datetime`
 object.

 >>> format_timestamp(1359312200)
 'Sun, 27 Jan 2013 18:43:20 GMT'
 """
 if isinstance(ts, numbers.Real):
 pass
 elif isinstance(ts, (tuple, time.struct_time)):
 ts = calendar.timegm(ts)
 elif isinstance(ts, datetime.datetime):
 ts = calendar.timegm(ts.utctimetuple())
 else:
 raise TypeError("unknown timestamp type: %r" % ts)
 return email.utils.formatdate(ts, usegmt=True)

RequestStartLine = collections.namedtuple(
 'RequestStartLine', ['method', 'path', 'version'])

[docs]def parse_request_start_line(line):
 """Returns a (method, path, version) tuple for an HTTP 1.x request line.

 The response is a `collections.namedtuple`.

 >>> parse_request_start_line("GET /foo HTTP/1.1")
 RequestStartLine(method='GET', path='/foo', version='HTTP/1.1')
 """
 try:
 method, path, version = line.split(" ")
 except ValueError:
 raise HTTPInputError("Malformed HTTP request line")
 if not re.match(r"^HTTP/1\.[0-9]$", version):
 raise HTTPInputError(
 "Malformed HTTP version in HTTP Request-Line: %r" % version)
 return RequestStartLine(method, path, version)

ResponseStartLine = collections.namedtuple(
 'ResponseStartLine', ['version', 'code', 'reason'])

[docs]def parse_response_start_line(line):
 """Returns a (version, code, reason) tuple for an HTTP 1.x response line.

 The response is a `collections.namedtuple`.

 >>> parse_response_start_line("HTTP/1.1 200 OK")
 ResponseStartLine(version='HTTP/1.1', code=200, reason='OK')
 """
 line = native_str(line)
 match = re.match("(HTTP/1.[0-9]) ([0-9]+) ([^\r]*)", line)
 if not match:
 raise HTTPInputError("Error parsing response start line")
 return ResponseStartLine(match.group(1), int(match.group(2)),
 match.group(3))

_parseparam and _parse_header are copied and modified from python2.7's cgi.py
The original 2.7 version of this code did not correctly support some
combinations of semicolons and double quotes.
It has also been modified to support valueless parameters as seen in
websocket extension negotiations.

def _parseparam(s):
 while s[:1] == ';':
 s = s[1:]
 end = s.find(';')
 while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2:
 end = s.find(';', end + 1)
 if end < 0:
 end = len(s)
 f = s[:end]
 yield f.strip()
 s = s[end:]

def _parse_header(line):
 """Parse a Content-type like header.

 Return the main content-type and a dictionary of options.

 """
 parts = _parseparam(';' + line)
 key = next(parts)
 pdict = {}
 for p in parts:
 i = p.find('=')
 if i >= 0:
 name = p[:i].strip().lower()
 value = p[i + 1:].strip()
 if len(value) >= 2 and value[0] == value[-1] == '"':
 value = value[1:-1]
 value = value.replace('\\\\', '\\').replace('\\"', '"')
 pdict[name] = value
 else:
 pdict[p] = None
 return key, pdict

def _encode_header(key, pdict):
 """Inverse of _parse_header.

 >>> _encode_header('permessage-deflate',
 ... {'client_max_window_bits': 15, 'client_no_context_takeover': None})
 'permessage-deflate; client_max_window_bits=15; client_no_context_takeover'
 """
 if not pdict:
 return key
 out = [key]
 # Sort the parameters just to make it easy to test.
 for k, v in sorted(pdict.items()):
 if v is None:
 out.append(k)
 else:
 # TODO: quote if necessary.
 out.append('%s=%s' % (k, v))
 return '; '.join(out)

def doctests():
 import doctest
 return doctest.DocTestSuite()

[docs]def split_host_and_port(netloc):
 """Returns ``(host, port)`` tuple from ``netloc``.

 Returned ``port`` will be ``None`` if not present.

 .. versionadded:: 4.1
 """
 match = re.match(r'^(.+):(\d+)$', netloc)
 if match:
 host = match.group(1)
 port = int(match.group(2))
 else:
 host = netloc
 port = None
 return (host, port)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/log.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.log

#!/usr/bin/env python
#
Copyright 2012 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""Logging support for Tornado.

Tornado uses three logger streams:

* ``tornado.access``: Per-request logging for Tornado's HTTP servers (and
 potentially other servers in the future)
* ``tornado.application``: Logging of errors from application code (i.e.
 uncaught exceptions from callbacks)
* ``tornado.general``: General-purpose logging, including any errors
 or warnings from Tornado itself.

These streams may be configured independently using the standard library's
`logging` module. For example, you may wish to send ``tornado.access`` logs
to a separate file for analysis.
"""
from __future__ import absolute_import, division, print_function, with_statement

import logging
import logging.handlers
import sys

from tornado.escape import _unicode
from tornado.util import unicode_type, basestring_type

try:
 import curses # type: ignore
except ImportError:
 curses = None

Logger objects for internal tornado use
access_log = logging.getLogger("tornado.access")
app_log = logging.getLogger("tornado.application")
gen_log = logging.getLogger("tornado.general")

def _stderr_supports_color():
 color = False
 if curses and hasattr(sys.stderr, 'isatty') and sys.stderr.isatty():
 try:
 curses.setupterm()
 if curses.tigetnum("colors") > 0:
 color = True
 except Exception:
 pass
 return color

def _safe_unicode(s):
 try:
 return _unicode(s)
 except UnicodeDecodeError:
 return repr(s)

[docs]class LogFormatter(logging.Formatter):
 """Log formatter used in Tornado.

 Key features of this formatter are:

 * Color support when logging to a terminal that supports it.
 * Timestamps on every log line.
 * Robust against str/bytes encoding problems.

 This formatter is enabled automatically by
 `tornado.options.parse_command_line` or `tornado.options.parse_config_file`
 (unless ``--logging=none`` is used).
 """
 DEFAULT_FORMAT = '%(color)s[%(levelname)1.1s %(asctime)s %(module)s:%(lineno)d]%(end_color)s %(message)s'
 DEFAULT_DATE_FORMAT = '%y%m%d %H:%M:%S'
 DEFAULT_COLORS = {
 logging.DEBUG: 4, # Blue
 logging.INFO: 2, # Green
 logging.WARNING: 3, # Yellow
 logging.ERROR: 1, # Red
 }

 def __init__(self, color=True, fmt=DEFAULT_FORMAT,
 datefmt=DEFAULT_DATE_FORMAT, colors=DEFAULT_COLORS):
 r"""
 :arg bool color: Enables color support.
 :arg string fmt: Log message format.
 It will be applied to the attributes dict of log records. The
 text between ``%(color)s`` and ``%(end_color)s`` will be colored
 depending on the level if color support is on.
 :arg dict colors: color mappings from logging level to terminal color
 code
 :arg string datefmt: Datetime format.
 Used for formatting ``(asctime)`` placeholder in ``prefix_fmt``.

 .. versionchanged:: 3.2

 Added ``fmt`` and ``datefmt`` arguments.
 """
 logging.Formatter.__init__(self, datefmt=datefmt)
 self._fmt = fmt

 self._colors = {}
 if color and _stderr_supports_color():
 # The curses module has some str/bytes confusion in
 # python3. Until version 3.2.3, most methods return
 # bytes, but only accept strings. In addition, we want to
 # output these strings with the logging module, which
 # works with unicode strings. The explicit calls to
 # unicode() below are harmless in python2 but will do the
 # right conversion in python 3.
 fg_color = (curses.tigetstr("setaf") or
 curses.tigetstr("setf") or "")
 if (3, 0) < sys.version_info < (3, 2, 3):
 fg_color = unicode_type(fg_color, "ascii")

 for levelno, code in colors.items():
 self._colors[levelno] = unicode_type(curses.tparm(fg_color, code), "ascii")
 self._normal = unicode_type(curses.tigetstr("sgr0"), "ascii")
 else:
 self._normal = ''

 def format(self, record):
 try:
 message = record.getMessage()
 assert isinstance(message, basestring_type) # guaranteed by logging
 # Encoding notes: The logging module prefers to work with character
 # strings, but only enforces that log messages are instances of
 # basestring. In python 2, non-ascii bytestrings will make
 # their way through the logging framework until they blow up with
 # an unhelpful decoding error (with this formatter it happens
 # when we attach the prefix, but there are other opportunities for
 # exceptions further along in the framework).
 #
 # If a byte string makes it this far, convert it to unicode to
 # ensure it will make it out to the logs. Use repr() as a fallback
 # to ensure that all byte strings can be converted successfully,
 # but don't do it by default so we don't add extra quotes to ascii
 # bytestrings. This is a bit of a hacky place to do this, but
 # it's worth it since the encoding errors that would otherwise
 # result are so useless (and tornado is fond of using utf8-encoded
 # byte strings whereever possible).
 record.message = _safe_unicode(message)
 except Exception as e:
 record.message = "Bad message (%r): %r" % (e, record.__dict__)

 record.asctime = self.formatTime(record, self.datefmt)

 if record.levelno in self._colors:
 record.color = self._colors[record.levelno]
 record.end_color = self._normal
 else:
 record.color = record.end_color = ''

 formatted = self._fmt % record.__dict__

 if record.exc_info:
 if not record.exc_text:
 record.exc_text = self.formatException(record.exc_info)
 if record.exc_text:
 # exc_text contains multiple lines. We need to _safe_unicode
 # each line separately so that non-utf8 bytes don't cause
 # all the newlines to turn into '\n'.
 lines = [formatted.rstrip()]
 lines.extend(_safe_unicode(ln) for ln in record.exc_text.split('\n'))
 formatted = '\n'.join(lines)
 return formatted.replace("\n", "\n ")

[docs]def enable_pretty_logging(options=None, logger=None):
 """Turns on formatted logging output as configured.

 This is called automatically by `tornado.options.parse_command_line`
 and `tornado.options.parse_config_file`.
 """
 if options is None:
 import tornado.options
 options = tornado.options.options
 if options.logging is None or options.logging.lower() == 'none':
 return
 if logger is None:
 logger = logging.getLogger()
 logger.setLevel(getattr(logging, options.logging.upper()))
 if options.log_file_prefix:
 rotate_mode = options.log_rotate_mode
 if rotate_mode == 'size':
 channel = logging.handlers.RotatingFileHandler(
 filename=options.log_file_prefix,
 maxBytes=options.log_file_max_size,
 backupCount=options.log_file_num_backups)
 elif rotate_mode == 'time':
 channel = logging.handlers.TimedRotatingFileHandler(
 filename=options.log_file_prefix,
 when=options.log_rotate_when,
 interval=options.log_rotate_interval,
 backupCount=options.log_file_num_backups)
 else:
 error_message = 'The value of log_rotate_mode option should be ' +\
 '"size" or "time", not "%s".' % rotate_mode
 raise ValueError(error_message)
 channel.setFormatter(LogFormatter(color=False))
 logger.addHandler(channel)

 if (options.log_to_stderr or
 (options.log_to_stderr is None and not logger.handlers)):
 # Set up color if we are in a tty and curses is installed
 channel = logging.StreamHandler()
 channel.setFormatter(LogFormatter())
 logger.addHandler(channel)

[docs]def define_logging_options(options=None):
 """Add logging-related flags to ``options``.

 These options are present automatically on the default options instance;
 this method is only necessary if you have created your own `.OptionParser`.

 .. versionadded:: 4.2
 This function existed in prior versions but was broken and undocumented until 4.2.
 """
 if options is None:
 # late import to prevent cycle
 import tornado.options
 options = tornado.options.options
 options.define("logging", default="info",
 help=("Set the Python log level. If 'none', tornado won't touch the "
 "logging configuration."),
 metavar="debug|info|warning|error|none")
 options.define("log_to_stderr", type=bool, default=None,
 help=("Send log output to stderr (colorized if possible). "
 "By default use stderr if --log_file_prefix is not set and "
 "no other logging is configured."))
 options.define("log_file_prefix", type=str, default=None, metavar="PATH",
 help=("Path prefix for log files. "
 "Note that if you are running multiple tornado processes, "
 "log_file_prefix must be different for each of them (e.g. "
 "include the port number)"))
 options.define("log_file_max_size", type=int, default=100 * 1000 * 1000,
 help="max size of log files before rollover")
 options.define("log_file_num_backups", type=int, default=10,
 help="number of log files to keep")

 options.define("log_rotate_when", type=str, default='midnight',
 help=("specify the type of TimedRotatingFileHandler interval "
 "other options:('S', 'M', 'H', 'D', 'W0'-'W6')"))
 options.define("log_rotate_interval", type=int, default=1,
 help="The interval value of timed rotating")

 options.define("log_rotate_mode", type=str, default='size',
 help="The mode of rotating files(time or size)")

 options.add_parse_callback(lambda: enable_pretty_logging(options))

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/locale.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.locale

#!/usr/bin/env python
-*- coding: utf-8 -*-
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Translation methods for generating localized strings.

To load a locale and generate a translated string::

 user_locale = tornado.locale.get("es_LA")
 print(user_locale.translate("Sign out"))

`tornado.locale.get()` returns the closest matching locale, not necessarily the
specific locale you requested. You can support pluralization with
additional arguments to `~Locale.translate()`, e.g.::

 people = [...]
 message = user_locale.translate(
 "%(list)s is online", "%(list)s are online", len(people))
 print(message % {"list": user_locale.list(people)})

The first string is chosen if ``len(people) == 1``, otherwise the second
string is chosen.

Applications should call one of `load_translations` (which uses a simple
CSV format) or `load_gettext_translations` (which uses the ``.mo`` format
supported by `gettext` and related tools). If neither method is called,
the `Locale.translate` method will simply return the original string.
"""

from __future__ import absolute_import, division, print_function, with_statement

import codecs
import csv
import datetime
from io import BytesIO
import numbers
import os
import re

from tornado import escape
from tornado.log import gen_log
from tornado.util import PY3

from tornado._locale_data import LOCALE_NAMES

_default_locale = "en_US"
_translations = {} # type: dict
_supported_locales = frozenset([_default_locale])
_use_gettext = False
CONTEXT_SEPARATOR = "\x04"

[docs]def get(*locale_codes):
 """Returns the closest match for the given locale codes.

 We iterate over all given locale codes in order. If we have a tight
 or a loose match for the code (e.g., "en" for "en_US"), we return
 the locale. Otherwise we move to the next code in the list.

 By default we return ``en_US`` if no translations are found for any of
 the specified locales. You can change the default locale with
 `set_default_locale()`.
 """
 return Locale.get_closest(*locale_codes)

[docs]def set_default_locale(code):
 """Sets the default locale.

 The default locale is assumed to be the language used for all strings
 in the system. The translations loaded from disk are mappings from
 the default locale to the destination locale. Consequently, you don't
 need to create a translation file for the default locale.
 """
 global _default_locale
 global _supported_locales
 _default_locale = code
 _supported_locales = frozenset(list(_translations.keys()) + [_default_locale])

[docs]def load_translations(directory, encoding=None):
 """Loads translations from CSV files in a directory.

 Translations are strings with optional Python-style named placeholders
 (e.g., ``My name is %(name)s``) and their associated translations.

 The directory should have translation files of the form ``LOCALE.csv``,
 e.g. ``es_GT.csv``. The CSV files should have two or three columns: string,
 translation, and an optional plural indicator. Plural indicators should
 be one of "plural" or "singular". A given string can have both singular
 and plural forms. For example ``%(name)s liked this`` may have a
 different verb conjugation depending on whether %(name)s is one
 name or a list of names. There should be two rows in the CSV file for
 that string, one with plural indicator "singular", and one "plural".
 For strings with no verbs that would change on translation, simply
 use "unknown" or the empty string (or don't include the column at all).

 The file is read using the `csv` module in the default "excel" dialect.
 In this format there should not be spaces after the commas.

 If no ``encoding`` parameter is given, the encoding will be
 detected automatically (among UTF-8 and UTF-16) if the file
 contains a byte-order marker (BOM), defaulting to UTF-8 if no BOM
 is present.

 Example translation ``es_LA.csv``::

 "I love you","Te amo"
 "%(name)s liked this","A %(name)s les gustó esto","plural"
 "%(name)s liked this","A %(name)s le gustó esto","singular"

 .. versionchanged:: 4.3
 Added ``encoding`` parameter. Added support for BOM-based encoding
 detection, UTF-16, and UTF-8-with-BOM.
 """
 global _translations
 global _supported_locales
 _translations = {}
 for path in os.listdir(directory):
 if not path.endswith(".csv"):
 continue
 locale, extension = path.split(".")
 if not re.match("[a-z]+(_[A-Z]+)?$", locale):
 gen_log.error("Unrecognized locale %r (path: %s)", locale,
 os.path.join(directory, path))
 continue
 full_path = os.path.join(directory, path)
 if encoding is None:
 # Try to autodetect encoding based on the BOM.
 with open(full_path, 'rb') as f:
 data = f.read(len(codecs.BOM_UTF16_LE))
 if data in (codecs.BOM_UTF16_LE, codecs.BOM_UTF16_BE):
 encoding = 'utf-16'
 else:
 # utf-8-sig is "utf-8 with optional BOM". It's discouraged
 # in most cases but is common with CSV files because Excel
 # cannot read utf-8 files without a BOM.
 encoding = 'utf-8-sig'
 if PY3:
 # python 3: csv.reader requires a file open in text mode.
 # Force utf8 to avoid dependence on $LANG environment variable.
 f = open(full_path, "r", encoding=encoding)
 else:
 # python 2: csv can only handle byte strings (in ascii-compatible
 # encodings), which we decode below. Transcode everything into
 # utf8 before passing it to csv.reader.
 f = BytesIO()
 with codecs.open(full_path, "r", encoding=encoding) as infile:
 f.write(escape.utf8(infile.read()))
 f.seek(0)
 _translations[locale] = {}
 for i, row in enumerate(csv.reader(f)):
 if not row or len(row) < 2:
 continue
 row = [escape.to_unicode(c).strip() for c in row]
 english, translation = row[:2]
 if len(row) > 2:
 plural = row[2] or "unknown"
 else:
 plural = "unknown"
 if plural not in ("plural", "singular", "unknown"):
 gen_log.error("Unrecognized plural indicator %r in %s line %d",
 plural, path, i + 1)
 continue
 _translations[locale].setdefault(plural, {})[english] = translation
 f.close()
 _supported_locales = frozenset(list(_translations.keys()) + [_default_locale])
 gen_log.debug("Supported locales: %s", sorted(_supported_locales))

[docs]def load_gettext_translations(directory, domain):
 """Loads translations from `gettext`'s locale tree

 Locale tree is similar to system's ``/usr/share/locale``, like::

 {directory}/{lang}/LC_MESSAGES/{domain}.mo

 Three steps are required to have you app translated:

 1. Generate POT translation file::

 xgettext --language=Python --keyword=_:1,2 -d mydomain file1.py file2.html etc

 2. Merge against existing POT file::

 msgmerge old.po mydomain.po > new.po

 3. Compile::

 msgfmt mydomain.po -o {directory}/pt_BR/LC_MESSAGES/mydomain.mo
 """
 import gettext
 global _translations
 global _supported_locales
 global _use_gettext
 _translations = {}
 for lang in os.listdir(directory):
 if lang.startswith('.'):
 continue # skip .svn, etc
 if os.path.isfile(os.path.join(directory, lang)):
 continue
 try:
 os.stat(os.path.join(directory, lang, "LC_MESSAGES", domain + ".mo"))
 _translations[lang] = gettext.translation(domain, directory,
 languages=[lang])
 except Exception as e:
 gen_log.error("Cannot load translation for '%s': %s", lang, str(e))
 continue
 _supported_locales = frozenset(list(_translations.keys()) + [_default_locale])
 _use_gettext = True
 gen_log.debug("Supported locales: %s", sorted(_supported_locales))

[docs]def get_supported_locales():
 """Returns a list of all the supported locale codes."""
 return _supported_locales

[docs]class Locale(object):
 """Object representing a locale.

 After calling one of `load_translations` or `load_gettext_translations`,
 call `get` or `get_closest` to get a Locale object.
 """
 @classmethod
[docs] def get_closest(cls, *locale_codes):
 """Returns the closest match for the given locale code."""
 for code in locale_codes:
 if not code:
 continue
 code = code.replace("-", "_")
 parts = code.split("_")
 if len(parts) > 2:
 continue
 elif len(parts) == 2:
 code = parts[0].lower() + "_" + parts[1].upper()
 if code in _supported_locales:
 return cls.get(code)
 if parts[0].lower() in _supported_locales:
 return cls.get(parts[0].lower())
 return cls.get(_default_locale)

 @classmethod
[docs] def get(cls, code):
 """Returns the Locale for the given locale code.

 If it is not supported, we raise an exception.
 """
 if not hasattr(cls, "_cache"):
 cls._cache = {}
 if code not in cls._cache:
 assert code in _supported_locales
 translations = _translations.get(code, None)
 if translations is None:
 locale = CSVLocale(code, {})
 elif _use_gettext:
 locale = GettextLocale(code, translations)
 else:
 locale = CSVLocale(code, translations)
 cls._cache[code] = locale
 return cls._cache[code]

 def __init__(self, code, translations):
 self.code = code
 self.name = LOCALE_NAMES.get(code, {}).get("name", u"Unknown")
 self.rtl = False
 for prefix in ["fa", "ar", "he"]:
 if self.code.startswith(prefix):
 self.rtl = True
 break
 self.translations = translations

 # Initialize strings for date formatting
 _ = self.translate
 self._months = [
 _("January"), _("February"), _("March"), _("April"),
 _("May"), _("June"), _("July"), _("August"),
 _("September"), _("October"), _("November"), _("December")]
 self._weekdays = [
 _("Monday"), _("Tuesday"), _("Wednesday"), _("Thursday"),
 _("Friday"), _("Saturday"), _("Sunday")]

[docs] def translate(self, message, plural_message=None, count=None):
 """Returns the translation for the given message for this locale.

 If ``plural_message`` is given, you must also provide
 ``count``. We return ``plural_message`` when ``count != 1``,
 and we return the singular form for the given message when
 ``count == 1``.
 """
 raise NotImplementedError()

 def pgettext(self, context, message, plural_message=None, count=None):
 raise NotImplementedError()

[docs] def format_date(self, date, gmt_offset=0, relative=True, shorter=False,
 full_format=False):
 """Formats the given date (which should be GMT).

 By default, we return a relative time (e.g., "2 minutes ago"). You
 can return an absolute date string with ``relative=False``.

 You can force a full format date ("July 10, 1980") with
 ``full_format=True``.

 This method is primarily intended for dates in the past.
 For dates in the future, we fall back to full format.
 """
 if isinstance(date, numbers.Real):
 date = datetime.datetime.utcfromtimestamp(date)
 now = datetime.datetime.utcnow()
 if date > now:
 if relative and (date - now).seconds < 60:
 # Due to click skew, things are some things slightly
 # in the future. Round timestamps in the immediate
 # future down to now in relative mode.
 date = now
 else:
 # Otherwise, future dates always use the full format.
 full_format = True
 local_date = date - datetime.timedelta(minutes=gmt_offset)
 local_now = now - datetime.timedelta(minutes=gmt_offset)
 local_yesterday = local_now - datetime.timedelta(hours=24)
 difference = now - date
 seconds = difference.seconds
 days = difference.days

 _ = self.translate
 format = None
 if not full_format:
 if relative and days == 0:
 if seconds < 50:
 return _("1 second ago", "%(seconds)d seconds ago",
 seconds) % {"seconds": seconds}

 if seconds < 50 * 60:
 minutes = round(seconds / 60.0)
 return _("1 minute ago", "%(minutes)d minutes ago",
 minutes) % {"minutes": minutes}

 hours = round(seconds / (60.0 * 60))
 return _("1 hour ago", "%(hours)d hours ago",
 hours) % {"hours": hours}

 if days == 0:
 format = _("%(time)s")
 elif days == 1 and local_date.day == local_yesterday.day and \
 relative:
 format = _("yesterday") if shorter else \
 _("yesterday at %(time)s")
 elif days < 5:
 format = _("%(weekday)s") if shorter else \
 _("%(weekday)s at %(time)s")
 elif days < 334: # 11mo, since confusing for same month last year
 format = _("%(month_name)s %(day)s") if shorter else \
 _("%(month_name)s %(day)s at %(time)s")

 if format is None:
 format = _("%(month_name)s %(day)s, %(year)s") if shorter else \
 _("%(month_name)s %(day)s, %(year)s at %(time)s")

 tfhour_clock = self.code not in ("en", "en_US", "zh_CN")
 if tfhour_clock:
 str_time = "%d:%02d" % (local_date.hour, local_date.minute)
 elif self.code == "zh_CN":
 str_time = "%s%d:%02d" % (
 (u'\u4e0a\u5348', u'\u4e0b\u5348')[local_date.hour >= 12],
 local_date.hour % 12 or 12, local_date.minute)
 else:
 str_time = "%d:%02d %s" % (
 local_date.hour % 12 or 12, local_date.minute,
 ("am", "pm")[local_date.hour >= 12])

 return format % {
 "month_name": self._months[local_date.month - 1],
 "weekday": self._weekdays[local_date.weekday()],
 "day": str(local_date.day),
 "year": str(local_date.year),
 "time": str_time
 }

[docs] def format_day(self, date, gmt_offset=0, dow=True):
 """Formats the given date as a day of week.

 Example: "Monday, January 22". You can remove the day of week with
 ``dow=False``.
 """
 local_date = date - datetime.timedelta(minutes=gmt_offset)
 _ = self.translate
 if dow:
 return _("%(weekday)s, %(month_name)s %(day)s") % {
 "month_name": self._months[local_date.month - 1],
 "weekday": self._weekdays[local_date.weekday()],
 "day": str(local_date.day),
 }
 else:
 return _("%(month_name)s %(day)s") % {
 "month_name": self._months[local_date.month - 1],
 "day": str(local_date.day),
 }

[docs] def list(self, parts):
 """Returns a comma-separated list for the given list of parts.

 The format is, e.g., "A, B and C", "A and B" or just "A" for lists
 of size 1.
 """
 _ = self.translate
 if len(parts) == 0:
 return ""
 if len(parts) == 1:
 return parts[0]
 comma = u' \u0648 ' if self.code.startswith("fa") else u", "
 return _("%(commas)s and %(last)s") % {
 "commas": comma.join(parts[:-1]),
 "last": parts[len(parts) - 1],
 }

[docs] def friendly_number(self, value):
 """Returns a comma-separated number for the given integer."""
 if self.code not in ("en", "en_US"):
 return str(value)
 value = str(value)
 parts = []
 while value:
 parts.append(value[-3:])
 value = value[:-3]
 return ",".join(reversed(parts))

[docs]class CSVLocale(Locale):
 """Locale implementation using tornado's CSV translation format."""
 def translate(self, message, plural_message=None, count=None):
 if plural_message is not None:
 assert count is not None
 if count != 1:
 message = plural_message
 message_dict = self.translations.get("plural", {})
 else:
 message_dict = self.translations.get("singular", {})
 else:
 message_dict = self.translations.get("unknown", {})
 return message_dict.get(message, message)

 def pgettext(self, context, message, plural_message=None, count=None):
 if self.translations:
 gen_log.warning('pgettext is not supported by CSVLocale')
 return self.translate(message, plural_message, count)

[docs]class GettextLocale(Locale):
 """Locale implementation using the `gettext` module."""
 def __init__(self, code, translations):
 try:
 # python 2
 self.ngettext = translations.ungettext
 self.gettext = translations.ugettext
 except AttributeError:
 # python 3
 self.ngettext = translations.ngettext
 self.gettext = translations.gettext
 # self.gettext must exist before __init__ is called, since it
 # calls into self.translate
 super(GettextLocale, self).__init__(code, translations)

 def translate(self, message, plural_message=None, count=None):
 if plural_message is not None:
 assert count is not None
 return self.ngettext(message, plural_message, count)
 else:
 return self.gettext(message)

[docs] def pgettext(self, context, message, plural_message=None, count=None):
 """Allows to set context for translation, accepts plural forms.

 Usage example::

 pgettext("law", "right")
 pgettext("good", "right")

 Plural message example::

 pgettext("organization", "club", "clubs", len(clubs))
 pgettext("stick", "club", "clubs", len(clubs))

 To generate POT file with context, add following options to step 1
 of `load_gettext_translations` sequence::

 xgettext [basic options] --keyword=pgettext:1c,2 --keyword=pgettext:1c,2,3

 .. versionadded:: 4.2
 """
 if plural_message is not None:
 assert count is not None
 msgs_with_ctxt = ("%s%s%s" % (context, CONTEXT_SEPARATOR, message),
 "%s%s%s" % (context, CONTEXT_SEPARATOR, plural_message),
 count)
 result = self.ngettext(*msgs_with_ctxt)
 if CONTEXT_SEPARATOR in result:
 # Translation not found
 result = self.ngettext(message, plural_message, count)
 return result
 else:
 msg_with_ctxt = "%s%s%s" % (context, CONTEXT_SEPARATOR, message)
 result = self.gettext(msg_with_ctxt)
 if CONTEXT_SEPARATOR in result:
 # Translation not found
 result = message
 return result

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/concurrent.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.concurrent

#!/usr/bin/env python
#
Copyright 2012 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""Utilities for working with threads and ``Futures``.

``Futures`` are a pattern for concurrent programming introduced in
Python 3.2 in the `concurrent.futures` package. This package defines
a mostly-compatible `Future` class designed for use from coroutines,
as well as some utility functions for interacting with the
`concurrent.futures` package.
"""
from __future__ import absolute_import, division, print_function, with_statement

import functools
import platform
import textwrap
import traceback
import sys

from tornado.log import app_log
from tornado.stack_context import ExceptionStackContext, wrap
from tornado.util import raise_exc_info, ArgReplacer

try:
 from concurrent import futures
except ImportError:
 futures = None

try:
 import typing
except ImportError:
 typing = None

Can the garbage collector handle cycles that include __del__ methods?
This is true in cpython beginning with version 3.4 (PEP 442).
_GC_CYCLE_FINALIZERS = (platform.python_implementation() == 'CPython' and
 sys.version_info >= (3, 4))

class ReturnValueIgnoredError(Exception):
 pass

This class and associated code in the future object is derived
from the Trollius project, a backport of asyncio to Python 2.x - 3.x

class _TracebackLogger(object):
 """Helper to log a traceback upon destruction if not cleared.

 This solves a nasty problem with Futures and Tasks that have an
 exception set: if nobody asks for the exception, the exception is
 never logged. This violates the Zen of Python: 'Errors should
 never pass silently. Unless explicitly silenced.'

 However, we don't want to log the exception as soon as
 set_exception() is called: if the calling code is written
 properly, it will get the exception and handle it properly. But
 we *do* want to log it if result() or exception() was never called
 -- otherwise developers waste a lot of time wondering why their
 buggy code fails silently.

 An earlier attempt added a __del__() method to the Future class
 itself, but this backfired because the presence of __del__()
 prevents garbage collection from breaking cycles. A way out of
 this catch-22 is to avoid having a __del__() method on the Future
 class itself, but instead to have a reference to a helper object
 with a __del__() method that logs the traceback, where we ensure
 that the helper object doesn't participate in cycles, and only the
 Future has a reference to it.

 The helper object is added when set_exception() is called. When
 the Future is collected, and the helper is present, the helper
 object is also collected, and its __del__() method will log the
 traceback. When the Future's result() or exception() method is
 called (and a helper object is present), it removes the the helper
 object, after calling its clear() method to prevent it from
 logging.

 One downside is that we do a fair amount of work to extract the
 traceback from the exception, even when it is never logged. It
 would seem cheaper to just store the exception object, but that
 references the traceback, which references stack frames, which may
 reference the Future, which references the _TracebackLogger, and
 then the _TracebackLogger would be included in a cycle, which is
 what we're trying to avoid! As an optimization, we don't
 immediately format the exception; we only do the work when
 activate() is called, which call is delayed until after all the
 Future's callbacks have run. Since usually a Future has at least
 one callback (typically set by 'yield From') and usually that
 callback extracts the callback, thereby removing the need to
 format the exception.

 PS. I don't claim credit for this solution. I first heard of it
 in a discussion about closing files when they are collected.
 """

 __slots__ = ('exc_info', 'formatted_tb')

 def __init__(self, exc_info):
 self.exc_info = exc_info
 self.formatted_tb = None

 def activate(self):
 exc_info = self.exc_info
 if exc_info is not None:
 self.exc_info = None
 self.formatted_tb = traceback.format_exception(*exc_info)

 def clear(self):
 self.exc_info = None
 self.formatted_tb = None

 def __del__(self):
 if self.formatted_tb:
 app_log.error('Future exception was never retrieved: %s',
 ''.join(self.formatted_tb).rstrip())

[docs]class Future(object):
 """Placeholder for an asynchronous result.

 A ``Future`` encapsulates the result of an asynchronous
 operation. In synchronous applications ``Futures`` are used
 to wait for the result from a thread or process pool; in
 Tornado they are normally used with `.IOLoop.add_future` or by
 yielding them in a `.gen.coroutine`.

 `tornado.concurrent.Future` is similar to
 `concurrent.futures.Future`, but not thread-safe (and therefore
 faster for use with single-threaded event loops).

 In addition to ``exception`` and ``set_exception``, methods ``exc_info``
 and ``set_exc_info`` are supported to capture tracebacks in Python 2.
 The traceback is automatically available in Python 3, but in the
 Python 2 futures backport this information is discarded.
 This functionality was previously available in a separate class
 ``TracebackFuture``, which is now a deprecated alias for this class.

 .. versionchanged:: 4.0
 `tornado.concurrent.Future` is always a thread-unsafe ``Future``
 with support for the ``exc_info`` methods. Previously it would
 be an alias for the thread-safe `concurrent.futures.Future`
 if that package was available and fall back to the thread-unsafe
 implementation if it was not.

 .. versionchanged:: 4.1
 If a `.Future` contains an error but that error is never observed
 (by calling ``result()``, ``exception()``, or ``exc_info()``),
 a stack trace will be logged when the `.Future` is garbage collected.
 This normally indicates an error in the application, but in cases
 where it results in undesired logging it may be necessary to
 suppress the logging by ensuring that the exception is observed:
 ``f.add_done_callback(lambda f: f.exception())``.
 """
 def __init__(self):
 self._done = False
 self._result = None
 self._exc_info = None

 self._log_traceback = False # Used for Python >= 3.4
 self._tb_logger = None # Used for Python <= 3.3

 self._callbacks = []

 # Implement the Python 3.5 Awaitable protocol if possible
 # (we can't use return and yield together until py33).
 if sys.version_info >= (3, 3):
 exec(textwrap.dedent("""
 def __await__(self):
 return (yield self)
 """))
 else:
 # Py2-compatible version for use with cython.
 def __await__(self):
 result = yield self
 # StopIteration doesn't take args before py33,
 # but Cython recognizes the args tuple.
 e = StopIteration()
 e.args = (result,)
 raise e

[docs] def cancel(self):
 """Cancel the operation, if possible.

 Tornado ``Futures`` do not support cancellation, so this method always
 returns False.
 """
 return False

[docs] def cancelled(self):
 """Returns True if the operation has been cancelled.

 Tornado ``Futures`` do not support cancellation, so this method
 always returns False.
 """
 return False

[docs] def running(self):
 """Returns True if this operation is currently running."""
 return not self._done

[docs] def done(self):
 """Returns True if the future has finished running."""
 return self._done

 def _clear_tb_log(self):
 self._log_traceback = False
 if self._tb_logger is not None:
 self._tb_logger.clear()
 self._tb_logger = None

[docs] def result(self, timeout=None):
 """If the operation succeeded, return its result. If it failed,
 re-raise its exception.

 This method takes a ``timeout`` argument for compatibility with
 `concurrent.futures.Future` but it is an error to call it
 before the `Future` is done, so the ``timeout`` is never used.
 """
 self._clear_tb_log()
 if self._result is not None:
 return self._result
 if self._exc_info is not None:
 raise_exc_info(self._exc_info)
 self._check_done()
 return self._result

[docs] def exception(self, timeout=None):
 """If the operation raised an exception, return the `Exception`
 object. Otherwise returns None.

 This method takes a ``timeout`` argument for compatibility with
 `concurrent.futures.Future` but it is an error to call it
 before the `Future` is done, so the ``timeout`` is never used.
 """
 self._clear_tb_log()
 if self._exc_info is not None:
 return self._exc_info[1]
 else:
 self._check_done()
 return None

[docs] def add_done_callback(self, fn):
 """Attaches the given callback to the `Future`.

 It will be invoked with the `Future` as its argument when the Future
 has finished running and its result is available. In Tornado
 consider using `.IOLoop.add_future` instead of calling
 `add_done_callback` directly.
 """
 if self._done:
 fn(self)
 else:
 self._callbacks.append(fn)

[docs] def set_result(self, result):
 """Sets the result of a ``Future``.

 It is undefined to call any of the ``set`` methods more than once
 on the same object.
 """
 self._result = result
 self._set_done()

[docs] def set_exception(self, exception):
 """Sets the exception of a ``Future.``"""
 self.set_exc_info(
 (exception.__class__,
 exception,
 getattr(exception, '__traceback__', None)))

[docs] def exc_info(self):
 """Returns a tuple in the same format as `sys.exc_info` or None.

 .. versionadded:: 4.0
 """
 self._clear_tb_log()
 return self._exc_info

[docs] def set_exc_info(self, exc_info):
 """Sets the exception information of a ``Future.``

 Preserves tracebacks on Python 2.

 .. versionadded:: 4.0
 """
 self._exc_info = exc_info
 self._log_traceback = True
 if not _GC_CYCLE_FINALIZERS:
 self._tb_logger = _TracebackLogger(exc_info)

 try:
 self._set_done()
 finally:
 # Activate the logger after all callbacks have had a
 # chance to call result() or exception().
 if self._log_traceback and self._tb_logger is not None:
 self._tb_logger.activate()
 self._exc_info = exc_info

 def _check_done(self):
 if not self._done:
 raise Exception("DummyFuture does not support blocking for results")

 def _set_done(self):
 self._done = True
 for cb in self._callbacks:
 try:
 cb(self)
 except Exception:
 app_log.exception('Exception in callback %r for %r',
 cb, self)
 self._callbacks = None

 # On Python 3.3 or older, objects with a destructor part of a reference
 # cycle are never destroyed. It's no longer the case on Python 3.4 thanks to
 # the PEP 442.
 if _GC_CYCLE_FINALIZERS:
 def __del__(self):
 if not self._log_traceback:
 # set_exception() was not called, or result() or exception()
 # has consumed the exception
 return

 tb = traceback.format_exception(*self._exc_info)

 app_log.error('Future %r exception was never retrieved: %s',
 self, ''.join(tb).rstrip())

TracebackFuture = Future

if futures is None:
 FUTURES = Future # type: typing.Union[type, typing.Tuple[type, ...]]
else:
 FUTURES = (futures.Future, Future)

def is_future(x):
 return isinstance(x, FUTURES)

class DummyExecutor(object):
 def submit(self, fn, *args, **kwargs):
 future = TracebackFuture()
 try:
 future.set_result(fn(*args, **kwargs))
 except Exception:
 future.set_exc_info(sys.exc_info())
 return future

 def shutdown(self, wait=True):
 pass

dummy_executor = DummyExecutor()

[docs]def run_on_executor(*args, **kwargs):
 """Decorator to run a synchronous method asynchronously on an executor.

 The decorated method may be called with a ``callback`` keyword
 argument and returns a future.

 The `.IOLoop` and executor to be used are determined by the ``io_loop``
 and ``executor`` attributes of ``self``. To use different attributes,
 pass keyword arguments to the decorator::

 @run_on_executor(executor='_thread_pool')
 def foo(self):
 pass

 .. versionchanged:: 4.2
 Added keyword arguments to use alternative attributes.
 """
 def run_on_executor_decorator(fn):
 executor = kwargs.get("executor", "executor")
 io_loop = kwargs.get("io_loop", "io_loop")

 @functools.wraps(fn)
 def wrapper(self, *args, **kwargs):
 callback = kwargs.pop("callback", None)
 future = getattr(self, executor).submit(fn, self, *args, **kwargs)
 if callback:
 getattr(self, io_loop).add_future(
 future, lambda future: callback(future.result()))
 return future
 return wrapper
 if args and kwargs:
 raise ValueError("cannot combine positional and keyword args")
 if len(args) == 1:
 return run_on_executor_decorator(args[0])
 elif len(args) != 0:
 raise ValueError("expected 1 argument, got %d", len(args))
 return run_on_executor_decorator

_NO_RESULT = object()

[docs]def return_future(f):
 """Decorator to make a function that returns via callback return a
 `Future`.

 The wrapped function should take a ``callback`` keyword argument
 and invoke it with one argument when it has finished. To signal failure,
 the function can simply raise an exception (which will be
 captured by the `.StackContext` and passed along to the ``Future``).

 From the caller's perspective, the callback argument is optional.
 If one is given, it will be invoked when the function is complete
 with `Future.result()` as an argument. If the function fails, the
 callback will not be run and an exception will be raised into the
 surrounding `.StackContext`.

 If no callback is given, the caller should use the ``Future`` to
 wait for the function to complete (perhaps by yielding it in a
 `.gen.engine` function, or passing it to `.IOLoop.add_future`).

 Usage:

 .. testcode::

 @return_future
 def future_func(arg1, arg2, callback):
 # Do stuff (possibly asynchronous)
 callback(result)

 @gen.engine
 def caller(callback):
 yield future_func(arg1, arg2)
 callback()

 ..

 Note that ``@return_future`` and ``@gen.engine`` can be applied to the
 same function, provided ``@return_future`` appears first. However,
 consider using ``@gen.coroutine`` instead of this combination.
 """
 replacer = ArgReplacer(f, 'callback')

 @functools.wraps(f)
 def wrapper(*args, **kwargs):
 future = TracebackFuture()
 callback, args, kwargs = replacer.replace(
 lambda value=_NO_RESULT: future.set_result(value),
 args, kwargs)

 def handle_error(typ, value, tb):
 future.set_exc_info((typ, value, tb))
 return True
 exc_info = None
 with ExceptionStackContext(handle_error):
 try:
 result = f(*args, **kwargs)
 if result is not None:
 raise ReturnValueIgnoredError(
 "@return_future should not be used with functions "
 "that return values")
 except:
 exc_info = sys.exc_info()
 raise
 if exc_info is not None:
 # If the initial synchronous part of f() raised an exception,
 # go ahead and raise it to the caller directly without waiting
 # for them to inspect the Future.
 future.result()

 # If the caller passed in a callback, schedule it to be called
 # when the future resolves. It is important that this happens
 # just before we return the future, or else we risk confusing
 # stack contexts with multiple exceptions (one here with the
 # immediate exception, and again when the future resolves and
 # the callback triggers its exception by calling future.result()).
 if callback is not None:
 def run_callback(future):
 result = future.result()
 if result is _NO_RESULT:
 callback()
 else:
 callback(future.result())
 future.add_done_callback(wrap(run_callback))
 return future
 return wrapper

[docs]def chain_future(a, b):
 """Chain two futures together so that when one completes, so does the other.

 The result (success or failure) of ``a`` will be copied to ``b``, unless
 ``b`` has already been completed or cancelled by the time ``a`` finishes.
 """
 def copy(future):
 assert future is a
 if b.done():
 return
 if (isinstance(a, TracebackFuture) and
 isinstance(b, TracebackFuture) and
 a.exc_info() is not None):
 b.set_exc_info(a.exc_info())
 elif a.exception() is not None:
 b.set_exception(a.exception())
 else:
 b.set_result(a.result())
 a.add_done_callback(copy)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/queues.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.queues

Copyright 2015 The Tornado Authors
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

from __future__ import absolute_import, division, print_function, with_statement

import collections
import heapq

from tornado import gen, ioloop
from tornado.concurrent import Future
from tornado.locks import Event

__all__ = ['Queue', 'PriorityQueue', 'LifoQueue', 'QueueFull', 'QueueEmpty']

[docs]class QueueEmpty(Exception):
 """Raised by `.Queue.get_nowait` when the queue has no items."""
 pass

[docs]class QueueFull(Exception):
 """Raised by `.Queue.put_nowait` when a queue is at its maximum size."""
 pass

def _set_timeout(future, timeout):
 if timeout:
 def on_timeout():
 future.set_exception(gen.TimeoutError())
 io_loop = ioloop.IOLoop.current()
 timeout_handle = io_loop.add_timeout(timeout, on_timeout)
 future.add_done_callback(
 lambda _: io_loop.remove_timeout(timeout_handle))

class _QueueIterator(object):
 def __init__(self, q):
 self.q = q

 def __anext__(self):
 return self.q.get()

[docs]class Queue(object):
 """Coordinate producer and consumer coroutines.

 If maxsize is 0 (the default) the queue size is unbounded.

 .. testcode::

 from tornado import gen
 from tornado.ioloop import IOLoop
 from tornado.queues import Queue

 q = Queue(maxsize=2)

 @gen.coroutine
 def consumer():
 while True:
 item = yield q.get()
 try:
 print('Doing work on %s' % item)
 yield gen.sleep(0.01)
 finally:
 q.task_done()

 @gen.coroutine
 def producer():
 for item in range(5):
 yield q.put(item)
 print('Put %s' % item)

 @gen.coroutine
 def main():
 # Start consumer without waiting (since it never finishes).
 IOLoop.current().spawn_callback(consumer)
 yield producer() # Wait for producer to put all tasks.
 yield q.join() # Wait for consumer to finish all tasks.
 print('Done')

 IOLoop.current().run_sync(main)

 .. testoutput::

 Put 0
 Put 1
 Doing work on 0
 Put 2
 Doing work on 1
 Put 3
 Doing work on 2
 Put 4
 Doing work on 3
 Doing work on 4
 Done

 In Python 3.5, `Queue` implements the async iterator protocol, so
 ``consumer()`` could be rewritten as::

 async def consumer():
 async for item in q:
 try:
 print('Doing work on %s' % item)
 yield gen.sleep(0.01)
 finally:
 q.task_done()

 .. versionchanged:: 4.3
 Added ``async for`` support in Python 3.5.

 """
 def __init__(self, maxsize=0):
 if maxsize is None:
 raise TypeError("maxsize can't be None")

 if maxsize < 0:
 raise ValueError("maxsize can't be negative")

 self._maxsize = maxsize
 self._init()
 self._getters = collections.deque([]) # Futures.
 self._putters = collections.deque([]) # Pairs of (item, Future).
 self._unfinished_tasks = 0
 self._finished = Event()
 self._finished.set()

 @property
 def maxsize(self):
 """Number of items allowed in the queue."""
 return self._maxsize

[docs] def qsize(self):
 """Number of items in the queue."""
 return len(self._queue)

 def empty(self):
 return not self._queue

 def full(self):
 if self.maxsize == 0:
 return False
 else:
 return self.qsize() >= self.maxsize

[docs] def put(self, item, timeout=None):
 """Put an item into the queue, perhaps waiting until there is room.

 Returns a Future, which raises `tornado.gen.TimeoutError` after a
 timeout.
 """
 try:
 self.put_nowait(item)
 except QueueFull:
 future = Future()
 self._putters.append((item, future))
 _set_timeout(future, timeout)
 return future
 else:
 return gen._null_future

[docs] def put_nowait(self, item):
 """Put an item into the queue without blocking.

 If no free slot is immediately available, raise `QueueFull`.
 """
 self._consume_expired()
 if self._getters:
 assert self.empty(), "queue non-empty, why are getters waiting?"
 getter = self._getters.popleft()
 self.__put_internal(item)
 getter.set_result(self._get())
 elif self.full():
 raise QueueFull
 else:
 self.__put_internal(item)

[docs] def get(self, timeout=None):
 """Remove and return an item from the queue.

 Returns a Future which resolves once an item is available, or raises
 `tornado.gen.TimeoutError` after a timeout.
 """
 future = Future()
 try:
 future.set_result(self.get_nowait())
 except QueueEmpty:
 self._getters.append(future)
 _set_timeout(future, timeout)
 return future

[docs] def get_nowait(self):
 """Remove and return an item from the queue without blocking.

 Return an item if one is immediately available, else raise
 `QueueEmpty`.
 """
 self._consume_expired()
 if self._putters:
 assert self.full(), "queue not full, why are putters waiting?"
 item, putter = self._putters.popleft()
 self.__put_internal(item)
 putter.set_result(None)
 return self._get()
 elif self.qsize():
 return self._get()
 else:
 raise QueueEmpty

[docs] def task_done(self):
 """Indicate that a formerly enqueued task is complete.

 Used by queue consumers. For each `.get` used to fetch a task, a
 subsequent call to `.task_done` tells the queue that the processing
 on the task is complete.

 If a `.join` is blocking, it resumes when all items have been
 processed; that is, when every `.put` is matched by a `.task_done`.

 Raises `ValueError` if called more times than `.put`.
 """
 if self._unfinished_tasks <= 0:
 raise ValueError('task_done() called too many times')
 self._unfinished_tasks -= 1
 if self._unfinished_tasks == 0:
 self._finished.set()

[docs] def join(self, timeout=None):
 """Block until all items in the queue are processed.

 Returns a Future, which raises `tornado.gen.TimeoutError` after a
 timeout.
 """
 return self._finished.wait(timeout)

 @gen.coroutine
 def __aiter__(self):
 return _QueueIterator(self)

 # These three are overridable in subclasses.
 def _init(self):
 self._queue = collections.deque()

 def _get(self):
 return self._queue.popleft()

 def _put(self, item):
 self._queue.append(item)
 # End of the overridable methods.

 def __put_internal(self, item):
 self._unfinished_tasks += 1
 self._finished.clear()
 self._put(item)

 def _consume_expired(self):
 # Remove timed-out waiters.
 while self._putters and self._putters[0][1].done():
 self._putters.popleft()

 while self._getters and self._getters[0].done():
 self._getters.popleft()

 def __repr__(self):
 return '<%s at %s %s>' % (
 type(self).__name__, hex(id(self)), self._format())

 def __str__(self):
 return '<%s %s>' % (type(self).__name__, self._format())

 def _format(self):
 result = 'maxsize=%r' % (self.maxsize,)
 if getattr(self, '_queue', None):
 result += ' queue=%r' % self._queue
 if self._getters:
 result += ' getters[%s]' % len(self._getters)
 if self._putters:
 result += ' putters[%s]' % len(self._putters)
 if self._unfinished_tasks:
 result += ' tasks=%s' % self._unfinished_tasks
 return result

[docs]class PriorityQueue(Queue):
 """A `.Queue` that retrieves entries in priority order, lowest first.

 Entries are typically tuples like ``(priority number, data)``.

 .. testcode::

 from tornado.queues import PriorityQueue

 q = PriorityQueue()
 q.put((1, 'medium-priority item'))
 q.put((0, 'high-priority item'))
 q.put((10, 'low-priority item'))

 print(q.get_nowait())
 print(q.get_nowait())
 print(q.get_nowait())

 .. testoutput::

 (0, 'high-priority item')
 (1, 'medium-priority item')
 (10, 'low-priority item')
 """
 def _init(self):
 self._queue = []

 def _put(self, item):
 heapq.heappush(self._queue, item)

 def _get(self):
 return heapq.heappop(self._queue)

[docs]class LifoQueue(Queue):
 """A `.Queue` that retrieves the most recently put items first.

 .. testcode::

 from tornado.queues import LifoQueue

 q = LifoQueue()
 q.put(3)
 q.put(2)
 q.put(1)

 print(q.get_nowait())
 print(q.get_nowait())
 print(q.get_nowait())

 .. testoutput::

 1
 2
 3
 """
 def _init(self):
 self._queue = []

 def _put(self, item):
 self._queue.append(item)

 def _get(self):
 return self._queue.pop()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/websocket.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.websocket

"""Implementation of the WebSocket protocol.

`WebSockets <http://dev.w3.org/html5/websockets/>`_ allow for bidirectional
communication between the browser and server.

WebSockets are supported in the current versions of all major browsers,
although older versions that do not support WebSockets are still in use
(refer to http://caniuse.com/websockets for details).

This module implements the final version of the WebSocket protocol as
defined in `RFC 6455 <http://tools.ietf.org/html/rfc6455>`_. Certain
browser versions (notably Safari 5.x) implemented an earlier draft of
the protocol (known as "draft 76") and are not compatible with this module.

.. versionchanged:: 4.0
 Removed support for the draft 76 protocol version.
"""

from __future__ import absolute_import, division, print_function, with_statement
Author: Jacob Kristhammar, 2010

import base64
import collections
import hashlib
import os
import struct
import tornado.escape
import tornado.web
import zlib

from tornado.concurrent import TracebackFuture
from tornado.escape import utf8, native_str, to_unicode
from tornado import httpclient, httputil
from tornado.ioloop import IOLoop
from tornado.iostream import StreamClosedError
from tornado.log import gen_log, app_log
from tornado import simple_httpclient
from tornado.tcpclient import TCPClient
from tornado.util import _websocket_mask, PY3

if PY3:
 from urllib.parse import urlparse # py2
 xrange = range
else:
 from urlparse import urlparse # py3

class WebSocketError(Exception):
 pass

[docs]class WebSocketClosedError(WebSocketError):
 """Raised by operations on a closed connection.

 .. versionadded:: 3.2
 """
 pass

[docs]class WebSocketHandler(tornado.web.RequestHandler):
 """Subclass this class to create a basic WebSocket handler.

 Override `on_message` to handle incoming messages, and use
 `write_message` to send messages to the client. You can also
 override `open` and `on_close` to handle opened and closed
 connections.

 See http://dev.w3.org/html5/websockets/ for details on the
 JavaScript interface. The protocol is specified at
 http://tools.ietf.org/html/rfc6455.

 Here is an example WebSocket handler that echos back all received messages
 back to the client:

 .. testcode::

 class EchoWebSocket(tornado.websocket.WebSocketHandler):
 def open(self):
 print("WebSocket opened")

 def on_message(self, message):
 self.write_message(u"You said: " + message)

 def on_close(self):
 print("WebSocket closed")

 .. testoutput::
 :hide:

 WebSockets are not standard HTTP connections. The "handshake" is
 HTTP, but after the handshake, the protocol is
 message-based. Consequently, most of the Tornado HTTP facilities
 are not available in handlers of this type. The only communication
 methods available to you are `write_message()`, `ping()`, and
 `close()`. Likewise, your request handler class should implement
 `open()` method rather than ``get()`` or ``post()``.

 If you map the handler above to ``/websocket`` in your application, you can
 invoke it in JavaScript with::

 var ws = new WebSocket("ws://localhost:8888/websocket");
 ws.onopen = function() {
 ws.send("Hello, world");
 };
 ws.onmessage = function (evt) {
 alert(evt.data);
 };

 This script pops up an alert box that says "You said: Hello, world".

 Web browsers allow any site to open a websocket connection to any other,
 instead of using the same-origin policy that governs other network
 access from javascript. This can be surprising and is a potential
 security hole, so since Tornado 4.0 `WebSocketHandler` requires
 applications that wish to receive cross-origin websockets to opt in
 by overriding the `~WebSocketHandler.check_origin` method (see that
 method's docs for details). Failure to do so is the most likely
 cause of 403 errors when making a websocket connection.

 When using a secure websocket connection (``wss://``) with a self-signed
 certificate, the connection from a browser may fail because it wants
 to show the "accept this certificate" dialog but has nowhere to show it.
 You must first visit a regular HTML page using the same certificate
 to accept it before the websocket connection will succeed.
 """
 def __init__(self, application, request, **kwargs):
 super(WebSocketHandler, self).__init__(application, request, **kwargs)
 self.ws_connection = None
 self.close_code = None
 self.close_reason = None
 self.stream = None
 self._on_close_called = False

 @tornado.web.asynchronous
 def get(self, *args, **kwargs):
 self.open_args = args
 self.open_kwargs = kwargs

 # Upgrade header should be present and should be equal to WebSocket
 if self.request.headers.get("Upgrade", "").lower() != 'websocket':
 self.set_status(400)
 log_msg = "Can \"Upgrade\" only to \"WebSocket\"."
 self.finish(log_msg)
 gen_log.debug(log_msg)
 return

 # Connection header should be upgrade.
 # Some proxy servers/load balancers
 # might mess with it.
 headers = self.request.headers
 connection = map(lambda s: s.strip().lower(),
 headers.get("Connection", "").split(","))
 if 'upgrade' not in connection:
 self.set_status(400)
 log_msg = "\"Connection\" must be \"Upgrade\"."
 self.finish(log_msg)
 gen_log.debug(log_msg)
 return

 # Handle WebSocket Origin naming convention differences
 # The difference between version 8 and 13 is that in 8 the
 # client sends a "Sec-Websocket-Origin" header and in 13 it's
 # simply "Origin".
 if "Origin" in self.request.headers:
 origin = self.request.headers.get("Origin")
 else:
 origin = self.request.headers.get("Sec-Websocket-Origin", None)

 # If there was an origin header, check to make sure it matches
 # according to check_origin. When the origin is None, we assume it
 # did not come from a browser and that it can be passed on.
 if origin is not None and not self.check_origin(origin):
 self.set_status(403)
 log_msg = "Cross origin websockets not allowed"
 self.finish(log_msg)
 gen_log.debug(log_msg)
 return

 self.stream = self.request.connection.detach()
 self.stream.set_close_callback(self.on_connection_close)

 self.ws_connection = self.get_websocket_protocol()
 if self.ws_connection:
 self.ws_connection.accept_connection()
 else:
 if not self.stream.closed():
 self.stream.write(tornado.escape.utf8(
 "HTTP/1.1 426 Upgrade Required\r\n"
 "Sec-WebSocket-Version: 7, 8, 13\r\n\r\n"))
 self.stream.close()

[docs] def write_message(self, message, binary=False):
 """Sends the given message to the client of this Web Socket.

 The message may be either a string or a dict (which will be
 encoded as json). If the ``binary`` argument is false, the
 message will be sent as utf8; in binary mode any byte string
 is allowed.

 If the connection is already closed, raises `WebSocketClosedError`.

 .. versionchanged:: 3.2
 `WebSocketClosedError` was added (previously a closed connection
 would raise an `AttributeError`)

 .. versionchanged:: 4.3
 Returns a `.Future` which can be used for flow control.
 """
 if self.ws_connection is None:
 raise WebSocketClosedError()
 if isinstance(message, dict):
 message = tornado.escape.json_encode(message)
 return self.ws_connection.write_message(message, binary=binary)

[docs] def select_subprotocol(self, subprotocols):
 """Invoked when a new WebSocket requests specific subprotocols.

 ``subprotocols`` is a list of strings identifying the
 subprotocols proposed by the client. This method may be
 overridden to return one of those strings to select it, or
 ``None`` to not select a subprotocol. Failure to select a
 subprotocol does not automatically abort the connection,
 although clients may close the connection if none of their
 proposed subprotocols was selected.
 """
 return None

[docs] def get_compression_options(self):
 """Override to return compression options for the connection.

 If this method returns None (the default), compression will
 be disabled. If it returns a dict (even an empty one), it
 will be enabled. The contents of the dict may be used to
 control the memory and CPU usage of the compression,
 but no such options are currently implemented.

 .. versionadded:: 4.1
 """
 return None

[docs] def open(self, *args, **kwargs):
 """Invoked when a new WebSocket is opened.

 The arguments to `open` are extracted from the `tornado.web.URLSpec`
 regular expression, just like the arguments to
 `tornado.web.RequestHandler.get`.
 """
 pass

[docs] def on_message(self, message):
 """Handle incoming messages on the WebSocket

 This method must be overridden.
 """
 raise NotImplementedError

[docs] def ping(self, data):
 """Send ping frame to the remote end."""
 if self.ws_connection is None:
 raise WebSocketClosedError()
 self.ws_connection.write_ping(data)

[docs] def on_pong(self, data):
 """Invoked when the response to a ping frame is received."""
 pass

[docs] def on_close(self):
 """Invoked when the WebSocket is closed.

 If the connection was closed cleanly and a status code or reason
 phrase was supplied, these values will be available as the attributes
 ``self.close_code`` and ``self.close_reason``.

 .. versionchanged:: 4.0

 Added ``close_code`` and ``close_reason`` attributes.
 """
 pass

[docs] def close(self, code=None, reason=None):
 """Closes this Web Socket.

 Once the close handshake is successful the socket will be closed.

 ``code`` may be a numeric status code, taken from the values
 defined in `RFC 6455 section 7.4.1
 <https://tools.ietf.org/html/rfc6455#section-7.4.1>`_.
 ``reason`` may be a textual message about why the connection is
 closing. These values are made available to the client, but are
 not otherwise interpreted by the websocket protocol.

 .. versionchanged:: 4.0

 Added the ``code`` and ``reason`` arguments.
 """
 if self.ws_connection:
 self.ws_connection.close(code, reason)
 self.ws_connection = None

[docs] def check_origin(self, origin):
 """Override to enable support for allowing alternate origins.

 The ``origin`` argument is the value of the ``Origin`` HTTP
 header, the url responsible for initiating this request. This
 method is not called for clients that do not send this header;
 such requests are always allowed (because all browsers that
 implement WebSockets support this header, and non-browser
 clients do not have the same cross-site security concerns).

 Should return True to accept the request or False to reject it.
 By default, rejects all requests with an origin on a host other
 than this one.

 This is a security protection against cross site scripting attacks on
 browsers, since WebSockets are allowed to bypass the usual same-origin
 policies and don't use CORS headers.

 .. warning::

 This is an important security measure; don't disable it
 without understanding the security implications. In
 particular, if your authenticatino is cookie-based, you
 must either restrict the origins allowed by
 ``check_origin()`` or implement your own XSRF-like
 protection for websocket connections. See `these
 <https://www.christian-schneider.net/CrossSiteWebSocketHijacking.html>`_
 `articles
 <https://devcenter.heroku.com/articles/websocket-security>`_
 for more.

 To accept all cross-origin traffic (which was the default prior to
 Tornado 4.0), simply override this method to always return true::

 def check_origin(self, origin):
 return True

 To allow connections from any subdomain of your site, you might
 do something like::

 def check_origin(self, origin):
 parsed_origin = urllib.parse.urlparse(origin)
 return parsed_origin.netloc.endswith(".mydomain.com")

 .. versionadded:: 4.0

 """
 parsed_origin = urlparse(origin)
 origin = parsed_origin.netloc
 origin = origin.lower()

 host = self.request.headers.get("Host")

 # Check to see that origin matches host directly, including ports
 return origin == host

[docs] def set_nodelay(self, value):
 """Set the no-delay flag for this stream.

 By default, small messages may be delayed and/or combined to minimize
 the number of packets sent. This can sometimes cause 200-500ms delays
 due to the interaction between Nagle's algorithm and TCP delayed
 ACKs. To reduce this delay (at the expense of possibly increasing
 bandwidth usage), call ``self.set_nodelay(True)`` once the websocket
 connection is established.

 See `.BaseIOStream.set_nodelay` for additional details.

 .. versionadded:: 3.1
 """
 self.stream.set_nodelay(value)

 def on_connection_close(self):
 if self.ws_connection:
 self.ws_connection.on_connection_close()
 self.ws_connection = None
 if not self._on_close_called:
 self._on_close_called = True
 self.on_close()

 def send_error(self, *args, **kwargs):
 if self.stream is None:
 super(WebSocketHandler, self).send_error(*args, **kwargs)
 else:
 # If we get an uncaught exception during the handshake,
 # we have no choice but to abruptly close the connection.
 # TODO: for uncaught exceptions after the handshake,
 # we can close the connection more gracefully.
 self.stream.close()

 def get_websocket_protocol(self):
 websocket_version = self.request.headers.get("Sec-WebSocket-Version")
 if websocket_version in ("7", "8", "13"):
 return WebSocketProtocol13(
 self, compression_options=self.get_compression_options())

def _wrap_method(method):
 def _disallow_for_websocket(self, *args, **kwargs):
 if self.stream is None:
 method(self, *args, **kwargs)
 else:
 raise RuntimeError("Method not supported for Web Sockets")
 return _disallow_for_websocket
for method in ["write", "redirect", "set_header", "set_cookie",
 "set_status", "flush", "finish"]:
 setattr(WebSocketHandler, method,
 _wrap_method(getattr(WebSocketHandler, method)))

class WebSocketProtocol(object):
 """Base class for WebSocket protocol versions.
 """
 def __init__(self, handler):
 self.handler = handler
 self.request = handler.request
 self.stream = handler.stream
 self.client_terminated = False
 self.server_terminated = False

 def _run_callback(self, callback, *args, **kwargs):
 """Runs the given callback with exception handling.

 On error, aborts the websocket connection and returns False.
 """
 try:
 callback(*args, **kwargs)
 except Exception:
 app_log.error("Uncaught exception in %s",
 self.request.path, exc_info=True)
 self._abort()

 def on_connection_close(self):
 self._abort()

 def _abort(self):
 """Instantly aborts the WebSocket connection by closing the socket"""
 self.client_terminated = True
 self.server_terminated = True
 self.stream.close() # forcibly tear down the connection
 self.close() # let the subclass cleanup

class _PerMessageDeflateCompressor(object):
 def __init__(self, persistent, max_wbits):
 if max_wbits is None:
 max_wbits = zlib.MAX_WBITS
 # There is no symbolic constant for the minimum wbits value.
 if not (8 <= max_wbits <= zlib.MAX_WBITS):
 raise ValueError("Invalid max_wbits value %r; allowed range 8-%d",
 max_wbits, zlib.MAX_WBITS)
 self._max_wbits = max_wbits
 if persistent:
 self._compressor = self._create_compressor()
 else:
 self._compressor = None

 def _create_compressor(self):
 return zlib.compressobj(tornado.web.GZipContentEncoding.GZIP_LEVEL,
 zlib.DEFLATED, -self._max_wbits)

 def compress(self, data):
 compressor = self._compressor or self._create_compressor()
 data = (compressor.compress(data) +
 compressor.flush(zlib.Z_SYNC_FLUSH))
 assert data.endswith(b'\x00\x00\xff\xff')
 return data[:-4]

class _PerMessageDeflateDecompressor(object):
 def __init__(self, persistent, max_wbits):
 if max_wbits is None:
 max_wbits = zlib.MAX_WBITS
 if not (8 <= max_wbits <= zlib.MAX_WBITS):
 raise ValueError("Invalid max_wbits value %r; allowed range 8-%d",
 max_wbits, zlib.MAX_WBITS)
 self._max_wbits = max_wbits
 if persistent:
 self._decompressor = self._create_decompressor()
 else:
 self._decompressor = None

 def _create_decompressor(self):
 return zlib.decompressobj(-self._max_wbits)

 def decompress(self, data):
 decompressor = self._decompressor or self._create_decompressor()
 return decompressor.decompress(data + b'\x00\x00\xff\xff')

class WebSocketProtocol13(WebSocketProtocol):
 """Implementation of the WebSocket protocol from RFC 6455.

 This class supports versions 7 and 8 of the protocol in addition to the
 final version 13.
 """
 # Bit masks for the first byte of a frame.
 FIN = 0x80
 RSV1 = 0x40
 RSV2 = 0x20
 RSV3 = 0x10
 RSV_MASK = RSV1 | RSV2 | RSV3
 OPCODE_MASK = 0x0f

 def __init__(self, handler, mask_outgoing=False,
 compression_options=None):
 WebSocketProtocol.__init__(self, handler)
 self.mask_outgoing = mask_outgoing
 self._final_frame = False
 self._frame_opcode = None
 self._masked_frame = None
 self._frame_mask = None
 self._frame_length = None
 self._fragmented_message_buffer = None
 self._fragmented_message_opcode = None
 self._waiting = None
 self._compression_options = compression_options
 self._decompressor = None
 self._compressor = None
 self._frame_compressed = None
 # The total uncompressed size of all messages received or sent.
 # Unicode messages are encoded to utf8.
 # Only for testing; subject to change.
 self._message_bytes_in = 0
 self._message_bytes_out = 0
 # The total size of all packets received or sent. Includes
 # the effect of compression, frame overhead, and control frames.
 self._wire_bytes_in = 0
 self._wire_bytes_out = 0

 def accept_connection(self):
 try:
 self._handle_websocket_headers()
 self._accept_connection()
 except ValueError:
 gen_log.debug("Malformed WebSocket request received",
 exc_info=True)
 self._abort()
 return

 def _handle_websocket_headers(self):
 """Verifies all invariant- and required headers

 If a header is missing or have an incorrect value ValueError will be
 raised
 """
 fields = ("Host", "Sec-Websocket-Key", "Sec-Websocket-Version")
 if not all(map(lambda f: self.request.headers.get(f), fields)):
 raise ValueError("Missing/Invalid WebSocket headers")

 @staticmethod
 def compute_accept_value(key):
 """Computes the value for the Sec-WebSocket-Accept header,
 given the value for Sec-WebSocket-Key.
 """
 sha1 = hashlib.sha1()
 sha1.update(utf8(key))
 sha1.update(b"258EAFA5-E914-47DA-95CA-C5AB0DC85B11") # Magic value
 return native_str(base64.b64encode(sha1.digest()))

 def _challenge_response(self):
 return WebSocketProtocol13.compute_accept_value(
 self.request.headers.get("Sec-Websocket-Key"))

 def _accept_connection(self):
 subprotocol_header = ''
 subprotocols = self.request.headers.get("Sec-WebSocket-Protocol", '')
 subprotocols = [s.strip() for s in subprotocols.split(',')]
 if subprotocols:
 selected = self.handler.select_subprotocol(subprotocols)
 if selected:
 assert selected in subprotocols
 subprotocol_header = ("Sec-WebSocket-Protocol: %s\r\n"
 % selected)

 extension_header = ''
 extensions = self._parse_extensions_header(self.request.headers)
 for ext in extensions:
 if (ext[0] == 'permessage-deflate' and
 self._compression_options is not None):
 # TODO: negotiate parameters if compression_options
 # specifies limits.
 self._create_compressors('server', ext[1])
 if ('client_max_window_bits' in ext[1] and
 ext[1]['client_max_window_bits'] is None):
 # Don't echo an offered client_max_window_bits
 # parameter with no value.
 del ext[1]['client_max_window_bits']
 extension_header = ('Sec-WebSocket-Extensions: %s\r\n' %
 httputil._encode_header(
 'permessage-deflate', ext[1]))
 break

 if self.stream.closed():
 self._abort()
 return
 self.stream.write(tornado.escape.utf8(
 "HTTP/1.1 101 Switching Protocols\r\n"
 "Upgrade: websocket\r\n"
 "Connection: Upgrade\r\n"
 "Sec-WebSocket-Accept: %s\r\n"
 "%s%s"
 "\r\n" % (self._challenge_response(),
 subprotocol_header, extension_header)))

 self._run_callback(self.handler.open, *self.handler.open_args,
 **self.handler.open_kwargs)
 self._receive_frame()

 def _parse_extensions_header(self, headers):
 extensions = headers.get("Sec-WebSocket-Extensions", '')
 if extensions:
 return [httputil._parse_header(e.strip())
 for e in extensions.split(',')]
 return []

 def _process_server_headers(self, key, headers):
 """Process the headers sent by the server to this client connection.

 'key' is the websocket handshake challenge/response key.
 """
 assert headers['Upgrade'].lower() == 'websocket'
 assert headers['Connection'].lower() == 'upgrade'
 accept = self.compute_accept_value(key)
 assert headers['Sec-Websocket-Accept'] == accept

 extensions = self._parse_extensions_header(headers)
 for ext in extensions:
 if (ext[0] == 'permessage-deflate' and
 self._compression_options is not None):
 self._create_compressors('client', ext[1])
 else:
 raise ValueError("unsupported extension %r", ext)

 def _get_compressor_options(self, side, agreed_parameters):
 """Converts a websocket agreed_parameters set to keyword arguments
 for our compressor objects.
 """
 options = dict(
 persistent=(side + '_no_context_takeover') not in agreed_parameters)
 wbits_header = agreed_parameters.get(side + '_max_window_bits', None)
 if wbits_header is None:
 options['max_wbits'] = zlib.MAX_WBITS
 else:
 options['max_wbits'] = int(wbits_header)
 return options

 def _create_compressors(self, side, agreed_parameters):
 # TODO: handle invalid parameters gracefully
 allowed_keys = set(['server_no_context_takeover',
 'client_no_context_takeover',
 'server_max_window_bits',
 'client_max_window_bits'])
 for key in agreed_parameters:
 if key not in allowed_keys:
 raise ValueError("unsupported compression parameter %r" % key)
 other_side = 'client' if (side == 'server') else 'server'
 self._compressor = _PerMessageDeflateCompressor(
 **self._get_compressor_options(side, agreed_parameters))
 self._decompressor = _PerMessageDeflateDecompressor(
 **self._get_compressor_options(other_side, agreed_parameters))

 def _write_frame(self, fin, opcode, data, flags=0):
 if fin:
 finbit = self.FIN
 else:
 finbit = 0
 frame = struct.pack("B", finbit | opcode | flags)
 l = len(data)
 if self.mask_outgoing:
 mask_bit = 0x80
 else:
 mask_bit = 0
 if l < 126:
 frame += struct.pack("B", l | mask_bit)
 elif l <= 0xFFFF:
 frame += struct.pack("!BH", 126 | mask_bit, l)
 else:
 frame += struct.pack("!BQ", 127 | mask_bit, l)
 if self.mask_outgoing:
 mask = os.urandom(4)
 data = mask + _websocket_mask(mask, data)
 frame += data
 self._wire_bytes_out += len(frame)
 try:
 return self.stream.write(frame)
 except StreamClosedError:
 self._abort()

 def write_message(self, message, binary=False):
 """Sends the given message to the client of this Web Socket."""
 if binary:
 opcode = 0x2
 else:
 opcode = 0x1
 message = tornado.escape.utf8(message)
 assert isinstance(message, bytes)
 self._message_bytes_out += len(message)
 flags = 0
 if self._compressor:
 message = self._compressor.compress(message)
 flags |= self.RSV1
 return self._write_frame(True, opcode, message, flags=flags)

 def write_ping(self, data):
 """Send ping frame."""
 assert isinstance(data, bytes)
 self._write_frame(True, 0x9, data)

 def _receive_frame(self):
 try:
 self.stream.read_bytes(2, self._on_frame_start)
 except StreamClosedError:
 self._abort()

 def _on_frame_start(self, data):
 self._wire_bytes_in += len(data)
 header, payloadlen = struct.unpack("BB", data)
 self._final_frame = header & self.FIN
 reserved_bits = header & self.RSV_MASK
 self._frame_opcode = header & self.OPCODE_MASK
 self._frame_opcode_is_control = self._frame_opcode & 0x8
 if self._decompressor is not None and self._frame_opcode != 0:
 self._frame_compressed = bool(reserved_bits & self.RSV1)
 reserved_bits &= ~self.RSV1
 if reserved_bits:
 # client is using as-yet-undefined extensions; abort
 self._abort()
 return
 self._masked_frame = bool(payloadlen & 0x80)
 payloadlen = payloadlen & 0x7f
 if self._frame_opcode_is_control and payloadlen >= 126:
 # control frames must have payload < 126
 self._abort()
 return
 try:
 if payloadlen < 126:
 self._frame_length = payloadlen
 if self._masked_frame:
 self.stream.read_bytes(4, self._on_masking_key)
 else:
 self.stream.read_bytes(self._frame_length,
 self._on_frame_data)
 elif payloadlen == 126:
 self.stream.read_bytes(2, self._on_frame_length_16)
 elif payloadlen == 127:
 self.stream.read_bytes(8, self._on_frame_length_64)
 except StreamClosedError:
 self._abort()

 def _on_frame_length_16(self, data):
 self._wire_bytes_in += len(data)
 self._frame_length = struct.unpack("!H", data)[0]
 try:
 if self._masked_frame:
 self.stream.read_bytes(4, self._on_masking_key)
 else:
 self.stream.read_bytes(self._frame_length, self._on_frame_data)
 except StreamClosedError:
 self._abort()

 def _on_frame_length_64(self, data):
 self._wire_bytes_in += len(data)
 self._frame_length = struct.unpack("!Q", data)[0]
 try:
 if self._masked_frame:
 self.stream.read_bytes(4, self._on_masking_key)
 else:
 self.stream.read_bytes(self._frame_length, self._on_frame_data)
 except StreamClosedError:
 self._abort()

 def _on_masking_key(self, data):
 self._wire_bytes_in += len(data)
 self._frame_mask = data
 try:
 self.stream.read_bytes(self._frame_length,
 self._on_masked_frame_data)
 except StreamClosedError:
 self._abort()

 def _on_masked_frame_data(self, data):
 # Don't touch _wire_bytes_in; we'll do it in _on_frame_data.
 self._on_frame_data(_websocket_mask(self._frame_mask, data))

 def _on_frame_data(self, data):
 self._wire_bytes_in += len(data)
 if self._frame_opcode_is_control:
 # control frames may be interleaved with a series of fragmented
 # data frames, so control frames must not interact with
 # self._fragmented_*
 if not self._final_frame:
 # control frames must not be fragmented
 self._abort()
 return
 opcode = self._frame_opcode
 elif self._frame_opcode == 0: # continuation frame
 if self._fragmented_message_buffer is None:
 # nothing to continue
 self._abort()
 return
 self._fragmented_message_buffer += data
 if self._final_frame:
 opcode = self._fragmented_message_opcode
 data = self._fragmented_message_buffer
 self._fragmented_message_buffer = None
 else: # start of new data message
 if self._fragmented_message_buffer is not None:
 # can't start new message until the old one is finished
 self._abort()
 return
 if self._final_frame:
 opcode = self._frame_opcode
 else:
 self._fragmented_message_opcode = self._frame_opcode
 self._fragmented_message_buffer = data

 if self._final_frame:
 self._handle_message(opcode, data)

 if not self.client_terminated:
 self._receive_frame()

 def _handle_message(self, opcode, data):
 if self.client_terminated:
 return

 if self._frame_compressed:
 data = self._decompressor.decompress(data)

 if opcode == 0x1:
 # UTF-8 data
 self._message_bytes_in += len(data)
 try:
 decoded = data.decode("utf-8")
 except UnicodeDecodeError:
 self._abort()
 return
 self._run_callback(self.handler.on_message, decoded)
 elif opcode == 0x2:
 # Binary data
 self._message_bytes_in += len(data)
 self._run_callback(self.handler.on_message, data)
 elif opcode == 0x8:
 # Close
 self.client_terminated = True
 if len(data) >= 2:
 self.handler.close_code = struct.unpack('>H', data[:2])[0]
 if len(data) > 2:
 self.handler.close_reason = to_unicode(data[2:])
 # Echo the received close code, if any (RFC 6455 section 5.5.1).
 self.close(self.handler.close_code)
 elif opcode == 0x9:
 # Ping
 self._write_frame(True, 0xA, data)
 elif opcode == 0xA:
 # Pong
 self._run_callback(self.handler.on_pong, data)
 else:
 self._abort()

 def close(self, code=None, reason=None):
 """Closes the WebSocket connection."""
 if not self.server_terminated:
 if not self.stream.closed():
 if code is None and reason is not None:
 code = 1000 # "normal closure" status code
 if code is None:
 close_data = b''
 else:
 close_data = struct.pack('>H', code)
 if reason is not None:
 close_data += utf8(reason)
 self._write_frame(True, 0x8, close_data)
 self.server_terminated = True
 if self.client_terminated:
 if self._waiting is not None:
 self.stream.io_loop.remove_timeout(self._waiting)
 self._waiting = None
 self.stream.close()
 elif self._waiting is None:
 # Give the client a few seconds to complete a clean shutdown,
 # otherwise just close the connection.
 self._waiting = self.stream.io_loop.add_timeout(
 self.stream.io_loop.time() + 5, self._abort)

[docs]class WebSocketClientConnection(simple_httpclient._HTTPConnection):
 """WebSocket client connection.

 This class should not be instantiated directly; use the
 `websocket_connect` function instead.
 """
 def __init__(self, io_loop, request, on_message_callback=None,
 compression_options=None):
 self.compression_options = compression_options
 self.connect_future = TracebackFuture()
 self.protocol = None
 self.read_future = None
 self.read_queue = collections.deque()
 self.key = base64.b64encode(os.urandom(16))
 self._on_message_callback = on_message_callback
 self.close_code = self.close_reason = None

 scheme, sep, rest = request.url.partition(':')
 scheme = {'ws': 'http', 'wss': 'https'}[scheme]
 request.url = scheme + sep + rest
 request.headers.update({
 'Upgrade': 'websocket',
 'Connection': 'Upgrade',
 'Sec-WebSocket-Key': self.key,
 'Sec-WebSocket-Version': '13',
 })
 if self.compression_options is not None:
 # Always offer to let the server set our max_wbits (and even though
 # we don't offer it, we will accept a client_no_context_takeover
 # from the server).
 # TODO: set server parameters for deflate extension
 # if requested in self.compression_options.
 request.headers['Sec-WebSocket-Extensions'] = (
 'permessage-deflate; client_max_window_bits')

 self.tcp_client = TCPClient(io_loop=io_loop)
 super(WebSocketClientConnection, self).__init__(
 io_loop, None, request, lambda: None, self._on_http_response,
 104857600, self.tcp_client, 65536, 104857600)

[docs] def close(self, code=None, reason=None):
 """Closes the websocket connection.

 ``code`` and ``reason`` are documented under
 `WebSocketHandler.close`.

 .. versionadded:: 3.2

 .. versionchanged:: 4.0

 Added the ``code`` and ``reason`` arguments.
 """
 if self.protocol is not None:
 self.protocol.close(code, reason)
 self.protocol = None

 def on_connection_close(self):
 if not self.connect_future.done():
 self.connect_future.set_exception(StreamClosedError())
 self.on_message(None)
 self.tcp_client.close()
 super(WebSocketClientConnection, self).on_connection_close()

 def _on_http_response(self, response):
 if not self.connect_future.done():
 if response.error:
 self.connect_future.set_exception(response.error)
 else:
 self.connect_future.set_exception(WebSocketError(
 "Non-websocket response"))

 def headers_received(self, start_line, headers):
 if start_line.code != 101:
 return super(WebSocketClientConnection, self).headers_received(
 start_line, headers)

 self.headers = headers
 self.protocol = self.get_websocket_protocol()
 self.protocol._process_server_headers(self.key, self.headers)
 self.protocol._receive_frame()

 if self._timeout is not None:
 self.io_loop.remove_timeout(self._timeout)
 self._timeout = None

 self.stream = self.connection.detach()
 self.stream.set_close_callback(self.on_connection_close)
 # Once we've taken over the connection, clear the final callback
 # we set on the http request. This deactivates the error handling
 # in simple_httpclient that would otherwise interfere with our
 # ability to see exceptions.
 self.final_callback = None

 self.connect_future.set_result(self)

[docs] def write_message(self, message, binary=False):
 """Sends a message to the WebSocket server."""
 return self.protocol.write_message(message, binary)

[docs] def read_message(self, callback=None):
 """Reads a message from the WebSocket server.

 If on_message_callback was specified at WebSocket
 initialization, this function will never return messages

 Returns a future whose result is the message, or None
 if the connection is closed. If a callback argument
 is given it will be called with the future when it is
 ready.
 """
 assert self.read_future is None
 future = TracebackFuture()
 if self.read_queue:
 future.set_result(self.read_queue.popleft())
 else:
 self.read_future = future
 if callback is not None:
 self.io_loop.add_future(future, callback)
 return future

 def on_message(self, message):
 if self._on_message_callback:
 self._on_message_callback(message)
 elif self.read_future is not None:
 self.read_future.set_result(message)
 self.read_future = None
 else:
 self.read_queue.append(message)

 def on_pong(self, data):
 pass

 def get_websocket_protocol(self):
 return WebSocketProtocol13(self, mask_outgoing=True,
 compression_options=self.compression_options)

[docs]def websocket_connect(url, io_loop=None, callback=None, connect_timeout=None,
 on_message_callback=None, compression_options=None):
 """Client-side websocket support.

 Takes a url and returns a Future whose result is a
 `WebSocketClientConnection`.

 ``compression_options`` is interpreted in the same way as the
 return value of `.WebSocketHandler.get_compression_options`.

 The connection supports two styles of operation. In the coroutine
 style, the application typically calls
 `~.WebSocketClientConnection.read_message` in a loop::

 conn = yield websocket_connect(url)
 while True:
 msg = yield conn.read_message()
 if msg is None: break
 # Do something with msg

 In the callback style, pass an ``on_message_callback`` to
 ``websocket_connect``. In both styles, a message of ``None``
 indicates that the connection has been closed.

 .. versionchanged:: 3.2
 Also accepts ``HTTPRequest`` objects in place of urls.

 .. versionchanged:: 4.1
 Added ``compression_options`` and ``on_message_callback``.
 The ``io_loop`` argument is deprecated.
 """
 if io_loop is None:
 io_loop = IOLoop.current()
 if isinstance(url, httpclient.HTTPRequest):
 assert connect_timeout is None
 request = url
 # Copy and convert the headers dict/object (see comments in
 # AsyncHTTPClient.fetch)
 request.headers = httputil.HTTPHeaders(request.headers)
 else:
 request = httpclient.HTTPRequest(url, connect_timeout=connect_timeout)
 request = httpclient._RequestProxy(
 request, httpclient.HTTPRequest._DEFAULTS)
 conn = WebSocketClientConnection(io_loop, request,
 on_message_callback=on_message_callback,
 compression_options=compression_options)
 if callback is not None:
 io_loop.add_future(conn.connect_future, callback)
 return conn.connect_future

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/platform/twisted.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.platform.twisted

Author: Ovidiu Predescu
Date: July 2011
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""Bridges between the Twisted reactor and Tornado IOLoop.

This module lets you run applications and libraries written for
Twisted in a Tornado application. It can be used in two modes,
depending on which library's underlying event loop you want to use.

This module has been tested with Twisted versions 11.0.0 and newer.
"""

from __future__ import absolute_import, division, print_function, with_statement

import datetime
import functools
import numbers
import socket
import sys

import twisted.internet.abstract # type: ignore
from twisted.internet.defer import Deferred # type: ignore
from twisted.internet.posixbase import PosixReactorBase # type: ignore
from twisted.internet.interfaces import IReactorFDSet, IDelayedCall, IReactorTime, IReadDescriptor, IWriteDescriptor # type: ignore
from twisted.python import failure, log # type: ignore
from twisted.internet import error # type: ignore
import twisted.names.cache # type: ignore
import twisted.names.client # type: ignore
import twisted.names.hosts # type: ignore
import twisted.names.resolve # type: ignore

from zope.interface import implementer # type: ignore

from tornado.concurrent import Future
from tornado.escape import utf8
from tornado import gen
import tornado.ioloop
from tornado.log import app_log
from tornado.netutil import Resolver
from tornado.stack_context import NullContext, wrap
from tornado.ioloop import IOLoop
from tornado.util import timedelta_to_seconds

@implementer(IDelayedCall)
class TornadoDelayedCall(object):
 """DelayedCall object for Tornado."""
 def __init__(self, reactor, seconds, f, *args, **kw):
 self._reactor = reactor
 self._func = functools.partial(f, *args, **kw)
 self._time = self._reactor.seconds() + seconds
 self._timeout = self._reactor._io_loop.add_timeout(self._time,
 self._called)
 self._active = True

 def _called(self):
 self._active = False
 self._reactor._removeDelayedCall(self)
 try:
 self._func()
 except:
 app_log.error("_called caught exception", exc_info=True)

 def getTime(self):
 return self._time

 def cancel(self):
 self._active = False
 self._reactor._io_loop.remove_timeout(self._timeout)
 self._reactor._removeDelayedCall(self)

 def delay(self, seconds):
 self._reactor._io_loop.remove_timeout(self._timeout)
 self._time += seconds
 self._timeout = self._reactor._io_loop.add_timeout(self._time,
 self._called)

 def reset(self, seconds):
 self._reactor._io_loop.remove_timeout(self._timeout)
 self._time = self._reactor.seconds() + seconds
 self._timeout = self._reactor._io_loop.add_timeout(self._time,
 self._called)

 def active(self):
 return self._active

@implementer(IReactorTime, IReactorFDSet)
[docs]class TornadoReactor(PosixReactorBase):
 """Twisted reactor built on the Tornado IOLoop.

 `TornadoReactor` implements the Twisted reactor interface on top of
 the Tornado IOLoop. To use it, simply call `install` at the beginning
 of the application::

 import tornado.platform.twisted
 tornado.platform.twisted.install()
 from twisted.internet import reactor

 When the app is ready to start, call ``IOLoop.current().start()``
 instead of ``reactor.run()``.

 It is also possible to create a non-global reactor by calling
 ``tornado.platform.twisted.TornadoReactor(io_loop)``. However, if
 the `.IOLoop` and reactor are to be short-lived (such as those used in
 unit tests), additional cleanup may be required. Specifically, it is
 recommended to call::

 reactor.fireSystemEvent('shutdown')
 reactor.disconnectAll()

 before closing the `.IOLoop`.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 def __init__(self, io_loop=None):
 if not io_loop:
 io_loop = tornado.ioloop.IOLoop.current()
 self._io_loop = io_loop
 self._readers = {} # map of reader objects to fd
 self._writers = {} # map of writer objects to fd
 self._fds = {} # a map of fd to a (reader, writer) tuple
 self._delayedCalls = {}
 PosixReactorBase.__init__(self)
 self.addSystemEventTrigger('during', 'shutdown', self.crash)

 # IOLoop.start() bypasses some of the reactor initialization.
 # Fire off the necessary events if they weren't already triggered
 # by reactor.run().
 def start_if_necessary():
 if not self._started:
 self.fireSystemEvent('startup')
 self._io_loop.add_callback(start_if_necessary)

 # IReactorTime
 def seconds(self):
 return self._io_loop.time()

 def callLater(self, seconds, f, *args, **kw):
 dc = TornadoDelayedCall(self, seconds, f, *args, **kw)
 self._delayedCalls[dc] = True
 return dc

 def getDelayedCalls(self):
 return [x for x in self._delayedCalls if x._active]

 def _removeDelayedCall(self, dc):
 if dc in self._delayedCalls:
 del self._delayedCalls[dc]

 # IReactorThreads
 def callFromThread(self, f, *args, **kw):
 assert callable(f), "%s is not callable" % f
 with NullContext():
 # This NullContext is mainly for an edge case when running
 # TwistedIOLoop on top of a TornadoReactor.
 # TwistedIOLoop.add_callback uses reactor.callFromThread and
 # should not pick up additional StackContexts along the way.
 self._io_loop.add_callback(f, *args, **kw)

 # We don't need the waker code from the super class, Tornado uses
 # its own waker.
 def installWaker(self):
 pass

 def wakeUp(self):
 pass

 # IReactorFDSet
 def _invoke_callback(self, fd, events):
 if fd not in self._fds:
 return
 (reader, writer) = self._fds[fd]
 if reader:
 err = None
 if reader.fileno() == -1:
 err = error.ConnectionLost()
 elif events & IOLoop.READ:
 err = log.callWithLogger(reader, reader.doRead)
 if err is None and events & IOLoop.ERROR:
 err = error.ConnectionLost()
 if err is not None:
 self.removeReader(reader)
 reader.readConnectionLost(failure.Failure(err))
 if writer:
 err = None
 if writer.fileno() == -1:
 err = error.ConnectionLost()
 elif events & IOLoop.WRITE:
 err = log.callWithLogger(writer, writer.doWrite)
 if err is None and events & IOLoop.ERROR:
 err = error.ConnectionLost()
 if err is not None:
 self.removeWriter(writer)
 writer.writeConnectionLost(failure.Failure(err))

 def addReader(self, reader):
 if reader in self._readers:
 # Don't add the reader if it's already there
 return
 fd = reader.fileno()
 self._readers[reader] = fd
 if fd in self._fds:
 (_, writer) = self._fds[fd]
 self._fds[fd] = (reader, writer)
 if writer:
 # We already registered this fd for write events,
 # update it for read events as well.
 self._io_loop.update_handler(fd, IOLoop.READ | IOLoop.WRITE)
 else:
 with NullContext():
 self._fds[fd] = (reader, None)
 self._io_loop.add_handler(fd, self._invoke_callback,
 IOLoop.READ)

 def addWriter(self, writer):
 if writer in self._writers:
 return
 fd = writer.fileno()
 self._writers[writer] = fd
 if fd in self._fds:
 (reader, _) = self._fds[fd]
 self._fds[fd] = (reader, writer)
 if reader:
 # We already registered this fd for read events,
 # update it for write events as well.
 self._io_loop.update_handler(fd, IOLoop.READ | IOLoop.WRITE)
 else:
 with NullContext():
 self._fds[fd] = (None, writer)
 self._io_loop.add_handler(fd, self._invoke_callback,
 IOLoop.WRITE)

 def removeReader(self, reader):
 if reader in self._readers:
 fd = self._readers.pop(reader)
 (_, writer) = self._fds[fd]
 if writer:
 # We have a writer so we need to update the IOLoop for
 # write events only.
 self._fds[fd] = (None, writer)
 self._io_loop.update_handler(fd, IOLoop.WRITE)
 else:
 # Since we have no writer registered, we remove the
 # entry from _fds and unregister the handler from the
 # IOLoop
 del self._fds[fd]
 self._io_loop.remove_handler(fd)

 def removeWriter(self, writer):
 if writer in self._writers:
 fd = self._writers.pop(writer)
 (reader, _) = self._fds[fd]
 if reader:
 # We have a reader so we need to update the IOLoop for
 # read events only.
 self._fds[fd] = (reader, None)
 self._io_loop.update_handler(fd, IOLoop.READ)
 else:
 # Since we have no reader registered, we remove the
 # entry from the _fds and unregister the handler from
 # the IOLoop.
 del self._fds[fd]
 self._io_loop.remove_handler(fd)

 def removeAll(self):
 return self._removeAll(self._readers, self._writers)

 def getReaders(self):
 return self._readers.keys()

 def getWriters(self):
 return self._writers.keys()

 # The following functions are mainly used in twisted-style test cases;
 # it is expected that most users of the TornadoReactor will call
 # IOLoop.start() instead of Reactor.run().
 def stop(self):
 PosixReactorBase.stop(self)
 fire_shutdown = functools.partial(self.fireSystemEvent, "shutdown")
 self._io_loop.add_callback(fire_shutdown)

 def crash(self):
 PosixReactorBase.crash(self)
 self._io_loop.stop()

 def doIteration(self, delay):
 raise NotImplementedError("doIteration")

 def mainLoop(self):
 # Since this class is intended to be used in applications
 # where the top-level event loop is ``io_loop.start()`` rather
 # than ``reactor.run()``, it is implemented a little
 # differently than other Twisted reactors. We override
 # ``mainLoop`` instead of ``doIteration`` and must implement
 # timed call functionality on top of `.IOLoop.add_timeout`
 # rather than using the implementation in
 # ``PosixReactorBase``.
 self._io_loop.start()

class _TestReactor(TornadoReactor):
 """Subclass of TornadoReactor for use in unittests.

 This can't go in the test.py file because of import-order dependencies
 with the Twisted reactor test builder.
 """
 def __init__(self):
 # always use a new ioloop
 super(_TestReactor, self).__init__(IOLoop())

 def listenTCP(self, port, factory, backlog=50, interface=''):
 # default to localhost to avoid firewall prompts on the mac
 if not interface:
 interface = '127.0.0.1'
 return super(_TestReactor, self).listenTCP(
 port, factory, backlog=backlog, interface=interface)

 def listenUDP(self, port, protocol, interface='', maxPacketSize=8192):
 if not interface:
 interface = '127.0.0.1'
 return super(_TestReactor, self).listenUDP(
 port, protocol, interface=interface, maxPacketSize=maxPacketSize)

[docs]def install(io_loop=None):
 """Install this package as the default Twisted reactor.

 ``install()`` must be called very early in the startup process,
 before most other twisted-related imports. Conversely, because it
 initializes the `.IOLoop`, it cannot be called before
 `.fork_processes` or multi-process `~.TCPServer.start`. These
 conflicting requirements make it difficult to use `.TornadoReactor`
 in multi-process mode, and an external process manager such as
 ``supervisord`` is recommended instead.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.

 """
 if not io_loop:
 io_loop = tornado.ioloop.IOLoop.current()
 reactor = TornadoReactor(io_loop)
 from twisted.internet.main import installReactor # type: ignore
 installReactor(reactor)
 return reactor

@implementer(IReadDescriptor, IWriteDescriptor)
class _FD(object):
 def __init__(self, fd, fileobj, handler):
 self.fd = fd
 self.fileobj = fileobj
 self.handler = handler
 self.reading = False
 self.writing = False
 self.lost = False

 def fileno(self):
 return self.fd

 def doRead(self):
 if not self.lost:
 self.handler(self.fileobj, tornado.ioloop.IOLoop.READ)

 def doWrite(self):
 if not self.lost:
 self.handler(self.fileobj, tornado.ioloop.IOLoop.WRITE)

 def connectionLost(self, reason):
 if not self.lost:
 self.handler(self.fileobj, tornado.ioloop.IOLoop.ERROR)
 self.lost = True

 def logPrefix(self):
 return ''

[docs]class TwistedIOLoop(tornado.ioloop.IOLoop):
 """IOLoop implementation that runs on Twisted.

 `TwistedIOLoop` implements the Tornado IOLoop interface on top of
 the Twisted reactor. Recommended usage::

 from tornado.platform.twisted import TwistedIOLoop
 from twisted.internet import reactor
 TwistedIOLoop().install()
 # Set up your tornado application as usual using `IOLoop.instance`
 reactor.run()

 Uses the global Twisted reactor by default. To create multiple
 ``TwistedIOLoops`` in the same process, you must pass a unique reactor
 when constructing each one.

 Not compatible with `tornado.process.Subprocess.set_exit_callback`
 because the ``SIGCHLD`` handlers used by Tornado and Twisted conflict
 with each other.

 See also :meth:`tornado.ioloop.IOLoop.install` for general notes on
 installing alternative IOLoops.
 """
 def initialize(self, reactor=None, **kwargs):
 super(TwistedIOLoop, self).initialize(**kwargs)
 if reactor is None:
 import twisted.internet.reactor # type: ignore
 reactor = twisted.internet.reactor
 self.reactor = reactor
 self.fds = {}

 def close(self, all_fds=False):
 fds = self.fds
 self.reactor.removeAll()
 for c in self.reactor.getDelayedCalls():
 c.cancel()
 if all_fds:
 for fd in fds.values():
 self.close_fd(fd.fileobj)

 def add_handler(self, fd, handler, events):
 if fd in self.fds:
 raise ValueError('fd %s added twice' % fd)
 fd, fileobj = self.split_fd(fd)
 self.fds[fd] = _FD(fd, fileobj, wrap(handler))
 if events & tornado.ioloop.IOLoop.READ:
 self.fds[fd].reading = True
 self.reactor.addReader(self.fds[fd])
 if events & tornado.ioloop.IOLoop.WRITE:
 self.fds[fd].writing = True
 self.reactor.addWriter(self.fds[fd])

 def update_handler(self, fd, events):
 fd, fileobj = self.split_fd(fd)
 if events & tornado.ioloop.IOLoop.READ:
 if not self.fds[fd].reading:
 self.fds[fd].reading = True
 self.reactor.addReader(self.fds[fd])
 else:
 if self.fds[fd].reading:
 self.fds[fd].reading = False
 self.reactor.removeReader(self.fds[fd])
 if events & tornado.ioloop.IOLoop.WRITE:
 if not self.fds[fd].writing:
 self.fds[fd].writing = True
 self.reactor.addWriter(self.fds[fd])
 else:
 if self.fds[fd].writing:
 self.fds[fd].writing = False
 self.reactor.removeWriter(self.fds[fd])

 def remove_handler(self, fd):
 fd, fileobj = self.split_fd(fd)
 if fd not in self.fds:
 return
 self.fds[fd].lost = True
 if self.fds[fd].reading:
 self.reactor.removeReader(self.fds[fd])
 if self.fds[fd].writing:
 self.reactor.removeWriter(self.fds[fd])
 del self.fds[fd]

 def start(self):
 old_current = IOLoop.current(instance=False)
 try:
 self._setup_logging()
 self.make_current()
 self.reactor.run()
 finally:
 if old_current is None:
 IOLoop.clear_current()
 else:
 old_current.make_current()

 def stop(self):
 self.reactor.crash()

 def add_timeout(self, deadline, callback, *args, **kwargs):
 # This method could be simplified (since tornado 4.0) by
 # overriding call_at instead of add_timeout, but we leave it
 # for now as a test of backwards-compatibility.
 if isinstance(deadline, numbers.Real):
 delay = max(deadline - self.time(), 0)
 elif isinstance(deadline, datetime.timedelta):
 delay = timedelta_to_seconds(deadline)
 else:
 raise TypeError("Unsupported deadline %r")
 return self.reactor.callLater(
 delay, self._run_callback,
 functools.partial(wrap(callback), *args, **kwargs))

 def remove_timeout(self, timeout):
 if timeout.active():
 timeout.cancel()

 def add_callback(self, callback, *args, **kwargs):
 self.reactor.callFromThread(
 self._run_callback,
 functools.partial(wrap(callback), *args, **kwargs))

 def add_callback_from_signal(self, callback, *args, **kwargs):
 self.add_callback(callback, *args, **kwargs)

[docs]class TwistedResolver(Resolver):
 """Twisted-based asynchronous resolver.

 This is a non-blocking and non-threaded resolver. It is
 recommended only when threads cannot be used, since it has
 limitations compared to the standard ``getaddrinfo``-based
 `~tornado.netutil.Resolver` and
 `~tornado.netutil.ThreadedResolver`. Specifically, it returns at
 most one result, and arguments other than ``host`` and ``family``
 are ignored. It may fail to resolve when ``family`` is not
 ``socket.AF_UNSPEC``.

 Requires Twisted 12.1 or newer.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 def initialize(self, io_loop=None):
 self.io_loop = io_loop or IOLoop.current()
 # partial copy of twisted.names.client.createResolver, which doesn't
 # allow for a reactor to be passed in.
 self.reactor = tornado.platform.twisted.TornadoReactor(io_loop)

 host_resolver = twisted.names.hosts.Resolver('/etc/hosts')
 cache_resolver = twisted.names.cache.CacheResolver(reactor=self.reactor)
 real_resolver = twisted.names.client.Resolver('/etc/resolv.conf',
 reactor=self.reactor)
 self.resolver = twisted.names.resolve.ResolverChain(
 [host_resolver, cache_resolver, real_resolver])

 @gen.coroutine
 def resolve(self, host, port, family=0):
 # getHostByName doesn't accept IP addresses, so if the input
 # looks like an IP address just return it immediately.
 if twisted.internet.abstract.isIPAddress(host):
 resolved = host
 resolved_family = socket.AF_INET
 elif twisted.internet.abstract.isIPv6Address(host):
 resolved = host
 resolved_family = socket.AF_INET6
 else:
 deferred = self.resolver.getHostByName(utf8(host))
 resolved = yield gen.Task(deferred.addBoth)
 if isinstance(resolved, failure.Failure):
 try:
 resolved.raiseException()
 except twisted.names.error.DomainError as e:
 raise IOError(e)
 elif twisted.internet.abstract.isIPAddress(resolved):
 resolved_family = socket.AF_INET
 elif twisted.internet.abstract.isIPv6Address(resolved):
 resolved_family = socket.AF_INET6
 else:
 resolved_family = socket.AF_UNSPEC
 if family != socket.AF_UNSPEC and family != resolved_family:
 raise Exception('Requested socket family %d but got %d' %
 (family, resolved_family))
 result = [
 (resolved_family, (resolved, port)),
]
 raise gen.Return(result)

if hasattr(gen.convert_yielded, 'register'):
 @gen.convert_yielded.register(Deferred) # type: ignore
 def _(d):
 f = Future()

 def errback(failure):
 try:
 failure.raiseException()
 # Should never happen, but just in case
 raise Exception("errback called without error")
 except:
 f.set_exc_info(sys.exc_info())
 d.addCallbacks(f.set_result, errback)
 return f

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/util.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.util

"""Miscellaneous utility functions and classes.

This module is used internally by Tornado. It is not necessarily expected
that the functions and classes defined here will be useful to other
applications, but they are documented here in case they are.

The one public-facing part of this module is the `Configurable` class
and its `~Configurable.configure` method, which becomes a part of the
interface of its subclasses, including `.AsyncHTTPClient`, `.IOLoop`,
and `.Resolver`.
"""

from __future__ import absolute_import, division, print_function, with_statement

import array
import os
import re
import sys
import zlib

PY3 = sys.version_info >= (3,)

if PY3:
 xrange = range

inspect.getargspec() raises DeprecationWarnings in Python 3.5.
The two functions have compatible interfaces for the parts we need.
if PY3:
 from inspect import getfullargspec as getargspec
else:
 from inspect import getargspec

Aliases for types that are spelled differently in different Python
versions. bytes_type is deprecated and no longer used in Tornado
itself but is left in case anyone outside Tornado is using it.
bytes_type = bytes
if PY3:
 unicode_type = str
 basestring_type = str
else:
 # The names unicode and basestring don't exist in py3 so silence flake8.
 unicode_type = unicode # noqa
 basestring_type = basestring # noqa

try:
 import typing # noqa
 from typing import cast

 _ObjectDictBase = typing.Dict[str, typing.Any]
except ImportError:
 _ObjectDictBase = dict

 def cast(typ, x):
 return x
else:
 # More imports that are only needed in type comments.
 import datetime # noqa
 import types # noqa
 from typing import Any, AnyStr, Union, Optional, Dict, Mapping # noqa
 from typing import Tuple, Match, Callable # noqa

 if PY3:
 _BaseString = str
 else:
 _BaseString = Union[bytes, unicode_type]

[docs]class ObjectDict(_ObjectDictBase):
 """Makes a dictionary behave like an object, with attribute-style access.
 """
 def __getattr__(self, name):
 # type: (str) -> Any
 try:
 return self[name]
 except KeyError:
 raise AttributeError(name)

 def __setattr__(self, name, value):
 # type: (str, Any) -> None
 self[name] = value

[docs]class GzipDecompressor(object):
 """Streaming gzip decompressor.

 The interface is like that of `zlib.decompressobj` (without some of the
 optional arguments, but it understands gzip headers and checksums.
 """
 def __init__(self):
 # Magic parameter makes zlib module understand gzip header
 # http://stackoverflow.com/questions/1838699/how-can-i-decompress-a-gzip-stream-with-zlib
 # This works on cpython and pypy, but not jython.
 self.decompressobj = zlib.decompressobj(16 + zlib.MAX_WBITS)

[docs] def decompress(self, value, max_length=None):
 # type: (bytes, Optional[int]) -> bytes
 """Decompress a chunk, returning newly-available data.

 Some data may be buffered for later processing; `flush` must
 be called when there is no more input data to ensure that
 all data was processed.

 If ``max_length`` is given, some input data may be left over
 in ``unconsumed_tail``; you must retrieve this value and pass
 it back to a future call to `decompress` if it is not empty.
 """
 return self.decompressobj.decompress(value, max_length)

 @property
 def unconsumed_tail(self):
 # type: () -> bytes
 """Returns the unconsumed portion left over
 """
 return self.decompressobj.unconsumed_tail

[docs] def flush(self):
 # type: () -> bytes
 """Return any remaining buffered data not yet returned by decompress.

 Also checks for errors such as truncated input.
 No other methods may be called on this object after `flush`.
 """
 return self.decompressobj.flush()

[docs]def import_object(name):
 # type: (_BaseString) -> Any
 """Imports an object by name.

 import_object('x') is equivalent to 'import x'.
 import_object('x.y.z') is equivalent to 'from x.y import z'.

 >>> import tornado.escape
 >>> import_object('tornado.escape') is tornado.escape
 True
 >>> import_object('tornado.escape.utf8') is tornado.escape.utf8
 True
 >>> import_object('tornado') is tornado
 True
 >>> import_object('tornado.missing_module')
 Traceback (most recent call last):
 ...
 ImportError: No module named missing_module
 """
 if not isinstance(name, str):
 # on python 2 a byte string is required.
 name = name.encode('utf-8')
 if name.count('.') == 0:
 return __import__(name, None, None)

 parts = name.split('.')
 obj = __import__('.'.join(parts[:-1]), None, None, [parts[-1]], 0)
 try:
 return getattr(obj, parts[-1])
 except AttributeError:
 raise ImportError("No module named %s" % parts[-1])

Stubs to make mypy happy (and later for actual type-checking).
def raise_exc_info(exc_info):
 # type: (Tuple[type, BaseException, types.TracebackType]) -> None
 pass

def exec_in(code, glob, loc=None):
 # type: (Any, Dict[str, Any], Optional[Mapping[str, Any]]) -> Any
 if isinstance(code, basestring_type):
 # exec(string) inherits the caller's future imports; compile
 # the string first to prevent that.
 code = compile(code, '<string>', 'exec', dont_inherit=True)
 exec(code, glob, loc)

if PY3:
 exec("""
def raise_exc_info(exc_info):
 raise exc_info[1].with_traceback(exc_info[2])
""")
else:
 exec("""
def raise_exc_info(exc_info):
 raise exc_info[0], exc_info[1], exc_info[2]
""")

[docs]def errno_from_exception(e):
 # type: (BaseException) -> Optional[int]
 """Provides the errno from an Exception object.

 There are cases that the errno attribute was not set so we pull
 the errno out of the args but if someone instantiates an Exception
 without any args you will get a tuple error. So this function
 abstracts all that behavior to give you a safe way to get the
 errno.
 """

 if hasattr(e, 'errno'):
 return e.errno # type: ignore
 elif e.args:
 return e.args[0]
 else:
 return None

_alphanum = frozenset(
 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")

def _re_unescape_replacement(match):
 # type: (Match[str]) -> str
 group = match.group(1)
 if group[0] in _alphanum:
 raise ValueError("cannot unescape '\\\\%s'" % group[0])
 return group

_re_unescape_pattern = re.compile(r'\\(.)', re.DOTALL)

[docs]def re_unescape(s):
 # type: (str) -> str
 """Unescape a string escaped by `re.escape`.

 May raise ``ValueError`` for regular expressions which could not
 have been produced by `re.escape` (for example, strings containing
 ``\d`` cannot be unescaped).

 .. versionadded:: 4.4
 """
 return _re_unescape_pattern.sub(_re_unescape_replacement, s)

[docs]class Configurable(object):
 """Base class for configurable interfaces.

 A configurable interface is an (abstract) class whose constructor
 acts as a factory function for one of its implementation subclasses.
 The implementation subclass as well as optional keyword arguments to
 its initializer can be set globally at runtime with `configure`.

 By using the constructor as the factory method, the interface
 looks like a normal class, `isinstance` works as usual, etc. This
 pattern is most useful when the choice of implementation is likely
 to be a global decision (e.g. when `~select.epoll` is available,
 always use it instead of `~select.select`), or when a
 previously-monolithic class has been split into specialized
 subclasses.

 Configurable subclasses must define the class methods
 `configurable_base` and `configurable_default`, and use the instance
 method `initialize` instead of ``__init__``.
 """
 __impl_class = None # type: type
 __impl_kwargs = None # type: Dict[str, Any]

 def __new__(cls, *args, **kwargs):
 base = cls.configurable_base()
 init_kwargs = {}
 if cls is base:
 impl = cls.configured_class()
 if base.__impl_kwargs:
 init_kwargs.update(base.__impl_kwargs)
 else:
 impl = cls
 init_kwargs.update(kwargs)
 instance = super(Configurable, cls).__new__(impl)
 # initialize vs __init__ chosen for compatibility with AsyncHTTPClient
 # singleton magic. If we get rid of that we can switch to __init__
 # here too.
 instance.initialize(*args, **init_kwargs)
 return instance

 @classmethod
[docs] def configurable_base(cls):
 # type: () -> Any
 # TODO: This class needs https://github.com/python/typing/issues/107
 # to be fully typeable.
 """Returns the base class of a configurable hierarchy.

 This will normally return the class in which it is defined.
 (which is *not* necessarily the same as the cls classmethod parameter).
 """
 raise NotImplementedError()

 @classmethod
[docs] def configurable_default(cls):
 # type: () -> type
 """Returns the implementation class to be used if none is configured."""
 raise NotImplementedError()

[docs] def initialize(self):
 # type: () -> None
 """Initialize a `Configurable` subclass instance.

 Configurable classes should use `initialize` instead of ``__init__``.

 .. versionchanged:: 4.2
 Now accepts positional arguments in addition to keyword arguments.
 """

 @classmethod
[docs] def configure(cls, impl, **kwargs):
 # type: (Any, **Any) -> None
 """Sets the class to use when the base class is instantiated.

 Keyword arguments will be saved and added to the arguments passed
 to the constructor. This can be used to set global defaults for
 some parameters.
 """
 base = cls.configurable_base()
 if isinstance(impl, (str, unicode_type)):
 impl = import_object(impl)
 if impl is not None and not issubclass(impl, cls):
 raise ValueError("Invalid subclass of %s" % cls)
 base.__impl_class = impl
 base.__impl_kwargs = kwargs

 @classmethod
[docs] def configured_class(cls):
 # type: () -> type
 """Returns the currently configured class."""
 base = cls.configurable_base()
 if cls.__impl_class is None:
 base.__impl_class = cls.configurable_default()
 return base.__impl_class

 @classmethod
 def _save_configuration(cls):
 # type: () -> Tuple[type, Dict[str, Any]]
 base = cls.configurable_base()
 return (base.__impl_class, base.__impl_kwargs)

 @classmethod
 def _restore_configuration(cls, saved):
 # type: (Tuple[type, Dict[str, Any]]) -> None
 base = cls.configurable_base()
 base.__impl_class = saved[0]
 base.__impl_kwargs = saved[1]

[docs]class ArgReplacer(object):
 """Replaces one value in an ``args, kwargs`` pair.

 Inspects the function signature to find an argument by name
 whether it is passed by position or keyword. For use in decorators
 and similar wrappers.
 """
 def __init__(self, func, name):
 # type: (Callable, str) -> None
 self.name = name
 try:
 self.arg_pos = self._getargnames(func).index(name)
 except ValueError:
 # Not a positional parameter
 self.arg_pos = None

 def _getargnames(self, func):
 # type: (Callable) -> List[str]
 try:
 return getargspec(func).args
 except TypeError:
 if hasattr(func, 'func_code'):
 # Cython-generated code has all the attributes needed
 # by inspect.getargspec, but the inspect module only
 # works with ordinary functions. Inline the portion of
 # getargspec that we need here. Note that for static
 # functions the @cython.binding(True) decorator must
 # be used (for methods it works out of the box).
 code = func.func_code # type: ignore
 return code.co_varnames[:code.co_argcount]
 raise

[docs] def get_old_value(self, args, kwargs, default=None):
 # type: (List[Any], Dict[str, Any], Any) -> Any
 """Returns the old value of the named argument without replacing it.

 Returns ``default`` if the argument is not present.
 """
 if self.arg_pos is not None and len(args) > self.arg_pos:
 return args[self.arg_pos]
 else:
 return kwargs.get(self.name, default)

[docs] def replace(self, new_value, args, kwargs):
 # type: (Any, List[Any], Dict[str, Any]) -> Tuple[Any, List[Any], Dict[str, Any]]
 """Replace the named argument in ``args, kwargs`` with ``new_value``.

 Returns ``(old_value, args, kwargs)``. The returned ``args`` and
 ``kwargs`` objects may not be the same as the input objects, or
 the input objects may be mutated.

 If the named argument was not found, ``new_value`` will be added
 to ``kwargs`` and None will be returned as ``old_value``.
 """
 if self.arg_pos is not None and len(args) > self.arg_pos:
 # The arg to replace is passed positionally
 old_value = args[self.arg_pos]
 args = list(args) # *args is normally a tuple
 args[self.arg_pos] = new_value
 else:
 # The arg to replace is either omitted or passed by keyword.
 old_value = kwargs.get(self.name)
 kwargs[self.name] = new_value
 return old_value, args, kwargs

[docs]def timedelta_to_seconds(td):
 # type: (datetime.timedelta) -> float
 """Equivalent to td.total_seconds() (introduced in python 2.7)."""
 return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / float(10 ** 6)

def _websocket_mask_python(mask, data):
 # type: (bytes, bytes) -> bytes
 """Websocket masking function.

 `mask` is a `bytes` object of length 4; `data` is a `bytes` object of any length.
 Returns a `bytes` object of the same length as `data` with the mask applied
 as specified in section 5.3 of RFC 6455.

 This pure-python implementation may be replaced by an optimized version when available.
 """
 mask_arr = array.array("B", mask)
 unmasked_arr = array.array("B", data)
 for i in xrange(len(data)):
 unmasked_arr[i] = unmasked_arr[i] ^ mask_arr[i % 4]
 if PY3:
 # tostring was deprecated in py32. It hasn't been removed,
 # but since we turn on deprecation warnings in our tests
 # we need to use the right one.
 return unmasked_arr.tobytes()
 else:
 return unmasked_arr.tostring()

if (os.environ.get('TORNADO_NO_EXTENSION') or
 os.environ.get('TORNADO_EXTENSION') == '0'):
 # These environment variables exist to make it easier to do performance
 # comparisons; they are not guaranteed to remain supported in the future.
 _websocket_mask = _websocket_mask_python
else:
 try:
 from tornado.speedups import websocket_mask as _websocket_mask
 except ImportError:
 if os.environ.get('TORNADO_EXTENSION') == '1':
 raise
 _websocket_mask = _websocket_mask_python

def doctests():
 import doctest
 return doctest.DocTestSuite()

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/options.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.options

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""A command line parsing module that lets modules define their own options.

Each module defines its own options which are added to the global
option namespace, e.g.::

 from tornado.options import define, options

 define("mysql_host", default="127.0.0.1:3306", help="Main user DB")
 define("memcache_hosts", default="127.0.0.1:11011", multiple=True,
 help="Main user memcache servers")

 def connect():
 db = database.Connection(options.mysql_host)
 ...

The ``main()`` method of your application does not need to be aware of all of
the options used throughout your program; they are all automatically loaded
when the modules are loaded. However, all modules that define options
must have been imported before the command line is parsed.

Your ``main()`` method can parse the command line or parse a config file with
either::

 tornado.options.parse_command_line()
 # or
 tornado.options.parse_config_file("/etc/server.conf")

.. note:

 When using tornado.options.parse_command_line or
 tornado.options.parse_config_file, the only options that are set are
 ones that were previously defined with tornado.options.define.

Command line formats are what you would expect (``--myoption=myvalue``).
Config files are just Python files. Global names become options, e.g.::

 myoption = "myvalue"
 myotheroption = "myothervalue"

We support `datetimes <datetime.datetime>`, `timedeltas
<datetime.timedelta>`, ints, and floats (just pass a ``type`` kwarg to
`define`). We also accept multi-value options. See the documentation for
`define()` below.

`tornado.options.options` is a singleton instance of `OptionParser`, and
the top-level functions in this module (`define`, `parse_command_line`, etc)
simply call methods on it. You may create additional `OptionParser`
instances to define isolated sets of options, such as for subcommands.

.. note::

 By default, several options are defined that will configure the
 standard `logging` module when `parse_command_line` or `parse_config_file`
 are called. If you want Tornado to leave the logging configuration
 alone so you can manage it yourself, either pass ``--logging=none``
 on the command line or do the following to disable it in code::

 from tornado.options import options, parse_command_line
 options.logging = None
 parse_command_line()

.. versionchanged:: 4.3
 Dashes and underscores are fully interchangeable in option names;
 options can be defined, set, and read with any mix of the two.
 Dashes are typical for command-line usage while config files require
 underscores.
"""

from __future__ import absolute_import, division, print_function, with_statement

import datetime
import numbers
import re
import sys
import os
import textwrap

from tornado.escape import _unicode, native_str
from tornado.log import define_logging_options
from tornado import stack_context
from tornado.util import basestring_type, exec_in

[docs]class Error(Exception):
 """Exception raised by errors in the options module."""
 pass

[docs]class OptionParser(object):
 """A collection of options, a dictionary with object-like access.

 Normally accessed via static functions in the `tornado.options` module,
 which reference a global instance.
 """
 def __init__(self):
 # we have to use self.__dict__ because we override setattr.
 self.__dict__['_options'] = {}
 self.__dict__['_parse_callbacks'] = []
 self.define("help", type=bool, help="show this help information",
 callback=self._help_callback)

 def _normalize_name(self, name):
 return name.replace('_', '-')

 def __getattr__(self, name):
 name = self._normalize_name(name)
 if isinstance(self._options.get(name), _Option):
 return self._options[name].value()
 raise AttributeError("Unrecognized option %r" % name)

 def __setattr__(self, name, value):
 name = self._normalize_name(name)
 if isinstance(self._options.get(name), _Option):
 return self._options[name].set(value)
 raise AttributeError("Unrecognized option %r" % name)

 def __iter__(self):
 return (opt.name for opt in self._options.values())

 def __contains__(self, name):
 name = self._normalize_name(name)
 return name in self._options

 def __getitem__(self, name):
 return self.__getattr__(name)

 def __setitem__(self, name, value):
 return self.__setattr__(name, value)

[docs] def items(self):
 """A sequence of (name, value) pairs.

 .. versionadded:: 3.1
 """
 return [(opt.name, opt.value()) for name, opt in self._options.items()]

[docs] def groups(self):
 """The set of option-groups created by ``define``.

 .. versionadded:: 3.1
 """
 return set(opt.group_name for opt in self._options.values())

[docs] def group_dict(self, group):
 """The names and values of options in a group.

 Useful for copying options into Application settings::

 from tornado.options import define, parse_command_line, options

 define('template_path', group='application')
 define('static_path', group='application')

 parse_command_line()

 application = Application(
 handlers, **options.group_dict('application'))

 .. versionadded:: 3.1
 """
 return dict(
 (opt.name, opt.value()) for name, opt in self._options.items()
 if not group or group == opt.group_name)

[docs] def as_dict(self):
 """The names and values of all options.

 .. versionadded:: 3.1
 """
 return dict(
 (opt.name, opt.value()) for name, opt in self._options.items())

[docs] def define(self, name, default=None, type=None, help=None, metavar=None,
 multiple=False, group=None, callback=None):
 """Defines a new command line option.

 If ``type`` is given (one of str, float, int, datetime, or timedelta)
 or can be inferred from the ``default``, we parse the command line
 arguments based on the given type. If ``multiple`` is True, we accept
 comma-separated values, and the option value is always a list.

 For multi-value integers, we also accept the syntax ``x:y``, which
 turns into ``range(x, y)`` - very useful for long integer ranges.

 ``help`` and ``metavar`` are used to construct the
 automatically generated command line help string. The help
 message is formatted like::

 --name=METAVAR help string

 ``group`` is used to group the defined options in logical
 groups. By default, command line options are grouped by the
 file in which they are defined.

 Command line option names must be unique globally. They can be parsed
 from the command line with `parse_command_line` or parsed from a
 config file with `parse_config_file`.

 If a ``callback`` is given, it will be run with the new value whenever
 the option is changed. This can be used to combine command-line
 and file-based options::

 define("config", type=str, help="path to config file",
 callback=lambda path: parse_config_file(path, final=False))

 With this definition, options in the file specified by ``--config`` will
 override options set earlier on the command line, but can be overridden
 by later flags.
 """
 if name in self._options:
 raise Error("Option %r already defined in %s" %
 (name, self._options[name].file_name))
 frame = sys._getframe(0)
 options_file = frame.f_code.co_filename

 # Can be called directly, or through top level define() fn, in which
 # case, step up above that frame to look for real caller.
 if (frame.f_back.f_code.co_filename == options_file and
 frame.f_back.f_code.co_name == 'define'):
 frame = frame.f_back

 file_name = frame.f_back.f_code.co_filename
 if file_name == options_file:
 file_name = ""
 if type is None:
 if not multiple and default is not None:
 type = default.__class__
 else:
 type = str
 if group:
 group_name = group
 else:
 group_name = file_name
 normalized = self._normalize_name(name)
 option = _Option(name, file_name=file_name,
 default=default, type=type, help=help,
 metavar=metavar, multiple=multiple,
 group_name=group_name,
 callback=callback)
 self._options[normalized] = option

[docs] def parse_command_line(self, args=None, final=True):
 """Parses all options given on the command line (defaults to
 `sys.argv`).

 Note that ``args[0]`` is ignored since it is the program name
 in `sys.argv`.

 We return a list of all arguments that are not parsed as options.

 If ``final`` is ``False``, parse callbacks will not be run.
 This is useful for applications that wish to combine configurations
 from multiple sources.
 """
 if args is None:
 args = sys.argv
 remaining = []
 for i in range(1, len(args)):
 # All things after the last option are command line arguments
 if not args[i].startswith("-"):
 remaining = args[i:]
 break
 if args[i] == "--":
 remaining = args[i + 1:]
 break
 arg = args[i].lstrip("-")
 name, equals, value = arg.partition("=")
 name = self._normalize_name(name)
 if name not in self._options:
 self.print_help()
 raise Error('Unrecognized command line option: %r' % name)
 option = self._options[name]
 if not equals:
 if option.type == bool:
 value = "true"
 else:
 raise Error('Option %r requires a value' % name)
 option.parse(value)

 if final:
 self.run_parse_callbacks()

 return remaining

[docs] def parse_config_file(self, path, final=True):
 """Parses and loads the Python config file at the given path.

 If ``final`` is ``False``, parse callbacks will not be run.
 This is useful for applications that wish to combine configurations
 from multiple sources.

 .. versionchanged:: 4.1
 Config files are now always interpreted as utf-8 instead of
 the system default encoding.

 .. versionchanged:: 4.4
 The special variable ``__file__`` is available inside config
 files, specifying the absolute path to the config file itself.
 """
 config = {'__file__': os.path.abspath(path)}
 with open(path, 'rb') as f:
 exec_in(native_str(f.read()), config, config)
 for name in config:
 normalized = self._normalize_name(name)
 if normalized in self._options:
 self._options[normalized].set(config[name])

 if final:
 self.run_parse_callbacks()

[docs] def print_help(self, file=None):
 """Prints all the command line options to stderr (or another file)."""
 if file is None:
 file = sys.stderr
 print("Usage: %s [OPTIONS]" % sys.argv[0], file=file)
 print("\nOptions:\n", file=file)
 by_group = {}
 for option in self._options.values():
 by_group.setdefault(option.group_name, []).append(option)

 for filename, o in sorted(by_group.items()):
 if filename:
 print("\n%s options:\n" % os.path.normpath(filename), file=file)
 o.sort(key=lambda option: option.name)
 for option in o:
 # Always print names with dashes in a CLI context.
 prefix = self._normalize_name(option.name)
 if option.metavar:
 prefix += "=" + option.metavar
 description = option.help or ""
 if option.default is not None and option.default != '':
 description += " (default %s)" % option.default
 lines = textwrap.wrap(description, 79 - 35)
 if len(prefix) > 30 or len(lines) == 0:
 lines.insert(0, '')
 print(" --%-30s %s" % (prefix, lines[0]), file=file)
 for line in lines[1:]:
 print("%-34s %s" % (' ', line), file=file)
 print(file=file)

 def _help_callback(self, value):
 if value:
 self.print_help()
 sys.exit(0)

[docs] def add_parse_callback(self, callback):
 """Adds a parse callback, to be invoked when option parsing is done."""
 self._parse_callbacks.append(stack_context.wrap(callback))

 def run_parse_callbacks(self):
 for callback in self._parse_callbacks:
 callback()

[docs] def mockable(self):
 """Returns a wrapper around self that is compatible with
 `mock.patch <unittest.mock.patch>`.

 The `mock.patch <unittest.mock.patch>` function (included in
 the standard library `unittest.mock` package since Python 3.3,
 or in the third-party ``mock`` package for older versions of
 Python) is incompatible with objects like ``options`` that
 override ``__getattr__`` and ``__setattr__``. This function
 returns an object that can be used with `mock.patch.object
 <unittest.mock.patch.object>` to modify option values::

 with mock.patch.object(options.mockable(), 'name', value):
 assert options.name == value
 """
 return _Mockable(self)

class _Mockable(object):
 """`mock.patch` compatible wrapper for `OptionParser`.

 As of ``mock`` version 1.0.1, when an object uses ``__getattr__``
 hooks instead of ``__dict__``, ``patch.__exit__`` tries to delete
 the attribute it set instead of setting a new one (assuming that
 the object does not catpure ``__setattr__``, so the patch
 created a new attribute in ``__dict__``).

 _Mockable's getattr and setattr pass through to the underlying
 OptionParser, and delattr undoes the effect of a previous setattr.
 """
 def __init__(self, options):
 # Modify __dict__ directly to bypass __setattr__
 self.__dict__['_options'] = options
 self.__dict__['_originals'] = {}

 def __getattr__(self, name):
 return getattr(self._options, name)

 def __setattr__(self, name, value):
 assert name not in self._originals, "don't reuse mockable objects"
 self._originals[name] = getattr(self._options, name)
 setattr(self._options, name, value)

 def __delattr__(self, name):
 setattr(self._options, name, self._originals.pop(name))

class _Option(object):
 UNSET = object()

 def __init__(self, name, default=None, type=basestring_type, help=None,
 metavar=None, multiple=False, file_name=None, group_name=None,
 callback=None):
 if default is None and multiple:
 default = []
 self.name = name
 self.type = type
 self.help = help
 self.metavar = metavar
 self.multiple = multiple
 self.file_name = file_name
 self.group_name = group_name
 self.callback = callback
 self.default = default
 self._value = _Option.UNSET

 def value(self):
 return self.default if self._value is _Option.UNSET else self._value

 def parse(self, value):
 _parse = {
 datetime.datetime: self._parse_datetime,
 datetime.timedelta: self._parse_timedelta,
 bool: self._parse_bool,
 basestring_type: self._parse_string,
 }.get(self.type, self.type)
 if self.multiple:
 self._value = []
 for part in value.split(","):
 if issubclass(self.type, numbers.Integral):
 # allow ranges of the form X:Y (inclusive at both ends)
 lo, _, hi = part.partition(":")
 lo = _parse(lo)
 hi = _parse(hi) if hi else lo
 self._value.extend(range(lo, hi + 1))
 else:
 self._value.append(_parse(part))
 else:
 self._value = _parse(value)
 if self.callback is not None:
 self.callback(self._value)
 return self.value()

 def set(self, value):
 if self.multiple:
 if not isinstance(value, list):
 raise Error("Option %r is required to be a list of %s" %
 (self.name, self.type.__name__))
 for item in value:
 if item is not None and not isinstance(item, self.type):
 raise Error("Option %r is required to be a list of %s" %
 (self.name, self.type.__name__))
 else:
 if value is not None and not isinstance(value, self.type):
 raise Error("Option %r is required to be a %s (%s given)" %
 (self.name, self.type.__name__, type(value)))
 self._value = value
 if self.callback is not None:
 self.callback(self._value)

 # Supported date/time formats in our options
 _DATETIME_FORMATS = [
 "%a %b %d %H:%M:%S %Y",
 "%Y-%m-%d %H:%M:%S",
 "%Y-%m-%d %H:%M",
 "%Y-%m-%dT%H:%M",
 "%Y%m%d %H:%M:%S",
 "%Y%m%d %H:%M",
 "%Y-%m-%d",
 "%Y%m%d",
 "%H:%M:%S",
 "%H:%M",
]

 def _parse_datetime(self, value):
 for format in self._DATETIME_FORMATS:
 try:
 return datetime.datetime.strptime(value, format)
 except ValueError:
 pass
 raise Error('Unrecognized date/time format: %r' % value)

 _TIMEDELTA_ABBREV_DICT = {
 'h': 'hours',
 'm': 'minutes',
 'min': 'minutes',
 's': 'seconds',
 'sec': 'seconds',
 'ms': 'milliseconds',
 'us': 'microseconds',
 'd': 'days',
 'w': 'weeks',
 }

 _FLOAT_PATTERN = r'[-+]?(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][-+]?\d+)?'

 _TIMEDELTA_PATTERN = re.compile(
 r'\s*(%s)\s*(\w*)\s*' % _FLOAT_PATTERN, re.IGNORECASE)

 def _parse_timedelta(self, value):
 try:
 sum = datetime.timedelta()
 start = 0
 while start < len(value):
 m = self._TIMEDELTA_PATTERN.match(value, start)
 if not m:
 raise Exception()
 num = float(m.group(1))
 units = m.group(2) or 'seconds'
 units = self._TIMEDELTA_ABBREV_DICT.get(units, units)
 sum += datetime.timedelta(**{units: num})
 start = m.end()
 return sum
 except Exception:
 raise

 def _parse_bool(self, value):
 return value.lower() not in ("false", "0", "f")

 def _parse_string(self, value):
 return _unicode(value)

options = OptionParser()
"""Global options object.

All defined options are available as attributes on this object.
"""

[docs]def define(name, default=None, type=None, help=None, metavar=None,
 multiple=False, group=None, callback=None):
 """Defines an option in the global namespace.

 See `OptionParser.define`.
 """
 return options.define(name, default=default, type=type, help=help,
 metavar=metavar, multiple=multiple, group=group,
 callback=callback)

[docs]def parse_command_line(args=None, final=True):
 """Parses global options from the command line.

 See `OptionParser.parse_command_line`.
 """
 return options.parse_command_line(args, final=final)

[docs]def parse_config_file(path, final=True):
 """Parses global options from a config file.

 See `OptionParser.parse_config_file`.
 """
 return options.parse_config_file(path, final=final)

[docs]def print_help(file=None):
 """Prints all the command line options to stderr (or another file).

 See `OptionParser.print_help`.
 """
 return options.print_help(file)

[docs]def add_parse_callback(callback):
 """Adds a parse callback, to be invoked when option parsing is done.

 See `OptionParser.add_parse_callback`
 """
 options.add_parse_callback(callback)

Default options
define_logging_options(options)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/gen.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.gen

"""``tornado.gen`` is a generator-based interface to make it easier to
work in an asynchronous environment. Code using the ``gen`` module
is technically asynchronous, but it is written as a single generator
instead of a collection of separate functions.

For example, the following asynchronous handler:

.. testcode::

 class AsyncHandler(RequestHandler):
 @asynchronous
 def get(self):
 http_client = AsyncHTTPClient()
 http_client.fetch("http://example.com",
 callback=self.on_fetch)

 def on_fetch(self, response):
 do_something_with_response(response)
 self.render("template.html")

.. testoutput::
 :hide:

could be written with ``gen`` as:

.. testcode::

 class GenAsyncHandler(RequestHandler):
 @gen.coroutine
 def get(self):
 http_client = AsyncHTTPClient()
 response = yield http_client.fetch("http://example.com")
 do_something_with_response(response)
 self.render("template.html")

.. testoutput::
 :hide:

Most asynchronous functions in Tornado return a `.Future`;
yielding this object returns its `~.Future.result`.

You can also yield a list or dict of ``Futures``, which will be
started at the same time and run in parallel; a list or dict of results will
be returned when they are all finished:

.. testcode::

 @gen.coroutine
 def get(self):
 http_client = AsyncHTTPClient()
 response1, response2 = yield [http_client.fetch(url1),
 http_client.fetch(url2)]
 response_dict = yield dict(response3=http_client.fetch(url3),
 response4=http_client.fetch(url4))
 response3 = response_dict['response3']
 response4 = response_dict['response4']

.. testoutput::
 :hide:

If the `~functools.singledispatch` library is available (standard in
Python 3.4, available via the `singledispatch
<https://pypi.python.org/pypi/singledispatch>`_ package on older
versions), additional types of objects may be yielded. Tornado includes
support for ``asyncio.Future`` and Twisted's ``Deferred`` class when
``tornado.platform.asyncio`` and ``tornado.platform.twisted`` are imported.
See the `convert_yielded` function to extend this mechanism.

.. versionchanged:: 3.2
 Dict support added.

.. versionchanged:: 4.1
 Support added for yielding ``asyncio`` Futures and Twisted Deferreds
 via ``singledispatch``.

"""
from __future__ import absolute_import, division, print_function, with_statement

import collections
import functools
import itertools
import os
import sys
import textwrap
import types
import weakref

from tornado.concurrent import Future, TracebackFuture, is_future, chain_future
from tornado.ioloop import IOLoop
from tornado.log import app_log
from tornado import stack_context
from tornado.util import PY3, raise_exc_info

try:
 try:
 # py34+
 from functools import singledispatch # type: ignore
 except ImportError:
 from singledispatch import singledispatch # backport
except ImportError:
 # In most cases, singledispatch is required (to avoid
 # difficult-to-diagnose problems in which the functionality
 # available differs depending on which invisble packages are
 # installed). However, in Google App Engine third-party
 # dependencies are more trouble so we allow this module to be
 # imported without it.
 if 'APPENGINE_RUNTIME' not in os.environ:
 raise
 singledispatch = None

try:
 try:
 # py35+
 from collections.abc import Generator as GeneratorType # type: ignore
 except ImportError:
 from backports_abc import Generator as GeneratorType # type: ignore

 try:
 # py35+
 from inspect import isawaitable # type: ignore
 except ImportError:
 from backports_abc import isawaitable
except ImportError:
 if 'APPENGINE_RUNTIME' not in os.environ:
 raise
 from types import GeneratorType

 def isawaitable(x): # type: ignore
 return False

if PY3:
 import builtins
else:
 import __builtin__ as builtins

class KeyReuseError(Exception):
 pass

class UnknownKeyError(Exception):
 pass

class LeakedCallbackError(Exception):
 pass

class BadYieldError(Exception):
 pass

class ReturnValueIgnoredError(Exception):
 pass

[docs]class TimeoutError(Exception):
 """Exception raised by ``with_timeout``."""

def _value_from_stopiteration(e):
 try:
 # StopIteration has a value attribute beginning in py33.
 # So does our Return class.
 return e.value
 except AttributeError:
 pass
 try:
 # Cython backports coroutine functionality by putting the value in
 # e.args[0].
 return e.args[0]
 except (AttributeError, IndexError):
 return None

[docs]def engine(func):
 """Callback-oriented decorator for asynchronous generators.

 This is an older interface; for new code that does not need to be
 compatible with versions of Tornado older than 3.0 the
 `coroutine` decorator is recommended instead.

 This decorator is similar to `coroutine`, except it does not
 return a `.Future` and the ``callback`` argument is not treated
 specially.

 In most cases, functions decorated with `engine` should take
 a ``callback`` argument and invoke it with their result when
 they are finished. One notable exception is the
 `~tornado.web.RequestHandler` :ref:`HTTP verb methods <verbs>`,
 which use ``self.finish()`` in place of a callback argument.
 """
 func = _make_coroutine_wrapper(func, replace_callback=False)

 @functools.wraps(func)
 def wrapper(*args, **kwargs):
 future = func(*args, **kwargs)

 def final_callback(future):
 if future.result() is not None:
 raise ReturnValueIgnoredError(
 "@gen.engine functions cannot return values: %r" %
 (future.result(),))
 # The engine interface doesn't give us any way to return
 # errors but to raise them into the stack context.
 # Save the stack context here to use when the Future has resolved.
 future.add_done_callback(stack_context.wrap(final_callback))
 return wrapper

[docs]def coroutine(func, replace_callback=True):
 """Decorator for asynchronous generators.

 Any generator that yields objects from this module must be wrapped
 in either this decorator or `engine`.

 Coroutines may "return" by raising the special exception
 `Return(value) <Return>`. In Python 3.3+, it is also possible for
 the function to simply use the ``return value`` statement (prior to
 Python 3.3 generators were not allowed to also return values).
 In all versions of Python a coroutine that simply wishes to exit
 early may use the ``return`` statement without a value.

 Functions with this decorator return a `.Future`. Additionally,
 they may be called with a ``callback`` keyword argument, which
 will be invoked with the future's result when it resolves. If the
 coroutine fails, the callback will not be run and an exception
 will be raised into the surrounding `.StackContext`. The
 ``callback`` argument is not visible inside the decorated
 function; it is handled by the decorator itself.

 From the caller's perspective, ``@gen.coroutine`` is similar to
 the combination of ``@return_future`` and ``@gen.engine``.

 .. warning::

 When exceptions occur inside a coroutine, the exception
 information will be stored in the `.Future` object. You must
 examine the result of the `.Future` object, or the exception
 may go unnoticed by your code. This means yielding the function
 if called from another coroutine, using something like
 `.IOLoop.run_sync` for top-level calls, or passing the `.Future`
 to `.IOLoop.add_future`.

 """
 return _make_coroutine_wrapper(func, replace_callback=True)

Ties lifetime of runners to their result futures. Github Issue #1769
Generators, like any object in Python, must be strong referenced
in order to not be cleaned up by the garbage collector. When using
coroutines, the Runner object is what strong-refs the inner
generator. However, the only item that strong-reffed the Runner
was the last Future that the inner generator yielded (via the
Future's internal done_callback list). Usually this is enough, but
it is also possible for this Future to not have any strong references
other than other objects referenced by the Runner object (usually
when using other callback patterns and/or weakrefs). In this
situation, if a garbage collection ran, a cycle would be detected and
Runner objects could be destroyed along with their inner generators
and everything in their local scope.
This map provides strong references to Runner objects as long as
their result future objects also have strong references (typically
from the parent coroutine's Runner). This keeps the coroutine's
Runner alive.
_futures_to_runners = weakref.WeakKeyDictionary()

def _make_coroutine_wrapper(func, replace_callback):
 """The inner workings of ``@gen.coroutine`` and ``@gen.engine``.

 The two decorators differ in their treatment of the ``callback``
 argument, so we cannot simply implement ``@engine`` in terms of
 ``@coroutine``.
 """
 # On Python 3.5, set the coroutine flag on our generator, to allow it
 # to be used with 'await'.
 if hasattr(types, 'coroutine'):
 func = types.coroutine(func)

 @functools.wraps(func)
 def wrapper(*args, **kwargs):
 future = TracebackFuture()

 if replace_callback and 'callback' in kwargs:
 callback = kwargs.pop('callback')
 IOLoop.current().add_future(
 future, lambda future: callback(future.result()))

 try:
 result = func(*args, **kwargs)
 except (Return, StopIteration) as e:
 result = _value_from_stopiteration(e)
 except Exception:
 future.set_exc_info(sys.exc_info())
 return future
 else:
 if isinstance(result, GeneratorType):
 # Inline the first iteration of Runner.run. This lets us
 # avoid the cost of creating a Runner when the coroutine
 # never actually yields, which in turn allows us to
 # use "optional" coroutines in critical path code without
 # performance penalty for the synchronous case.
 try:
 orig_stack_contexts = stack_context._state.contexts
 yielded = next(result)
 if stack_context._state.contexts is not orig_stack_contexts:
 yielded = TracebackFuture()
 yielded.set_exception(
 stack_context.StackContextInconsistentError(
 'stack_context inconsistency (probably caused '
 'by yield within a "with StackContext" block)'))
 except (StopIteration, Return) as e:
 future.set_result(_value_from_stopiteration(e))
 except Exception:
 future.set_exc_info(sys.exc_info())
 else:
 _futures_to_runners[future] = Runner(result, future, yielded)
 try:
 return future
 finally:
 # Subtle memory optimization: if next() raised an exception,
 # the future's exc_info contains a traceback which
 # includes this stack frame. This creates a cycle,
 # which will be collected at the next full GC but has
 # been shown to greatly increase memory usage of
 # benchmarks (relative to the refcount-based scheme
 # used in the absence of cycles). We can avoid the
 # cycle by clearing the local variable after we return it.
 future = None
 future.set_result(result)
 return future
 return wrapper

[docs]class Return(Exception):
 """Special exception to return a value from a `coroutine`.

 If this exception is raised, its value argument is used as the
 result of the coroutine::

 @gen.coroutine
 def fetch_json(url):
 response = yield AsyncHTTPClient().fetch(url)
 raise gen.Return(json_decode(response.body))

 In Python 3.3, this exception is no longer necessary: the ``return``
 statement can be used directly to return a value (previously
 ``yield`` and ``return`` with a value could not be combined in the
 same function).

 By analogy with the return statement, the value argument is optional,
 but it is never necessary to ``raise gen.Return()``. The ``return``
 statement can be used with no arguments instead.
 """
 def __init__(self, value=None):
 super(Return, self).__init__()
 self.value = value
 # Cython recognizes subclasses of StopIteration with a .args tuple.
 self.args = (value,)

[docs]class WaitIterator(object):
 """Provides an iterator to yield the results of futures as they finish.

 Yielding a set of futures like this:

 ``results = yield [future1, future2]``

 pauses the coroutine until both ``future1`` and ``future2``
 return, and then restarts the coroutine with the results of both
 futures. If either future is an exception, the expression will
 raise that exception and all the results will be lost.

 If you need to get the result of each future as soon as possible,
 or if you need the result of some futures even if others produce
 errors, you can use ``WaitIterator``::

 wait_iterator = gen.WaitIterator(future1, future2)
 while not wait_iterator.done():
 try:
 result = yield wait_iterator.next()
 except Exception as e:
 print("Error {} from {}".format(e, wait_iterator.current_future))
 else:
 print("Result {} received from {} at {}".format(
 result, wait_iterator.current_future,
 wait_iterator.current_index))

 Because results are returned as soon as they are available the
 output from the iterator *will not be in the same order as the
 input arguments*. If you need to know which future produced the
 current result, you can use the attributes
 ``WaitIterator.current_future``, or ``WaitIterator.current_index``
 to get the index of the future from the input list. (if keyword
 arguments were used in the construction of the `WaitIterator`,
 ``current_index`` will use the corresponding keyword).

 On Python 3.5, `WaitIterator` implements the async iterator
 protocol, so it can be used with the ``async for`` statement (note
 that in this version the entire iteration is aborted if any value
 raises an exception, while the previous example can continue past
 individual errors)::

 async for result in gen.WaitIterator(future1, future2):
 print("Result {} received from {} at {}".format(
 result, wait_iterator.current_future,
 wait_iterator.current_index))

 .. versionadded:: 4.1

 .. versionchanged:: 4.3
 Added ``async for`` support in Python 3.5.

 """
 def __init__(self, *args, **kwargs):
 if args and kwargs:
 raise ValueError(
 "You must provide args or kwargs, not both")

 if kwargs:
 self._unfinished = dict((f, k) for (k, f) in kwargs.items())
 futures = list(kwargs.values())
 else:
 self._unfinished = dict((f, i) for (i, f) in enumerate(args))
 futures = args

 self._finished = collections.deque()
 self.current_index = self.current_future = None
 self._running_future = None

 for future in futures:
 future.add_done_callback(self._done_callback)

[docs] def done(self):
 """Returns True if this iterator has no more results."""
 if self._finished or self._unfinished:
 return False
 # Clear the 'current' values when iteration is done.
 self.current_index = self.current_future = None
 return True

[docs] def next(self):
 """Returns a `.Future` that will yield the next available result.

 Note that this `.Future` will not be the same object as any of
 the inputs.
 """
 self._running_future = TracebackFuture()

 if self._finished:
 self._return_result(self._finished.popleft())

 return self._running_future

 def _done_callback(self, done):
 if self._running_future and not self._running_future.done():
 self._return_result(done)
 else:
 self._finished.append(done)

 def _return_result(self, done):
 """Called set the returned future's state that of the future
 we yielded, and set the current future for the iterator.
 """
 chain_future(done, self._running_future)

 self.current_future = done
 self.current_index = self._unfinished.pop(done)

 @coroutine
 def __aiter__(self):
 raise Return(self)

 def __anext__(self):
 if self.done():
 # Lookup by name to silence pyflakes on older versions.
 raise getattr(builtins, 'StopAsyncIteration')()
 return self.next()

[docs]class YieldPoint(object):
 """Base class for objects that may be yielded from the generator.

 .. deprecated:: 4.0
 Use `Futures <.Future>` instead.
 """
[docs] def start(self, runner):
 """Called by the runner after the generator has yielded.

 No other methods will be called on this object before ``start``.
 """
 raise NotImplementedError()

[docs] def is_ready(self):
 """Called by the runner to determine whether to resume the generator.

 Returns a boolean; may be called more than once.
 """
 raise NotImplementedError()

[docs] def get_result(self):
 """Returns the value to use as the result of the yield expression.

 This method will only be called once, and only after `is_ready`
 has returned true.
 """
 raise NotImplementedError()

[docs]class Callback(YieldPoint):
 """Returns a callable object that will allow a matching `Wait` to proceed.

 The key may be any value suitable for use as a dictionary key, and is
 used to match ``Callbacks`` to their corresponding ``Waits``. The key
 must be unique among outstanding callbacks within a single run of the
 generator function, but may be reused across different runs of the same
 function (so constants generally work fine).

 The callback may be called with zero or one arguments; if an argument
 is given it will be returned by `Wait`.

 .. deprecated:: 4.0
 Use `Futures <.Future>` instead.
 """
 def __init__(self, key):
 self.key = key

 def start(self, runner):
 self.runner = runner
 runner.register_callback(self.key)

 def is_ready(self):
 return True

 def get_result(self):
 return self.runner.result_callback(self.key)

[docs]class Wait(YieldPoint):
 """Returns the argument passed to the result of a previous `Callback`.

 .. deprecated:: 4.0
 Use `Futures <.Future>` instead.
 """
 def __init__(self, key):
 self.key = key

 def start(self, runner):
 self.runner = runner

 def is_ready(self):
 return self.runner.is_ready(self.key)

 def get_result(self):
 return self.runner.pop_result(self.key)

[docs]class WaitAll(YieldPoint):
 """Returns the results of multiple previous `Callbacks <Callback>`.

 The argument is a sequence of `Callback` keys, and the result is
 a list of results in the same order.

 `WaitAll` is equivalent to yielding a list of `Wait` objects.

 .. deprecated:: 4.0
 Use `Futures <.Future>` instead.
 """
 def __init__(self, keys):
 self.keys = keys

 def start(self, runner):
 self.runner = runner

 def is_ready(self):
 return all(self.runner.is_ready(key) for key in self.keys)

 def get_result(self):
 return [self.runner.pop_result(key) for key in self.keys]

[docs]def Task(func, *args, **kwargs):
 """Adapts a callback-based asynchronous function for use in coroutines.

 Takes a function (and optional additional arguments) and runs it with
 those arguments plus a ``callback`` keyword argument. The argument passed
 to the callback is returned as the result of the yield expression.

 .. versionchanged:: 4.0
 ``gen.Task`` is now a function that returns a `.Future`, instead of
 a subclass of `YieldPoint`. It still behaves the same way when
 yielded.
 """
 future = Future()

 def handle_exception(typ, value, tb):
 if future.done():
 return False
 future.set_exc_info((typ, value, tb))
 return True

 def set_result(result):
 if future.done():
 return
 future.set_result(result)
 with stack_context.ExceptionStackContext(handle_exception):
 func(*args, callback=_argument_adapter(set_result), **kwargs)
 return future

class YieldFuture(YieldPoint):
 def __init__(self, future, io_loop=None):
 """Adapts a `.Future` to the `YieldPoint` interface.

 .. versionchanged:: 4.1
 The ``io_loop`` argument is deprecated.
 """
 self.future = future
 self.io_loop = io_loop or IOLoop.current()

 def start(self, runner):
 if not self.future.done():
 self.runner = runner
 self.key = object()
 runner.register_callback(self.key)
 self.io_loop.add_future(self.future, runner.result_callback(self.key))
 else:
 self.runner = None
 self.result_fn = self.future.result

 def is_ready(self):
 if self.runner is not None:
 return self.runner.is_ready(self.key)
 else:
 return True

 def get_result(self):
 if self.runner is not None:
 return self.runner.pop_result(self.key).result()
 else:
 return self.result_fn()

def _contains_yieldpoint(children):
 """Returns True if ``children`` contains any YieldPoints.

 ``children`` may be a dict or a list, as used by `MultiYieldPoint`
 and `multi_future`.
 """
 if isinstance(children, dict):
 return any(isinstance(i, YieldPoint) for i in children.values())
 if isinstance(children, list):
 return any(isinstance(i, YieldPoint) for i in children)
 return False

[docs]def multi(children, quiet_exceptions=()):
 """Runs multiple asynchronous operations in parallel.

 ``children`` may either be a list or a dict whose values are
 yieldable objects. ``multi()`` returns a new yieldable
 object that resolves to a parallel structure containing their
 results. If ``children`` is a list, the result is a list of
 results in the same order; if it is a dict, the result is a dict
 with the same keys.

 That is, ``results = yield multi(list_of_futures)`` is equivalent
 to::

 results = []
 for future in list_of_futures:
 results.append(yield future)

 If any children raise exceptions, ``multi()`` will raise the first
 one. All others will be logged, unless they are of types
 contained in the ``quiet_exceptions`` argument.

 If any of the inputs are `YieldPoints <YieldPoint>`, the returned
 yieldable object is a `YieldPoint`. Otherwise, returns a `.Future`.
 This means that the result of `multi` can be used in a native
 coroutine if and only if all of its children can be.

 In a ``yield``-based coroutine, it is not normally necessary to
 call this function directly, since the coroutine runner will
 do it automatically when a list or dict is yielded. However,
 it is necessary in ``await``-based coroutines, or to pass
 the ``quiet_exceptions`` argument.

 This function is available under the names ``multi()`` and ``Multi()``
 for historical reasons.

 .. versionchanged:: 4.2
 If multiple yieldables fail, any exceptions after the first
 (which is raised) will be logged. Added the ``quiet_exceptions``
 argument to suppress this logging for selected exception types.

 .. versionchanged:: 4.3
 Replaced the class ``Multi`` and the function ``multi_future``
 with a unified function ``multi``. Added support for yieldables
 other than `YieldPoint` and `.Future`.

 """
 if _contains_yieldpoint(children):
 return MultiYieldPoint(children, quiet_exceptions=quiet_exceptions)
 else:
 return multi_future(children, quiet_exceptions=quiet_exceptions)

Multi = multi

[docs]class MultiYieldPoint(YieldPoint):
 """Runs multiple asynchronous operations in parallel.

 This class is similar to `multi`, but it always creates a stack
 context even when no children require it. It is not compatible with
 native coroutines.

 .. versionchanged:: 4.2
 If multiple ``YieldPoints`` fail, any exceptions after the first
 (which is raised) will be logged. Added the ``quiet_exceptions``
 argument to suppress this logging for selected exception types.

 .. versionchanged:: 4.3
 Renamed from ``Multi`` to ``MultiYieldPoint``. The name ``Multi``
 remains as an alias for the equivalent `multi` function.

 .. deprecated:: 4.3
 Use `multi` instead.
 """
 def __init__(self, children, quiet_exceptions=()):
 self.keys = None
 if isinstance(children, dict):
 self.keys = list(children.keys())
 children = children.values()
 self.children = []
 for i in children:
 if not isinstance(i, YieldPoint):
 i = convert_yielded(i)
 if is_future(i):
 i = YieldFuture(i)
 self.children.append(i)
 assert all(isinstance(i, YieldPoint) for i in self.children)
 self.unfinished_children = set(self.children)
 self.quiet_exceptions = quiet_exceptions

 def start(self, runner):
 for i in self.children:
 i.start(runner)

 def is_ready(self):
 finished = list(itertools.takewhile(
 lambda i: i.is_ready(), self.unfinished_children))
 self.unfinished_children.difference_update(finished)
 return not self.unfinished_children

 def get_result(self):
 result_list = []
 exc_info = None
 for f in self.children:
 try:
 result_list.append(f.get_result())
 except Exception as e:
 if exc_info is None:
 exc_info = sys.exc_info()
 else:
 if not isinstance(e, self.quiet_exceptions):
 app_log.error("Multiple exceptions in yield list",
 exc_info=True)
 if exc_info is not None:
 raise_exc_info(exc_info)
 if self.keys is not None:
 return dict(zip(self.keys, result_list))
 else:
 return list(result_list)

[docs]def multi_future(children, quiet_exceptions=()):
 """Wait for multiple asynchronous futures in parallel.

 This function is similar to `multi`, but does not support
 `YieldPoints <YieldPoint>`.

 .. versionadded:: 4.0

 .. versionchanged:: 4.2
 If multiple ``Futures`` fail, any exceptions after the first (which is
 raised) will be logged. Added the ``quiet_exceptions``
 argument to suppress this logging for selected exception types.

 .. deprecated:: 4.3
 Use `multi` instead.
 """
 if isinstance(children, dict):
 keys = list(children.keys())
 children = children.values()
 else:
 keys = None
 children = list(map(convert_yielded, children))
 assert all(is_future(i) for i in children)
 unfinished_children = set(children)

 future = Future()
 if not children:
 future.set_result({} if keys is not None else [])

 def callback(f):
 unfinished_children.remove(f)
 if not unfinished_children:
 result_list = []
 for f in children:
 try:
 result_list.append(f.result())
 except Exception as e:
 if future.done():
 if not isinstance(e, quiet_exceptions):
 app_log.error("Multiple exceptions in yield list",
 exc_info=True)
 else:
 future.set_exc_info(sys.exc_info())
 if not future.done():
 if keys is not None:
 future.set_result(dict(zip(keys, result_list)))
 else:
 future.set_result(result_list)

 listening = set()
 for f in children:
 if f not in listening:
 listening.add(f)
 f.add_done_callback(callback)
 return future

[docs]def maybe_future(x):
 """Converts ``x`` into a `.Future`.

 If ``x`` is already a `.Future`, it is simply returned; otherwise
 it is wrapped in a new `.Future`. This is suitable for use as
 ``result = yield gen.maybe_future(f())`` when you don't know whether
 ``f()`` returns a `.Future` or not.

 .. deprecated:: 4.3
 This function only handles ``Futures``, not other yieldable objects.
 Instead of `maybe_future`, check for the non-future result types
 you expect (often just ``None``), and ``yield`` anything unknown.
 """
 if is_future(x):
 return x
 else:
 fut = Future()
 fut.set_result(x)
 return fut

[docs]def with_timeout(timeout, future, io_loop=None, quiet_exceptions=()):
 """Wraps a `.Future` (or other yieldable object) in a timeout.

 Raises `TimeoutError` if the input future does not complete before
 ``timeout``, which may be specified in any form allowed by
 `.IOLoop.add_timeout` (i.e. a `datetime.timedelta` or an absolute time
 relative to `.IOLoop.time`)

 If the wrapped `.Future` fails after it has timed out, the exception
 will be logged unless it is of a type contained in ``quiet_exceptions``
 (which may be an exception type or a sequence of types).

 Does not support `YieldPoint` subclasses.

 .. versionadded:: 4.0

 .. versionchanged:: 4.1
 Added the ``quiet_exceptions`` argument and the logging of unhandled
 exceptions.

 .. versionchanged:: 4.4
 Added support for yieldable objects other than `.Future`.
 """
 # TODO: allow YieldPoints in addition to other yieldables?
 # Tricky to do with stack_context semantics.
 #
 # It's tempting to optimize this by cancelling the input future on timeout
 # instead of creating a new one, but A) we can't know if we are the only
 # one waiting on the input future, so cancelling it might disrupt other
 # callers and B) concurrent futures can only be cancelled while they are
 # in the queue, so cancellation cannot reliably bound our waiting time.
 future = convert_yielded(future)
 result = Future()
 chain_future(future, result)
 if io_loop is None:
 io_loop = IOLoop.current()

 def error_callback(future):
 try:
 future.result()
 except Exception as e:
 if not isinstance(e, quiet_exceptions):
 app_log.error("Exception in Future %r after timeout",
 future, exc_info=True)

 def timeout_callback():
 result.set_exception(TimeoutError("Timeout"))
 # In case the wrapped future goes on to fail, log it.
 future.add_done_callback(error_callback)
 timeout_handle = io_loop.add_timeout(
 timeout, timeout_callback)
 if isinstance(future, Future):
 # We know this future will resolve on the IOLoop, so we don't
 # need the extra thread-safety of IOLoop.add_future (and we also
 # don't care about StackContext here.
 future.add_done_callback(
 lambda future: io_loop.remove_timeout(timeout_handle))
 else:
 # concurrent.futures.Futures may resolve on any thread, so we
 # need to route them back to the IOLoop.
 io_loop.add_future(
 future, lambda future: io_loop.remove_timeout(timeout_handle))
 return result

[docs]def sleep(duration):
 """Return a `.Future` that resolves after the given number of seconds.

 When used with ``yield`` in a coroutine, this is a non-blocking
 analogue to `time.sleep` (which should not be used in coroutines
 because it is blocking)::

 yield gen.sleep(0.5)

 Note that calling this function on its own does nothing; you must
 wait on the `.Future` it returns (usually by yielding it).

 .. versionadded:: 4.1
 """
 f = Future()
 IOLoop.current().call_later(duration, lambda: f.set_result(None))
 return f

_null_future = Future()
_null_future.set_result(None)

moment = Future()
moment.__doc__ = \
 """A special object which may be yielded to allow the IOLoop to run for
one iteration.

This is not needed in normal use but it can be helpful in long-running
coroutines that are likely to yield Futures that are ready instantly.

Usage: ``yield gen.moment``

.. versionadded:: 4.0
"""
moment.set_result(None)

class Runner(object):
 """Internal implementation of `tornado.gen.engine`.

 Maintains information about pending callbacks and their results.

 The results of the generator are stored in ``result_future`` (a
 `.TracebackFuture`)
 """
 def __init__(self, gen, result_future, first_yielded):
 self.gen = gen
 self.result_future = result_future
 self.future = _null_future
 self.yield_point = None
 self.pending_callbacks = None
 self.results = None
 self.running = False
 self.finished = False
 self.had_exception = False
 self.io_loop = IOLoop.current()
 # For efficiency, we do not create a stack context until we
 # reach a YieldPoint (stack contexts are required for the historical
 # semantics of YieldPoints, but not for Futures). When we have
 # done so, this field will be set and must be called at the end
 # of the coroutine.
 self.stack_context_deactivate = None
 if self.handle_yield(first_yielded):
 self.run()

 def register_callback(self, key):
 """Adds ``key`` to the list of callbacks."""
 if self.pending_callbacks is None:
 # Lazily initialize the old-style YieldPoint data structures.
 self.pending_callbacks = set()
 self.results = {}
 if key in self.pending_callbacks:
 raise KeyReuseError("key %r is already pending" % (key,))
 self.pending_callbacks.add(key)

 def is_ready(self, key):
 """Returns true if a result is available for ``key``."""
 if self.pending_callbacks is None or key not in self.pending_callbacks:
 raise UnknownKeyError("key %r is not pending" % (key,))
 return key in self.results

 def set_result(self, key, result):
 """Sets the result for ``key`` and attempts to resume the generator."""
 self.results[key] = result
 if self.yield_point is not None and self.yield_point.is_ready():
 try:
 self.future.set_result(self.yield_point.get_result())
 except:
 self.future.set_exc_info(sys.exc_info())
 self.yield_point = None
 self.run()

 def pop_result(self, key):
 """Returns the result for ``key`` and unregisters it."""
 self.pending_callbacks.remove(key)
 return self.results.pop(key)

 def run(self):
 """Starts or resumes the generator, running until it reaches a
 yield point that is not ready.
 """
 if self.running or self.finished:
 return
 try:
 self.running = True
 while True:
 future = self.future
 if not future.done():
 return
 self.future = None
 try:
 orig_stack_contexts = stack_context._state.contexts
 exc_info = None

 try:
 value = future.result()
 except Exception:
 self.had_exception = True
 exc_info = sys.exc_info()

 if exc_info is not None:
 yielded = self.gen.throw(*exc_info)
 exc_info = None
 else:
 yielded = self.gen.send(value)

 if stack_context._state.contexts is not orig_stack_contexts:
 self.gen.throw(
 stack_context.StackContextInconsistentError(
 'stack_context inconsistency (probably caused '
 'by yield within a "with StackContext" block)'))
 except (StopIteration, Return) as e:
 self.finished = True
 self.future = _null_future
 if self.pending_callbacks and not self.had_exception:
 # If we ran cleanly without waiting on all callbacks
 # raise an error (really more of a warning). If we
 # had an exception then some callbacks may have been
 # orphaned, so skip the check in that case.
 raise LeakedCallbackError(
 "finished without waiting for callbacks %r" %
 self.pending_callbacks)
 self.result_future.set_result(_value_from_stopiteration(e))
 self.result_future = None
 self._deactivate_stack_context()
 return
 except Exception:
 self.finished = True
 self.future = _null_future
 self.result_future.set_exc_info(sys.exc_info())
 self.result_future = None
 self._deactivate_stack_context()
 return
 if not self.handle_yield(yielded):
 return
 finally:
 self.running = False

 def handle_yield(self, yielded):
 # Lists containing YieldPoints require stack contexts;
 # other lists are handled in convert_yielded.
 if _contains_yieldpoint(yielded):
 yielded = multi(yielded)

 if isinstance(yielded, YieldPoint):
 # YieldPoints are too closely coupled to the Runner to go
 # through the generic convert_yielded mechanism.
 self.future = TracebackFuture()

 def start_yield_point():
 try:
 yielded.start(self)
 if yielded.is_ready():
 self.future.set_result(
 yielded.get_result())
 else:
 self.yield_point = yielded
 except Exception:
 self.future = TracebackFuture()
 self.future.set_exc_info(sys.exc_info())

 if self.stack_context_deactivate is None:
 # Start a stack context if this is the first
 # YieldPoint we've seen.
 with stack_context.ExceptionStackContext(
 self.handle_exception) as deactivate:
 self.stack_context_deactivate = deactivate

 def cb():
 start_yield_point()
 self.run()
 self.io_loop.add_callback(cb)
 return False
 else:
 start_yield_point()
 else:
 try:
 self.future = convert_yielded(yielded)
 except BadYieldError:
 self.future = TracebackFuture()
 self.future.set_exc_info(sys.exc_info())

 if not self.future.done() or self.future is moment:
 self.io_loop.add_future(
 self.future, lambda f: self.run())
 return False
 return True

 def result_callback(self, key):
 return stack_context.wrap(_argument_adapter(
 functools.partial(self.set_result, key)))

 def handle_exception(self, typ, value, tb):
 if not self.running and not self.finished:
 self.future = TracebackFuture()
 self.future.set_exc_info((typ, value, tb))
 self.run()
 return True
 else:
 return False

 def _deactivate_stack_context(self):
 if self.stack_context_deactivate is not None:
 self.stack_context_deactivate()
 self.stack_context_deactivate = None

Arguments = collections.namedtuple('Arguments', ['args', 'kwargs'])

def _argument_adapter(callback):
 """Returns a function that when invoked runs ``callback`` with one arg.

 If the function returned by this function is called with exactly
 one argument, that argument is passed to ``callback``. Otherwise
 the args tuple and kwargs dict are wrapped in an `Arguments` object.
 """
 def wrapper(*args, **kwargs):
 if kwargs or len(args) > 1:
 callback(Arguments(args, kwargs))
 elif args:
 callback(args[0])
 else:
 callback(None)
 return wrapper

Convert Awaitables into Futures. It is unfortunately possible
to have infinite recursion here if those Awaitables assume that
we're using a different coroutine runner and yield objects
we don't understand. If that happens, the solution is to
register that runner's yieldable objects with convert_yielded.
if sys.version_info >= (3, 3):
 exec(textwrap.dedent("""
 @coroutine
 def _wrap_awaitable(x):
 if hasattr(x, '__await__'):
 x = x.__await__()
 return (yield from x)
 """))
else:
 # Py2-compatible version for use with Cython.
 # Copied from PEP 380.
 @coroutine
 def _wrap_awaitable(x):
 if hasattr(x, '__await__'):
 _i = x.__await__()
 else:
 _i = iter(x)
 try:
 _y = next(_i)
 except StopIteration as _e:
 _r = _value_from_stopiteration(_e)
 else:
 while 1:
 try:
 _s = yield _y
 except GeneratorExit as _e:
 try:
 _m = _i.close
 except AttributeError:
 pass
 else:
 _m()
 raise _e
 except BaseException as _e:
 _x = sys.exc_info()
 try:
 _m = _i.throw
 except AttributeError:
 raise _e
 else:
 try:
 _y = _m(*_x)
 except StopIteration as _e:
 _r = _value_from_stopiteration(_e)
 break
 else:
 try:
 if _s is None:
 _y = next(_i)
 else:
 _y = _i.send(_s)
 except StopIteration as _e:
 _r = _value_from_stopiteration(_e)
 break
 raise Return(_r)

[docs]def convert_yielded(yielded):
 """Convert a yielded object into a `.Future`.

 The default implementation accepts lists, dictionaries, and Futures.

 If the `~functools.singledispatch` library is available, this function
 may be extended to support additional types. For example::

 @convert_yielded.register(asyncio.Future)
 def _(asyncio_future):
 return tornado.platform.asyncio.to_tornado_future(asyncio_future)

 .. versionadded:: 4.1
 """
 # Lists and dicts containing YieldPoints were handled earlier.
 if isinstance(yielded, (list, dict)):
 return multi(yielded)
 elif is_future(yielded):
 return yielded
 elif isawaitable(yielded):
 return _wrap_awaitable(yielded)
 else:
 raise BadYieldError("yielded unknown object %r" % (yielded,))

if singledispatch is not None:
 convert_yielded = singledispatch(convert_yielded)

 try:
 # If we can import t.p.asyncio, do it for its side effect
 # (registering asyncio.Future with convert_yielded).
 # It's ugly to do this here, but it prevents a cryptic
 # infinite recursion in _wrap_awaitable.
 # Note that even with this, asyncio integration is unlikely
 # to work unless the application also configures AsyncIOLoop,
 # but at least the error messages in that case are more
 # comprehensible than a stack overflow.
 import tornado.platform.asyncio
 except ImportError:
 pass
 else:
 # Reference the imported module to make pyflakes happy.
 tornado

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_modules/tornado/template.html

 Navigation

 		
 index

 		
 modules |

 		Tornado 4.5.dev1 documentation »

 		Module code »

 Source code for tornado.template

#!/usr/bin/env python
#
Copyright 2009 Facebook
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""A simple template system that compiles templates to Python code.

Basic usage looks like::

 t = template.Template("<html>{{ myvalue }}</html>")
 print(t.generate(myvalue="XXX"))

`Loader` is a class that loads templates from a root directory and caches
the compiled templates::

 loader = template.Loader("/home/btaylor")
 print(loader.load("test.html").generate(myvalue="XXX"))

We compile all templates to raw Python. Error-reporting is currently... uh,
interesting. Syntax for the templates::

 ### base.html
 <html>
 <head>
 <title>{% block title %}Default title{% end %}</title>
 </head>
 <body>

 {% for student in students %}
 {% block student %}
 {{ escape(student.name) }}
 {% end %}
 {% end %}

 </body>
 </html>

 ### bold.html
 {% extends "base.html" %}

 {% block title %}A bolder title{% end %}

 {% block student %}
 {{ escape(student.name) }}
 {% end %}

Unlike most other template systems, we do not put any restrictions on the
expressions you can include in your statements. ``if`` and ``for`` blocks get
translated exactly into Python, so you can do complex expressions like::

 {% for student in [p for p in people if p.student and p.age > 23] %}
 {{ escape(student.name) }}
 {% end %}

Translating directly to Python means you can apply functions to expressions
easily, like the ``escape()`` function in the examples above. You can pass
functions in to your template just like any other variable
(In a `.RequestHandler`, override `.RequestHandler.get_template_namespace`)::

 ### Python code
 def add(x, y):
 return x + y
 template.execute(add=add)

 ### The template
 {{ add(1, 2) }}

We provide the functions `escape() <.xhtml_escape>`, `.url_escape()`,
`.json_encode()`, and `.squeeze()` to all templates by default.

Typical applications do not create `Template` or `Loader` instances by
hand, but instead use the `~.RequestHandler.render` and
`~.RequestHandler.render_string` methods of
`tornado.web.RequestHandler`, which load templates automatically based
on the ``template_path`` `.Application` setting.

Variable names beginning with ``_tt_`` are reserved by the template
system and should not be used by application code.

Syntax Reference

Template expressions are surrounded by double curly braces: ``{{ ... }}``.
The contents may be any python expression, which will be escaped according
to the current autoescape setting and inserted into the output. Other
template directives use ``{% %}``.

To comment out a section so that it is omitted from the output, surround it
with ``{# ... #}``.

These tags may be escaped as ``{{!``, ``{%!``, and ``{#!``
if you need to include a literal ``{{``, ``{%``, or ``{#`` in the output.

``{% apply *function* %}...{% end %}``
 Applies a function to the output of all template code between ``apply``
 and ``end``::

 {% apply linkify %}{{name}} said: {{message}}{% end %}

 Note that as an implementation detail apply blocks are implemented
 as nested functions and thus may interact strangely with variables
 set via ``{% set %}``, or the use of ``{% break %}`` or ``{% continue %}``
 within loops.

``{% autoescape *function* %}``
 Sets the autoescape mode for the current file. This does not affect
 other files, even those referenced by ``{% include %}``. Note that
 autoescaping can also be configured globally, at the `.Application`
 or `Loader`.::

 {% autoescape xhtml_escape %}
 {% autoescape None %}

``{% block *name* %}...{% end %}``
 Indicates a named, replaceable block for use with ``{% extends %}``.
 Blocks in the parent template will be replaced with the contents of
 the same-named block in a child template.::

 <!-- base.html -->
 <title>{% block title %}Default title{% end %}</title>

 <!-- mypage.html -->
 {% extends "base.html" %}
 {% block title %}My page title{% end %}

``{% comment ... %}``
 A comment which will be removed from the template output. Note that
 there is no ``{% end %}`` tag; the comment goes from the word ``comment``
 to the closing ``%}`` tag.

``{% extends *filename* %}``
 Inherit from another template. Templates that use ``extends`` should
 contain one or more ``block`` tags to replace content from the parent
 template. Anything in the child template not contained in a ``block``
 tag will be ignored. For an example, see the ``{% block %}`` tag.

``{% for *var* in *expr* %}...{% end %}``
 Same as the python ``for`` statement. ``{% break %}`` and
 ``{% continue %}`` may be used inside the loop.

``{% from *x* import *y* %}``
 Same as the python ``import`` statement.

``{% if *condition* %}...{% elif *condition* %}...{% else %}...{% end %}``
 Conditional statement - outputs the first section whose condition is
 true. (The ``elif`` and ``else`` sections are optional)

``{% import *module* %}``
 Same as the python ``import`` statement.

``{% include *filename* %}``
 Includes another template file. The included file can see all the local
 variables as if it were copied directly to the point of the ``include``
 directive (the ``{% autoescape %}`` directive is an exception).
 Alternately, ``{% module Template(filename, **kwargs) %}`` may be used
 to include another template with an isolated namespace.

``{% module *expr* %}``
 Renders a `~tornado.web.UIModule`. The output of the ``UIModule`` is
 not escaped::

 {% module Template("foo.html", arg=42) %}

 ``UIModules`` are a feature of the `tornado.web.RequestHandler`
 class (and specifically its ``render`` method) and will not work
 when the template system is used on its own in other contexts.

``{% raw *expr* %}``
 Outputs the result of the given expression without autoescaping.

``{% set *x* = *y* %}``
 Sets a local variable.

``{% try %}...{% except %}...{% else %}...{% finally %}...{% end %}``
 Same as the python ``try`` statement.

``{% while *condition* %}... {% end %}``
 Same as the python ``while`` statement. ``{% break %}`` and
 ``{% continue %}`` may be used inside the loop.

``{% whitespace *mode* %}``
 Sets the whitespace mode for the remainder of the current file
 (or until the next ``{% whitespace %}`` directive). See
 `filter_whitespace` for available options. New in Tornado 4.3.
"""

from __future__ import absolute_import, division, print_function, with_statement

import datetime
import linecache
import os.path
import posixpath
import re
import threading

from tornado import escape
from tornado.log import app_log
from tornado.util import ObjectDict, exec_in, unicode_type, PY3

if PY3:
 from io import StringIO
else:
 from cStringIO import StringIO

_DEFAULT_AUTOESCAPE = "xhtml_escape"
_UNSET = object()

[docs]def filter_whitespace(mode, text):
 """Transform whitespace in ``text`` according to ``mode``.

 Available modes are:

 * ``all``: Return all whitespace unmodified.
 * ``single``: Collapse consecutive whitespace with a single whitespace
 character, preserving newlines.
 * ``oneline``: Collapse all runs of whitespace into a single space
 character, removing all newlines in the process.

 .. versionadded:: 4.3
 """
 if mode == 'all':
 return text
 elif mode == 'single':
 text = re.sub(r"([\t]+)", " ", text)
 text = re.sub(r"(\s*\n\s*)", "\n", text)
 return text
 elif mode == 'oneline':
 return re.sub(r"(\s+)", " ", text)
 else:
 raise Exception("invalid whitespace mode %s" % mode)

[docs]class Template(object):
 """A compiled template.

 We compile into Python from the given template_string. You can generate
 the template from variables with generate().
 """
 # note that the constructor's signature is not extracted with
 # autodoc because _UNSET looks like garbage. When changing
 # this signature update website/sphinx/template.rst too.
 def __init__(self, template_string, name="<string>", loader=None,
 compress_whitespace=_UNSET, autoescape=_UNSET,
 whitespace=None):
 """Construct a Template.

 :arg str template_string: the contents of the template file.
 :arg str name: the filename from which the template was loaded
 (used for error message).
 :arg tornado.template.BaseLoader loader: the `~tornado.template.BaseLoader` responsible for this template,
 used to resolve ``{% include %}`` and ``{% extend %}``
 directives.
 :arg bool compress_whitespace: Deprecated since Tornado 4.3.
 Equivalent to ``whitespace="single"`` if true and
 ``whitespace="all"`` if false.
 :arg str autoescape: The name of a function in the template
 namespace, or ``None`` to disable escaping by default.
 :arg str whitespace: A string specifying treatment of whitespace;
 see `filter_whitespace` for options.

 .. versionchanged:: 4.3
 Added ``whitespace`` parameter; deprecated ``compress_whitespace``.
 """
 self.name = escape.native_str(name)

 if compress_whitespace is not _UNSET:
 # Convert deprecated compress_whitespace (bool) to whitespace (str).
 if whitespace is not None:
 raise Exception("cannot set both whitespace and compress_whitespace")
 whitespace = "single" if compress_whitespace else "all"
 if whitespace is None:
 if loader and loader.whitespace:
 whitespace = loader.whitespace
 else:
 # Whitespace defaults by filename.
 if name.endswith(".html") or name.endswith(".js"):
 whitespace = "single"
 else:
 whitespace = "all"
 # Validate the whitespace setting.
 filter_whitespace(whitespace, '')

 if autoescape is not _UNSET:
 self.autoescape = autoescape
 elif loader:
 self.autoescape = loader.autoescape
 else:
 self.autoescape = _DEFAULT_AUTOESCAPE

 self.namespace = loader.namespace if loader else {}
 reader = _TemplateReader(name, escape.native_str(template_string),
 whitespace)
 self.file = _File(self, _parse(reader, self))
 self.code = self._generate_python(loader)
 self.loader = loader
 try:
 # Under python2.5, the fake filename used here must match
 # the module name used in __name__ below.
 # The dont_inherit flag prevents template.py's future imports
 # from being applied to the generated code.
 self.compiled = compile(
 escape.to_unicode(self.code),
 "%s.generated.py" % self.name.replace('.', '_'),
 "exec", dont_inherit=True)
 except Exception:
 formatted_code = _format_code(self.code).rstrip()
 app_log.error("%s code:\n%s", self.name, formatted_code)
 raise

[docs] def generate(self, **kwargs):
 """Generate this template with the given arguments."""
 namespace = {
 "escape": escape.xhtml_escape,
 "xhtml_escape": escape.xhtml_escape,
 "url_escape": escape.url_escape,
 "json_encode": escape.json_encode,
 "squeeze": escape.squeeze,
 "linkify": escape.linkify,
 "datetime": datetime,
 "_tt_utf8": escape.utf8, # for internal use
 "_tt_string_types": (unicode_type, bytes),
 # __name__ and __loader__ allow the traceback mechanism to find
 # the generated source code.
 "__name__": self.name.replace('.', '_'),
 "__loader__": ObjectDict(get_source=lambda name: self.code),
 }
 namespace.update(self.namespace)
 namespace.update(kwargs)
 exec_in(self.compiled, namespace)
 execute = namespace["_tt_execute"]
 # Clear the traceback module's cache of source data now that
 # we've generated a new template (mainly for this module's
 # unittests, where different tests reuse the same name).
 linecache.clearcache()
 return execute()

 def _generate_python(self, loader):
 buffer = StringIO()
 try:
 # named_blocks maps from names to _NamedBlock objects
 named_blocks = {}
 ancestors = self._get_ancestors(loader)
 ancestors.reverse()
 for ancestor in ancestors:
 ancestor.find_named_blocks(loader, named_blocks)
 writer = _CodeWriter(buffer, named_blocks, loader,
 ancestors[0].template)
 ancestors[0].generate(writer)
 return buffer.getvalue()
 finally:
 buffer.close()

 def _get_ancestors(self, loader):
 ancestors = [self.file]
 for chunk in self.file.body.chunks:
 if isinstance(chunk, _ExtendsBlock):
 if not loader:
 raise ParseError("{% extends %} block found, but no "
 "template loader")
 template = loader.load(chunk.name, self.name)
 ancestors.extend(template._get_ancestors(loader))
 return ancestors

[docs]class BaseLoader(object):
 """Base class for template loaders.

 You must use a template loader to use template constructs like
 ``{% extends %}`` and ``{% include %}``. The loader caches all
 templates after they are loaded the first time.
 """
 def __init__(self, autoescape=_DEFAULT_AUTOESCAPE, namespace=None,
 whitespace=None):
 """Construct a template loader.

 :arg str autoescape: The name of a function in the template
 namespace, such as "xhtml_escape", or ``None`` to disable
 autoescaping by default.
 :arg dict namespace: A dictionary to be added to the default template
 namespace, or ``None``.
 :arg str whitespace: A string specifying default behavior for
 whitespace in templates; see `filter_whitespace` for options.
 Default is "single" for files ending in ".html" and ".js" and
 "all" for other files.

 .. versionchanged:: 4.3
 Added ``whitespace`` parameter.
 """
 self.autoescape = autoescape
 self.namespace = namespace or {}
 self.whitespace = whitespace
 self.templates = {}
 # self.lock protects self.templates. It's a reentrant lock
 # because templates may load other templates via `include` or
 # `extends`. Note that thanks to the GIL this code would be safe
 # even without the lock, but could lead to wasted work as multiple
 # threads tried to compile the same template simultaneously.
 self.lock = threading.RLock()

[docs] def reset(self):
 """Resets the cache of compiled templates."""
 with self.lock:
 self.templates = {}

[docs] def resolve_path(self, name, parent_path=None):
 """Converts a possibly-relative path to absolute (used internally)."""
 raise NotImplementedError()

[docs] def load(self, name, parent_path=None):
 """Loads a template."""
 name = self.resolve_path(name, parent_path=parent_path)
 with self.lock:
 if name not in self.templates:
 self.templates[name] = self._create_template(name)
 return self.templates[name]

 def _create_template(self, name):
 raise NotImplementedError()

[docs]class Loader(BaseLoader):
 """A template loader that loads from a single root directory.
 """
 def __init__(self, root_directory, **kwargs):
 super(Loader, self).__init__(**kwargs)
 self.root = os.path.abspath(root_directory)

 def resolve_path(self, name, parent_path=None):
 if parent_path and not parent_path.startswith("<") and \
 not parent_path.startswith("/") and \
 not name.startswith("/"):
 current_path = os.path.join(self.root, parent_path)
 file_dir = os.path.dirname(os.path.abspath(current_path))
 relative_path = os.path.abspath(os.path.join(file_dir, name))
 if relative_path.startswith(self.root):
 name = relative_path[len(self.root) + 1:]
 return name

 def _create_template(self, name):
 path = os.path.join(self.root, name)
 with open(path, "rb") as f:
 template = Template(f.read(), name=name, loader=self)
 return template

[docs]class DictLoader(BaseLoader):
 """A template loader that loads from a dictionary."""
 def __init__(self, dict, **kwargs):
 super(DictLoader, self).__init__(**kwargs)
 self.dict = dict

 def resolve_path(self, name, parent_path=None):
 if parent_path and not parent_path.startswith("<") and \
 not parent_path.startswith("/") and \
 not name.startswith("/"):
 file_dir = posixpath.dirname(parent_path)
 name = posixpath.normpath(posixpath.join(file_dir, name))
 return name

 def _create_template(self, name):
 return Template(self.dict[name], name=name, loader=self)

class _Node(object):
 def each_child(self):
 return ()

 def generate(self, writer):
 raise NotImplementedError()

 def find_named_blocks(self, loader, named_blocks):
 for child in self.each_child():
 child.find_named_blocks(loader, named_blocks)

class _File(_Node):
 def __init__(self, template, body):
 self.template = template
 self.body = body
 self.line = 0

 def generate(self, writer):
 writer.write_line("def _tt_execute():", self.line)
 with writer.indent():
 writer.write_line("_tt_buffer = []", self.line)
 writer.write_line("_tt_append = _tt_buffer.append", self.line)
 self.body.generate(writer)
 writer.write_line("return _tt_utf8('').join(_tt_buffer)", self.line)

 def each_child(self):
 return (self.body,)

class _ChunkList(_Node):
 def __init__(self, chunks):
 self.chunks = chunks

 def generate(self, writer):
 for chunk in self.chunks:
 chunk.generate(writer)

 def each_child(self):
 return self.chunks

class _NamedBlock(_Node):
 def __init__(self, name, body, template, line):
 self.name = name
 self.body = body
 self.template = template
 self.line = line

 def each_child(self):
 return (self.body,)

 def generate(self, writer):
 block = writer.named_blocks[self.name]
 with writer.include(block.template, self.line):
 block.body.generate(writer)

 def find_named_blocks(self, loader, named_blocks):
 named_blocks[self.name] = self
 _Node.find_named_blocks(self, loader, named_blocks)

class _ExtendsBlock(_Node):
 def __init__(self, name):
 self.name = name

class _IncludeBlock(_Node):
 def __init__(self, name, reader, line):
 self.name = name
 self.template_name = reader.name
 self.line = line

 def find_named_blocks(self, loader, named_blocks):
 included = loader.load(self.name, self.template_name)
 included.file.find_named_blocks(loader, named_blocks)

 def generate(self, writer):
 included = writer.loader.load(self.name, self.template_name)
 with writer.include(included, self.line):
 included.file.body.generate(writer)

class _ApplyBlock(_Node):
 def __init__(self, method, line, body=None):
 self.method = method
 self.line = line
 self.body = body

 def each_child(self):
 return (self.body,)

 def generate(self, writer):
 method_name = "_tt_apply%d" % writer.apply_counter
 writer.apply_counter += 1
 writer.write_line("def %s():" % method_name, self.line)
 with writer.indent():
 writer.write_line("_tt_buffer = []", self.line)
 writer.write_line("_tt_append = _tt_buffer.append", self.line)
 self.body.generate(writer)
 writer.write_line("return _tt_utf8('').join(_tt_buffer)", self.line)
 writer.write_line("_tt_append(_tt_utf8(%s(%s())))" % (
 self.method, method_name), self.line)

class _ControlBlock(_Node):
 def __init__(self, statement, line, body=None):
 self.statement = statement
 self.line = line
 self.body = body

 def each_child(self):
 return (self.body,)

 def generate(self, writer):
 writer.write_line("%s:" % self.statement, self.line)
 with writer.indent():
 self.body.generate(writer)
 # Just in case the body was empty
 writer.write_line("pass", self.line)

class _IntermediateControlBlock(_Node):
 def __init__(self, statement, line):
 self.statement = statement
 self.line = line

 def generate(self, writer):
 # In case the previous block was empty
 writer.write_line("pass", self.line)
 writer.write_line("%s:" % self.statement, self.line, writer.indent_size() - 1)

class _Statement(_Node):
 def __init__(self, statement, line):
 self.statement = statement
 self.line = line

 def generate(self, writer):
 writer.write_line(self.statement, self.line)

class _Expression(_Node):
 def __init__(self, expression, line, raw=False):
 self.expression = expression
 self.line = line
 self.raw = raw

 def generate(self, writer):
 writer.write_line("_tt_tmp = %s" % self.expression, self.line)
 writer.write_line("if isinstance(_tt_tmp, _tt_string_types):"
 " _tt_tmp = _tt_utf8(_tt_tmp)", self.line)
 writer.write_line("else: _tt_tmp = _tt_utf8(str(_tt_tmp))", self.line)
 if not self.raw and writer.current_template.autoescape is not None:
 # In python3 functions like xhtml_escape return unicode,
 # so we have to convert to utf8 again.
 writer.write_line("_tt_tmp = _tt_utf8(%s(_tt_tmp))" %
 writer.current_template.autoescape, self.line)
 writer.write_line("_tt_append(_tt_tmp)", self.line)

class _Module(_Expression):
 def __init__(self, expression, line):
 super(_Module, self).__init__("_tt_modules." + expression, line,
 raw=True)

class _Text(_Node):
 def __init__(self, value, line, whitespace):
 self.value = value
 self.line = line
 self.whitespace = whitespace

 def generate(self, writer):
 value = self.value

 # Compress whitespace if requested, with a crude heuristic to avoid
 # altering preformatted whitespace.
 if "<pre>" not in value:
 value = filter_whitespace(self.whitespace, value)

 if value:
 writer.write_line('_tt_append(%r)' % escape.utf8(value), self.line)

[docs]class ParseError(Exception):
 """Raised for template syntax errors.

 ``ParseError`` instances have ``filename`` and ``lineno`` attributes
 indicating the position of the error.

 .. versionchanged:: 4.3
 Added ``filename`` and ``lineno`` attributes.
 """
 def __init__(self, message, filename=None, lineno=0):
 self.message = message
 # The names "filename" and "lineno" are chosen for consistency
 # with python SyntaxError.
 self.filename = filename
 self.lineno = lineno

 def __str__(self):
 return '%s at %s:%d' % (self.message, self.filename, self.lineno)

class _CodeWriter(object):
 def __init__(self, file, named_blocks, loader, current_template):
 self.file = file
 self.named_blocks = named_blocks
 self.loader = loader
 self.current_template = current_template
 self.apply_counter = 0
 self.include_stack = []
 self._indent = 0

 def indent_size(self):
 return self._indent

 def indent(self):
 class Indenter(object):
 def __enter__(_):
 self._indent += 1
 return self

 def __exit__(_, *args):
 assert self._indent > 0
 self._indent -= 1

 return Indenter()

 def include(self, template, line):
 self.include_stack.append((self.current_template, line))
 self.current_template = template

 class IncludeTemplate(object):
 def __enter__(_):
 return self

 def __exit__(_, *args):
 self.current_template = self.include_stack.pop()[0]

 return IncludeTemplate()

 def write_line(self, line, line_number, indent=None):
 if indent is None:
 indent = self._indent
 line_comment = ' # %s:%d' % (self.current_template.name, line_number)
 if self.include_stack:
 ancestors = ["%s:%d" % (tmpl.name, lineno)
 for (tmpl, lineno) in self.include_stack]
 line_comment += ' (via %s)' % ', '.join(reversed(ancestors))
 print(" " * indent + line + line_comment, file=self.file)

class _TemplateReader(object):
 def __init__(self, name, text, whitespace):
 self.name = name
 self.text = text
 self.whitespace = whitespace
 self.line = 1
 self.pos = 0

 def find(self, needle, start=0, end=None):
 assert start >= 0, start
 pos = self.pos
 start += pos
 if end is None:
 index = self.text.find(needle, start)
 else:
 end += pos
 assert end >= start
 index = self.text.find(needle, start, end)
 if index != -1:
 index -= pos
 return index

 def consume(self, count=None):
 if count is None:
 count = len(self.text) - self.pos
 newpos = self.pos + count
 self.line += self.text.count("\n", self.pos, newpos)
 s = self.text[self.pos:newpos]
 self.pos = newpos
 return s

 def remaining(self):
 return len(self.text) - self.pos

 def __len__(self):
 return self.remaining()

 def __getitem__(self, key):
 if type(key) is slice:
 size = len(self)
 start, stop, step = key.indices(size)
 if start is None:
 start = self.pos
 else:
 start += self.pos
 if stop is not None:
 stop += self.pos
 return self.text[slice(start, stop, step)]
 elif key < 0:
 return self.text[key]
 else:
 return self.text[self.pos + key]

 def __str__(self):
 return self.text[self.pos:]

 def raise_parse_error(self, msg):
 raise ParseError(msg, self.name, self.line)

def _format_code(code):
 lines = code.splitlines()
 format = "%%%dd %%s\n" % len(repr(len(lines) + 1))
 return "".join([format % (i + 1, line) for (i, line) in enumerate(lines)])

def _parse(reader, template, in_block=None, in_loop=None):
 body = _ChunkList([])
 while True:
 # Find next template directive
 curly = 0
 while True:
 curly = reader.find("{", curly)
 if curly == -1 or curly + 1 == reader.remaining():
 # EOF
 if in_block:
 reader.raise_parse_error(
 "Missing {%% end %%} block for %s" % in_block)
 body.chunks.append(_Text(reader.consume(), reader.line,
 reader.whitespace))
 return body
 # If the first curly brace is not the start of a special token,
 # start searching from the character after it
 if reader[curly + 1] not in ("{", "%", "#"):
 curly += 1
 continue
 # When there are more than 2 curlies in a row, use the
 # innermost ones. This is useful when generating languages
 # like latex where curlies are also meaningful
 if (curly + 2 < reader.remaining() and
 reader[curly + 1] == '{' and reader[curly + 2] == '{'):
 curly += 1
 continue
 break

 # Append any text before the special token
 if curly > 0:
 cons = reader.consume(curly)
 body.chunks.append(_Text(cons, reader.line,
 reader.whitespace))

 start_brace = reader.consume(2)
 line = reader.line

 # Template directives may be escaped as "{{!" or "{%!".
 # In this case output the braces and consume the "!".
 # This is especially useful in conjunction with jquery templates,
 # which also use double braces.
 if reader.remaining() and reader[0] == "!":
 reader.consume(1)
 body.chunks.append(_Text(start_brace, line,
 reader.whitespace))
 continue

 # Comment
 if start_brace == "{#":
 end = reader.find("#}")
 if end == -1:
 reader.raise_parse_error("Missing end comment #}")
 contents = reader.consume(end).strip()
 reader.consume(2)
 continue

 # Expression
 if start_brace == "{{":
 end = reader.find("}}")
 if end == -1:
 reader.raise_parse_error("Missing end expression }}")
 contents = reader.consume(end).strip()
 reader.consume(2)
 if not contents:
 reader.raise_parse_error("Empty expression")
 body.chunks.append(_Expression(contents, line))
 continue

 # Block
 assert start_brace == "{%", start_brace
 end = reader.find("%}")
 if end == -1:
 reader.raise_parse_error("Missing end block %}")
 contents = reader.consume(end).strip()
 reader.consume(2)
 if not contents:
 reader.raise_parse_error("Empty block tag ({% %})")

 operator, space, suffix = contents.partition(" ")
 suffix = suffix.strip()

 # Intermediate ("else", "elif", etc) blocks
 intermediate_blocks = {
 "else": set(["if", "for", "while", "try"]),
 "elif": set(["if"]),
 "except": set(["try"]),
 "finally": set(["try"]),
 }
 allowed_parents = intermediate_blocks.get(operator)
 if allowed_parents is not None:
 if not in_block:
 reader.raise_parse_error("%s outside %s block" %
 (operator, allowed_parents))
 if in_block not in allowed_parents:
 reader.raise_parse_error(
 "%s block cannot be attached to %s block" %
 (operator, in_block))
 body.chunks.append(_IntermediateControlBlock(contents, line))
 continue

 # End tag
 elif operator == "end":
 if not in_block:
 reader.raise_parse_error("Extra {% end %} block")
 return body

 elif operator in ("extends", "include", "set", "import", "from",
 "comment", "autoescape", "whitespace", "raw",
 "module"):
 if operator == "comment":
 continue
 if operator == "extends":
 suffix = suffix.strip('"').strip("'")
 if not suffix:
 reader.raise_parse_error("extends missing file path")
 block = _ExtendsBlock(suffix)
 elif operator in ("import", "from"):
 if not suffix:
 reader.raise_parse_error("import missing statement")
 block = _Statement(contents, line)
 elif operator == "include":
 suffix = suffix.strip('"').strip("'")
 if not suffix:
 reader.raise_parse_error("include missing file path")
 block = _IncludeBlock(suffix, reader, line)
 elif operator == "set":
 if not suffix:
 reader.raise_parse_error("set missing statement")
 block = _Statement(suffix, line)
 elif operator == "autoescape":
 fn = suffix.strip()
 if fn == "None":
 fn = None
 template.autoescape = fn
 continue
 elif operator == "whitespace":
 mode = suffix.strip()
 # Validate the selected mode
 filter_whitespace(mode, '')
 reader.whitespace = mode
 continue
 elif operator == "raw":
 block = _Expression(suffix, line, raw=True)
 elif operator == "module":
 block = _Module(suffix, line)
 body.chunks.append(block)
 continue

 elif operator in ("apply", "block", "try", "if", "for", "while"):
 # parse inner body recursively
 if operator in ("for", "while"):
 block_body = _parse(reader, template, operator, operator)
 elif operator == "apply":
 # apply creates a nested function so syntactically it's not
 # in the loop.
 block_body = _parse(reader, template, operator, None)
 else:
 block_body = _parse(reader, template, operator, in_loop)

 if operator == "apply":
 if not suffix:
 reader.raise_parse_error("apply missing method name")
 block = _ApplyBlock(suffix, line, block_body)
 elif operator == "block":
 if not suffix:
 reader.raise_parse_error("block missing name")
 block = _NamedBlock(suffix, block_body, template, line)
 else:
 block = _ControlBlock(contents, line, block_body)
 body.chunks.append(block)
 continue

 elif operator in ("break", "continue"):
 if not in_loop:
 reader.raise_parse_error("%s outside %s block" %
 (operator, set(["for", "while"])))
 body.chunks.append(_Statement(contents, line))
 continue

 else:
 reader.raise_parse_error("unknown operator: %r" % operator)

 © Copyright 2009-2016, The Tornado Authors.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

